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Improved Detection in CDMA

for Biased Sources

Hadar Efraim, Nadav Yacov, Ori Shental, Ido Kanter∗ and David Saad

Abstract

We consider the detection of biased information sources in the ubiquitous Code-Division Multiple-

Access (CDMA) scheme. We propose a simple modification to both the popular single-user matched-

filter detector and a recently introduced near-optimal message-passing based multiuser detector. This

modification allows for detecting modulated biased sources directly, with no need for source coding.

Analytical results and simulations with excellent agreement are provided, demonstrating substantial

improvement in bit error rate in comparison with the unmodified detectors and the alternative of source

compression. The robustness of error-performance improvement is shown under practical model settings,

including bias estimation mismatch and finite-length spreading codes.
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I. INTRODUCTION

Direct-sequence spread-spectrum Code-Division Multiple-Access (CDMA) is used extensively

in modern wireless communication systems and serves preeminently in commercial cellular net-

works. Typically in the uncoded CDMA literature [1], the binary information source, modulated

for transmission over the channel, is assumed to be taken from an unbiased identically and

independently distributed (i.i.d.) random process.

In practice, however, a substantial level of redundancy can often be observed in real-life

uncoded sources (e.g. , uncompressed binary images) which can be viewed as a bias in the

generating Bernoulli distribution. In such cases, it would be reasonable to use binary source

encoding. A source encoder is said to be optimal if it can eliminate all source redundancies and

generate unbiased outputs. However, most existing practical source encoders, which are typically

fixed-length encoders, are sub-optimal. Thus, the source encoder output still contains a certain

level of bias, which can be further exploited in the transceiver design.

As for coded systems, it has been shown [2] that the empirical distribution of any ’good’

error-correcting code1 converges to the channel’s capacity-achieving input distribution. Hence,

well-coded information sources, in the common case of binary-input additive white Gaussian

noise (BI-AWGN) CDMA channel, must be unbiased2. However, bias can be found in practical

coded CDMA systems in which not so ’good’ codes are being employed, e.g. , systematic Turbo

codes [4]–[6], for which the systematic component of the code entails bias.

Therefore, tuning CDMA detection for biased sources is of major importance in both coded

and uncoded systems. In this paper, we examine the commonly-used random spreading scheme,

which lends itself to analysis and well describes CDMA with long signature sequences. We

suggest a different approach for handling CDMA with biased sources than source compression.

We propose a scheme in which the source bias m is assumed to be estimated by the receiver

and is used for modifying, for instance, both naive single-user matched-filter (SUMF) and state-

of-the-art multiuser CDMA detectors. This scheme can be categorized as a joint source coding-

modulation approach, where the CDMA demodulation is performed utilizing side information

1A ’good’ code is a code approaching capacity with asymptotically vanishing probability of error.

2As the capacity-achieving input distribution of the BI-AWGN channel is Bernoulli 1/2 [3].
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(i.e. , bias) about the source. Based on large-system limit3 analysis, we find that a tuning, or

correction, factor of the form c · tanh−1m improves the detection of the biased source. For the

SUMF (particularly suitable for the downlink) we find4 c , (β+σ2), and for the tractable belief-

propagation based multiuser detector (particularly relevant for the uplink), recently introduced

by Kabashima [7], we find c , 1. The latter is up-to-date the best known error performing

tractable detector for random spreading CDMA in cases where the noise level is known, and has

recently been extended to the general case where the noise level is unknown [8]. The derived

scheme is shown to yield an improved error performance under practical system settings as

finite-length spreading codes and bias estimation mismatch. The proposed scheme outperforms

the alternative of applying source coding throughout a wide range of practical bias values.

Furthermore, this improved detection scheme can be also used in processing biased feedback

information in iterative multiuser decoding. No other detection scheme for biased sources has

been proposed previously in the literature for CDMA.

II. CDMA WITH BIASED SOURCES

Consider a K-user synchronous direct-sequence binary phase shift-keying (DS/BPSK) CDMA

system employing random binary spreading codes of N chips over an AWGN channel. The

received signal sample of such a system can be described by

yµ =
1√
N

K
∑

k=1

sµkbk + nµ, (1)

where sµk = ±1 (µ = 1, . . . , N , k = 1, . . . , K) are the binary spreading chips being inde-

pendently and equiprobably chosen. The deterministic chip waveform is assumed to be of unit

energy; bk is the (possibly coded) information source binary symbol transmitted by the k’th

user and is taken from a Bernoulli process with a non-zero bias of mean −1 ≤ mk ≤ 1;

nµ is an AWGN sample taken from the Gaussian distribution N (0, σ2). Hereinafter, the user’s

source bias mk is assumed to be (continuously re-) estimated at the receiver from the received

signal (e.g. , by using the likelihood of a Bernoulli process). Alternatively, the bias value can

be reported periodically to the receiver via an auxiliary low-rate channel. The assumption of

3The limit where the number of users and processing gain tend to infinity but with a fixed ratio, which is defined as the

system load β.

4Where β and σ2 are the system load and noise variance, respectively, as defined in the following Section II.
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(possibly erroneous) side information about the bias is particularly suitable for sources generated

from known quasi-static distribution. We also assume a perfect power-control mechanism yielding

unit energy transmissions. In the following, improvement of CDMA detection for biased sources

is performed based on an asymptotic analysis, in which we assume that N and K are large, yet

the system load factor β , K/N is kept finite. Results for finite number of users, K, and practical

spreading factor, N , under both perfect and erroneous bias estimation are presented in Section V.

These results substantiate the validity and robustness of the suggested BER improvement to

realistic systems.

III. IMPROVING SINGLE-USER DETECTION

Applying a SUMF for the CDMA detection problem results in binary decisions

b̂k = sign
( 1√

N

N
∑

µ=1

yµsµk

)

, (2)

where sign(·) is the hard-decision signum function. In order to adapt the SUMF for biased

sources and improve its error performance, we reformulate the SUMF mechanism (2) to have

the new form

b̂k = sign(ψ) (3)

with

ψ ,
1√
N

N
∑

µ=1

yµsµk + ξk. (4)

For each user k, this decision rule of the SUMF is identical to its original form (2), up to

an additive correction factor ξk, which is a function of the bias mk and the summation of the

load β and the noise variance σ2. As we shall see, using an appropriate value of ξk, this minor

change in the architecture of the SUMF yields a substantial enhancement in this detector’s error

performance for biased sources.

A. Calculating ξk

The SUMF output (before the hard-decision operation) can be rewritten as [1]

1√
N

∑

µ

yµsµk = bk +
1

N

∑

µ

∑

k′ 6=k

sµk′sµkbk′ +
1√
N

∑

µ

nµsµk. (5)
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The last two terms in the SUMF output (5) are the multiple-access interference and the additive

(white Gaussian) noise, respectively. In the large system analysis [1] according to the central limit

theorem [9], these two random terms are distributed with N (0, β) and N (0, σ2), respectively,

thus their detrimental sum is taken from N (0, β + σ2). Hence, for the new decision rule (3) the

k’th user average probability for bit error, PMF
bk

(ξk), is easily obtained as

PMF
bk

(ξk) = Pr (bk = 1) Pr (ψ < 0) + Pr (bk = −1) Pr (ψ ≥ 0)

=
1 +mk

2
Q
( ξk + 1
√

β + σ2

)

+
1 −mk

2

(

1 −Q
( ξk − 1
√

β + σ2

))

, (6)

where the Q-function Q(α) ,
∫∞

α
exp (−x2/2)dx/

√
2π is the complementary cumulative distri-

bution function. The correction for optimal error performance under this scheme, ξopt
k , is obtained

by finding the root of the derivative of PMF
bk

(ξk) (6) w.r.t. ξk, resulting in

ξopt
k = (β + σ2) tanh−1mk. (7)

IV. IMPROVING MULTIUSER DETECTION

Recently, Kabashima [7] has introduced a tractable iterative CDMA multiuser detector which

is based on the celebrated belief propagation algorithm (BP, [10], [11]). This novel algorithm

exhibits considerably faster convergence than conventional multistage detection [12] without

increasing computational cost significantly. It is considered to provide a nearly-optimal detection

when the spreading factor N is large and the noise level is known. Similarly to multistage

detection, at each iteration cycle t this detector computes tentative soft decisions η t
k for each

user transmission, of the form

ηt
k = tanh(ht

k). (8)

The parameters ηt
k and ht

k (h0
k is initialized by equating it to the SUMF output (5)) are coupled
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and being iteratively computed using the following recipe5

U t
k = At

K
∑

l=1

Wklη
t
l + Atβ(1 −Qt)U t−1

k , (9)

ht+1

k = Rth0

k − U t
k + Atηt

k(1 −Qt)U t−1

µ , (10)

Rt = At + Atβ(1 −Qt)Rt−1, (11)

where Wkl ,
∑N

µ=1
sµksµl/N , Qt ,

∑K

k=1
(ηt

k)
2/K, At , (σ2 + β(1 − Qt))−1 and tentative

hard-decisions are taken by b̂tk = sign(ηt
k). Producing b̂tk ≡ b̂t+1

k ,∀k, serves as the convergence

criterion.

A. Calculating ξk

As in the previous section, a correction factor ξk for bias-based error-performance improvement

is incorporated within the detection algorithm. The marginalized likelihood and posterior at the

t’th update are defined as [7]

P t(yµ|bk, {yν 6=µ}) ∝
1 + η̂t

µkbk

2
, (12)

P t(bk|y) ∝ 1 + ηt
kbk

2
, (13)

respectively, where the vector y denotes the set of all N observations, and ηt
µk,η̂t

µk are per user

(defined) internal parameters. Thus, in the biased case according to Bayes’ law

1 + ηt
kbk

2
= P t(bk|y) = αk

(

N
∏

µ=1

P t(yµ|bk, {yν 6=µ})
)

1 +mkbk
2

, (14)

where αk is a normalization constant and the last term in the product is the k’th user source bit

prior, which corresponds to the message bias.

Using tanh−1(x) = 1/2 ln
(

(1 + x)/(1 − x)
)

, ηt
k can be extracted from expression (14) as

ηt
k = tanh

(1

2
ln

1 + ηt
k

1 − ηt
k

)

= tanh
(1

2
ln

(1 +mk)
∏N

µ=1
(1 + η̂t

µk)

(1 −mk)
∏N

µ=1
(1 − η̂t

µk)

)

= tanh
(

N
∑

µ=1

tanh−1 η̂t
µk+tanh−1mk

)

.

(15)

5As we shall prove, finding the correction factor ξk for this multiuser detector results only in modifying the update rule (8).

Moreover, the devised bias correction ξk is optimal for any BP-based detector and can be derived directly by adding the correct

prior in the Bayesian scheme. The details of Kabashima’s detector are introduced for completeness, in addition to the fact that

this recipe is being implemented in full in the following Section V.
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Comparing this result to the above noted expression for ηt
k (8), the new bias-based improvement

version of relation (8) is now easily inferred

ηt
k = tanh(ht

k + ξk), (16)

with ξk = tanh−1mk regardless of the iteration index t. Unlike in the SUMF case, ξk here is

independent of β and σ2.

V. RESULTS AND DISCUSSION

In this section, the proposed scheme for biased sources is examined for the SUMF and

Kabashima’s multiuser detectors. Analytical and experimental results are obtained under both

theoretical (large spreading factor and exact bias knowledge) and practical (finite N and ap-

proximate bias estimation) model settings. Unless otherwise is specifically stated, all SUMF

(Kabashima) detector results are obtained for load β = 0.8 (0.5) and signal-to-noise ratio,

SNR , 10 log10 (1/σ2) = 2dB (6dB), while simulation results are averaged over sufficiently

large ensemble of 4000 (2000) computer-simulated randomly-spread AWGN CDMA systems

with long spreading factor N = 1000 (2000). The standard deviation of all simulation results

was small, thus omitted from the figures. From this point and on, sources with identical bias are

assumed, thus omitting subscript k from m, ξ, Pb(ξ) and so on.

Fig. 1-(a) displays the normalized bit error rate (BER) (6) for the SUMF (3)-(4) detector

as a function of the bias6 m. As we are less interested in the well-known absolute error

performance [1], [7] of the examined detectors, the BER is normalized by the probability of

error if no bias-based modification (2) is applied (i.e. , the unmodified detectors without bias

side information). Thus, Fig. 1-(a) depicts the analytical improvement in performance (for large

N ) due to the proposed scheme. It also presents empirical BER results in two different bias

estimation settings. First, a perfect side information on the bias is assumed at the receiver. These

experimental results agree perfectly with the analytical BER curve. Also drawn is the simulated

normalized BER under the realistic model of mismatch in bias estimation. Here, a mismatch of

+20% and −20% is examined, i.e. , the detector assumes a bias which is 20% higher/lower than

its true value. Clearly, the proposed scheme still suggests a substantial improvement in BER in

this practical setting.

6Due to symmetry, only non-negative bias is shown in the figures.
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Fig. 1. (a) Normalized BER, P MF
b (ξopt)/P MF

b (0), for the SUMF detector as a function of the bias m for N = 1000, β = 0.8

and SNR = 2dB. Analytical BER (solid line), computed according to expression (6), is compared to simulated BER (circles)

assuming the exact source bias is known to the receiver. Also drawn (× and ∆-marks) are the simulated BER curves under bias

mismatch of ±20%. Simulation results are averaged over 4000 systems. (b) Simulated normalized BER, P KB
b (ξopt)/P KB

b (0),

for Kabashima’s (KB) near-optimal detector [7] as a function of the bias m for N = 2000, β = 0.5, SNR = 6dB and averaged

over 2000 systems. Simulated BER assuming exact bias (circles) knowledge at the receiver is compared to BER achieved under

bias mismatch of ±20% (× and ∆-marks).

Evidently, the normalized BER decreases down to zero for m = 1, as knowing only the bias

in this case trivially entails the transmitted binary symbols (all ′1′s). Note that even for small

bias values there is still some room for BER improvement due to the proposed scheme.

Simulation7 results for the improvement due to the proposed modification (16) of Kabashima’s

(KB) multiuser detector (9)-(11) are drawn in Fig. 1-(b) under exact and approximate bias

knowledge settings. Both mismatch curves exhibit BER improvement monotonically increasing

with the bias value, with or without exact bias estimation at the receiver. Overestimation is

empirically observed as relatively more detrimental than underestimation for large bias values

and these two mismatch cases are not symmetric. Still both mismatch cases demonstrate a

significant improvement in BER.

Fig. 2-(a) presents the normalized simulated BER as a function of bias mismatch (m = 0.2, 0.8)

for both the SUMF and Kabashima’s multiuser detectors. The robustness of the proposed scheme

7To this date, there is no exact asymptotic error performance analysis published for this detector.
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Fig. 2. (a) Simulated normalized BER, Pb(ξ
opt)/Pb(0), for the SUMF (circles and solid line) and Kabashima’s multiuser

(squares and dashed line) detectors as a function of the bias mismatch (in %) for both m = 0.2 (upper curves) and m = 0.8

(lower curves). Averaged over 104 simulated systems. (b) Normalized BER for SUMF (upper curves) and Kabashima’s (lower

curves) detectors as a function of the spreading factor N for both m = 0.2 and m = 0.8 (104 simulated systems). Full circles

denote practical N values. In both figures, the lines are guides to the eye.

is observed over a wide range of bias mismatch, yielding BER improvement even under strong

bias estimation error.

Up to this point, we have investigated the proposed scheme under the theoretical assumption

of infinite (or at least very long) spreading codes. In order to verify its feasibility to practical

CDMA settings, the BER performance under finite-length spreading codes (i.e. , N ≤ 512)

has been examined. The upper curves in Fig. 2-(b) display the simulated normalized BER for

SUMF as a function of the spreading factor N for both relatively low bias, m = 0.2, and high

bias, m = 0.8 (104 simulated systems). The improvement in detection due to the proposed

scheme for practical values of N (full circles) is found to be (qualitatively) the same as the one

obtained for large spreading factor (e.g. , N = 1000, empty circle). Similar results are obtained

for Kabashima’s multiuser detector (lower curves). Thus, the proposed scheme remains attractive

for realistic finite spreading gains.

For Kabashima’s iterative detector, we have evaluated not only the improvement in error

performance, but also the reduction in the total number of iterations, τ(ξopt), required for

convergence (which is an important factor in the implementation of such algorithms) induced
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Fig. 3. (a) Normalized average convergence rate, 〈τ(ξopt)〉/〈τ(0)〉, as a function of the bias m (for 1500 simulated systems).

(b) SUMF BER comparison for the proposed scheme versus optimal and non-optimal (i.e. , 5% above the entropy) compression

as a function of bias m (β = 0.5 and SNR = 6dB). (c) Simulated BER comparison of Kabashima’s detector for the proposed

modification versus optimal compression as a function of bias m (β = 0.5 and SNR = 2dB). The squares denote simulation

results, while the lines are only guides to the eye.

by the proposed mechanism. This improvement in the average convergence rate 〈τ(ξopt)〉 (〈·〉
denotes averaging operation), w.r.t. the number of iterations 〈τ(ξ = 0)〉 required in the standard

case when equiprobable source information bits are assumed, is shown in Fig. 3-(a) (for 1500

simulated systems).

As previously stated, the mainstream alternative to our approach is source coding, or com-

pression [13]. In order to evaluate the attractiveness of the proposed scheme, we compare its
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bit error probability PMF
b (ξopt, σ, β), when applied to a simple SUMF, to the bit error proba-

bility P comp
b (ξ = 0, σcomp, βcomp) achieved by (ordinary) SUMF detection of the transmission

of unbiased (optimally) compressed source bits. As after optimal compression no bias-based

improvement can be performed (i.e. , m = 0), the ratio between these two probabilities is given

by

PMF
b

P comp
b

=
PMF

b (ξopt, σ, β)

P comp
b (ξ = 0, σcomp = σ

√

Hb(m), βcomp = βHb(m))

=
Hb(m)PMF

b (ξopt, σ, β)

PMF
b (ξ = 0, σcomp = σ

√

Hb(m), βcomp = βHb(m))
, (17)

where Hb(m) , −0.5
(

(1+m) log2

(

(1 +m)/2
)

+(1−m) log2

(

(1 −m)/2
)

)

denotes the binary

source’s entropy. In computing the ratio (17), fair comparison dictates taking into consideration

the differences in information rates and available transmission power between these two ap-

proaches, as follows. Note that as compression results in Hb(m) times fewer compressed bits,

they can be transmitted using an Hb(m) times lower bandwidth and a 1/
√

Hb(m) times higher

transmission amplitude per bit. To eliminate this unfairness in the comparison, we have assumed

that the compressed bits are conveyed under an effectively
√

Hb(m) times lower noise level

and Hb(m) times lower load β. Also, in computing P comp
b when we assume an optimal source

code, asymptotically speaking, a single error in detecting a compressed bit leads, on average, to

1/Hb(m) errors in the uncompressed information.

Fig. 3-(b) presents the analytical BER ratio (17) as a function of the bias m for β = 0.5

and SNR = 6dB. Interestingly, applying the proposed bias-based improvement to the SUMF

is superior to the optimal compression alternative almost throughout the whole range of bias

values. The performance gap is maximized for m ∼ 0.85, giving over 40% BER improvement.

Only for highly biased sources (m & 0.94) compression is found to be advantageous. Similar

comparison results (Fig. 3-(c)) are obtained when CDMA demodulation is performed using the

nearly-optimal multiuser detector of Kabashima (for β = 0.5 and SNR = 2dB). In other words,

the proposed joint source coding-modulation typically outperforms the separation into optimal

compression and (SUMF/KB) demodulation.

Fig. 3-(b) also demonstrates the increasing superiority of the modified SUMF over non-optimal

compression. A sub-optimal fixed-length source encoder compressing at 5% above entropy

is assumed. Again, this curve is obtained using the analytical ratio (17), where the optimal
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compression rate Hb(m) is now replaced by the sub-optimal rate (1 + 0.05)Hb(m).

In this context, one should bear in mind that while standard compression exhibits a substantial

delay and demands an excessive computational cost at both the transmitter and receiver, the

proposed scheme does not significantly affect the transmitter. Moreover, the modification of

existing detectors boils down to a simple correction within the detectors architecture. For the

popular SUMF and the examined attractive multiuser detector [7] this correction is found to

have the simple form c · tanh−1m.

In addition, the output bitstream of practical compression schemes, as opposed to optimal

compression, still leaves some non-accounted and non-negligible bias, which can be further

utilized by adopting our scheme. A prerequisite to the implementation of the described scheme

is (not necessarily perfect) side information about the source bias being available to the receiver.

Thus, the exact bias, or its estimate, can be computed (delivered) at (to) the receiver, incorporated

into the detection process and render, as shown, a significant improvement in error performance.
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