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ELASTICITY MEASUREMENT AT HIGH TEMPERATURES

K. R. Chaplain

Doctor of Philosophy 1979

Summary

A magnetostrictive delay line technique is used to excite the
resonant modes of vibration of thin discs. The temperature variations
of Poisson's Ratio and Young's modulus are measured using these modes.
The elastic constants of a variety of grades of graphite, including
pyrolytic graphite (which was found to have a negative Poisson's Ratio
paracl)lel to the basal plane) have been measured up to a temperature of
1000"C. Tables of a nomalised frequency parameter for thin discs are
given covering the ranges of Poisson's Ratio -0.5 to +0.5 in steps of
0.0l to enable the calculation of Poisson's Ratio and Young's modulus
fram the thin disc resonant frequencies.

'The delay line technique was found to be applicable to the excitation
of end resonances in cylindrical solids. Experimental evidence is given
of end resonant modes having 2 or more nodal diameters. Coamparisons are
made between the end resonant frequencies and those of the corresponding
thin disc modes. It was found that in all these cases the end resonant
frequency was below the cut-off frequency.

A technique of elastic constant measurement at high temperatures,
camplementary to the resonant thin disc method is given., This consists
of a double pulse, time of flight method which dces not require a high
material Q and easily lends itself to autcmation. A design for an
instrument is presented which automatically tracks the variation in
time of flight resulting from the temperature change of the material.
The method is demonstrated by measuring ghe variation of the Young's
medulus of Thoriated Tungsten up to 1800°C.

ACOUSTIC VELOCITY, END RESONANCE, PYROLYTIC GRAPHITE, ULTRASCNIC MATERIAL
CHARACTERISATTON
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CHAPTER 1

INTRODUCTION

The resonant spectrum of a solid body depends on the
physical form and the elastic constants of the material.
For a limited number of geometries theoretical solutions for
the spectrum are known and hence an experimentally determined
spectrum allows the elastic constants to be calculated. For
isotrepic materials the number of independent elastic
constants reduces to two, in this work Young's Modulus and
Poisson's Ratio are chosen, These constants are convenient
for engineering calbulatiOns, the latter constant changes
only slightly with temperature, variations mainly affecting

Young's Modulus.

Work has been concentrated on isotropic and near
isotropic solids with cylindrical geometry. The already
existing theory of the in-plane vibrations of thin discs has
been used. The numerical tables available have been extended
to include the wide range of Poisson's Ratio of currently
available engineering materials at intervals of 0,01, Erpors
arising from the evaluation of high order Bessel's Function
in previous work(51j were detected and have been eliminated.
A theoretical and experimental study has been made of the
trapped resonances which occur at the end of cylindrical
structures. Experimental results have been obtained for

various materials having a wide range of Poisson's Ratio.



An experimental pulse echo technique using a
magnetostrictive delay line enables the solid to be driven at
any selected point and orientation. The line introduces
sufficient delay to separate the transmission from the echo.
Modes of vibration having a displacement component in the
direction of the drive will be excited. In the case of a
free isotropic disk a radial drive will automatically be at
an antinode of the modes having nodal diameters. With disks
having weak anisotropy the nodal orientation is not wholly
determined by the drive position which similarly affects the
degree of coupling to the mode. For torsional vibration an

angled drive is necessary.

In material studies the length of the delay line enables
the specimen to be in a furnace while the magnetostrictive
transducer is located outside.- This system has considerable
flexibility. The specimen can be made integral with the line,
thus avoiding a high temperature joint. While the section of
the line at the transducer must be magnetostrictive the main
length can be chosen for low loss or refractory properties

relevant to a particular application,

It has been found that as the melting point of a
polycrystalline material is approached, the internal friction
becomes so high that any resonance method of obtaining the
elastic constants is unworkable. 1In these circumstances the
"Time of Flight" method is more appropriate. It has the
advantage that while the signal is attenuated by high loss

materials it is still strong and quite measurable. Again the



method is ideally suited to magnetostrictive excitation
techniques since thin wires can be used. An additional
advantage is that the method is easily automated, allowing
the variations in flight time to be tracked without further

operator intervention.

Tn the end resonances of solid cylinders the energy is
confined to a region within one or two radii of the end.
They are readily excited by a line drive and have nodal
patterns which are very similar to those of thin discs. The
frequencies are a few percent lower than the disc frequencies
and below the cut-off frequency of the lowest corresponding
propagating mode. In all experimental investigations of end
resonance no evidence was found of modes with nodal circles
although modes with a full range of nodal diameters were
found. Results are given for modes up to circular order 7
(corresponding to 7 nodal diameters). Theoretical attempts
to solve these non axi-symmetric end resonances use a
summation of a number of modes at selected points over the
end face to satisfy approximately the stress free boundary
condition on the end. The solution of the Pochhammer Chree
equations for an infinite cylindric solid yields an infinite
number of modes with real, complex and imaginary propagating
modes. The modes with complex and imaginary modes exist below
the cut-off frequencies of the non axi-symmetric propagating
mode. The evidence points to the fact that end resonance
is associated with these complex propagation constants. This

1
is similar to the approach used successfully by Ze1-r1a.&ruc_31<(':L )



etric mode end resonance and Bell and

dealing with sym
Karlmarczie %2 'solving the case of the unique end resonance

that occurs in a thin strip.
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CHAPTER 2

WAVE PROPAGATION IN INFINITE CYLINDRICAL SOLIDS

2.1 Introduction

An understanding of the propagating modes in an infinite
cylinder is central to any discussion of vibrations in semi-
infinite or finite cylindrical bodies. For example, the modes
of vibration that exist in the semi-infinite bar at a given
frequency are a subset of the modes that exist in an infinite
bar. In the former there are two stress free surfaces and in
the latter only one. It was thought at one time that only a
finite number of real modes could exist at a finite frequency,
that is modes with real propagation constants. It was later
discovered that complex solutions to the frequency equation
could exist and moreover that there were an infinity of these

complex solutions at any finite frequency.

Historically the development of the theory of
cylindrical propagating modes is generally attributed to

(1) (2)

Pochhammer and Chree in the last quarter of the

nineteenth century. ' The equations of motion and the resulting
frequency equation are discussed by Love(B). In 1941 Bancroft(41
carriéd out some numerical solutions of the frequency equation
and gave velocity dispersion curves as a function of bar
diameter to wavelength ratio for several values of Poisson's

ratio. Bancroft's work was restricted to the longitudinal

mode (n=0 in the following), the lowest frequency mode which is



of considerable importance in elasticity measurements.
Hudson(51 in 1943 extended this work to give velocity
dispersion curves for the longitudinal and first flexural
modes (the first flexural mode has one nodal diameter) for the

(6)

range of Poisson's ratio 0.0 to 0.5. Adem demonstrated the
existence of complex roots for the symmetric mode frequency

equation.

The barrier to the accurate numerical solution of the
frequency equation was removed by the introduction of high
speed digital computers in the 1960's. Mindlin and McNiven (7
in 1960, using approximate equations derived the axially
symmetric mode dispersion curves at low frequency for real,
imaginary and complex propagation constants. Also in 1960
Pao and Mindlints) gave a grid of bounds for the real
propagation constants of the first flexural mode and Pa\o(9J
extended this to include imaginary propagation constants. In
19?2.Zemanek(ll) gave full dispersion spectra for longitudinal

modes and flexural modes up to circular order 4 at a Poisson's

ratio of 0.3317 (the value for Aluminium).

In this chapter longitudinal dispersion spectra are
computed for real, complex and imaginary solutions of the
frequency equation for 3 values of Poisson's ratio, 0.25,

0.30 and 0.35. The dispersion spectra for higher circular
orders are illustrated with the flexural mode spectra for

n=1 to 3 at a Poisson's ratio of 0,3. The computer programmes
used ta compute these spectra were developed as a preliminary
to obtaining the end resonance spectra of the longitudinal mode

discussed in more detail in Chapter 3.



2.2 The Wave Equation for an Isotropic Solid

If the deformationslof an elastic solid are small then
stress is linearly related to strain. This is stated

mathematically by the generalised Hooke's Law in tensor form.

Equation (2.2.1) represents nine equations giving a total

of 81 elastic coefficients C, (3) that

figded®
for an isotropicelastic solid the number of independent

It is shown by Love

elastic constants reduces to 2 and the total number of

equations reduces to 6. Equation (2.2.1) can then be written.

Ty | [A+21 A A 0 o) o] [sy]
s A A+2p A o) 0 o) S,
g A A A+2u O ) o) 85
38 s 0 0 ) 2u 0 0 S,
T, 0 0 0 o] 2u 0] S¢
e L o 0 0 0 G - Jgeile Hiae]

(Zx242)

where A and p are the standard Lamé elastic constants. The
two constants can be related to any of the engineering elastic
constants such as Young's modulus, Bulk modulus, Torsional
(Shear) modulus and Poisson's ratio and are conveniently

summarised by Redwood(lz).



Under conditions of zero body force the vector equation
of motion is

e
"

(A+ u)Vv.u + uvzﬁ = pu (2.2.3)

where u denotes the second differential of the displacement

with respect to time.

If the displacement is defined in terms of potential

functions (equation (2.2.4)) then two recognisable wave equations

emerge“m

u = grad ¢ + curl Y

and (2. 2.4)

Rpr) +R(go) = 0

4201924 = pd
(2.2.5)

where ¢ is the scalar displacement potential and ¥ is the vector

displacement potential.

The dilatational or volumetric wave represented by the
scalar potential function ¢ propagates with a velocity Cd and
the rotational (Shear) wave represented by the vector potential

function ¥ propagates with a velocity Ct where

: %
A+2
ey = [.L__;_U)l (2.2, 6a)



and
e = [%l (2.2.6Db)

Equation (2.2.5) represents four partial differential
equations and, in cylindrical polar co-ordinates, have the

following solutions.

¢ =3, J,, (ar) cosnd exp{j (yz-wt)}
wr = A, Jh+l(3r)sinne exp{j(yi—mt)}
' (2.2.7)
Yg =B, J ,q(Br)cosnd exp{j(yz-uwt)}
wz = A3 Jh(Br)sinne exp{]j (yz-wt) }
where
3 L p® 2
I R (2.2.8a)
a
and
N
= - 2 A f (25:2.8b)



= 0 =

243 Displacement{Equations

Combining equations (2.2.7) and (2.2.4) give the

displacement components
0 cosnf exp{j (yz-wt)}

0 U8 sinn® exp{j (yz-wt)} (2.3.1a)

e
1l

uw, = U, cosnf exp{j(yz-wt)}

where
u_ = a3} (ar) + %]-3- Iy (Bx) + 2 cJ, (8r)
Uy = - 2 AJ, (ar) - B L2 J (Br) - CJ](Br) (2.3.1b)
u, =j_-rAJn(ar) - 3BBJ  (Br)

A, B and C are arbitrary constants and the prime denotes

differentiation with respect to r.



w3

2.4 The Boundary Conditions

The stress strain relationship of equation (2.2.1) written

in terms of the Lamé constants is

Tii = ?\(_Sll + 522 + 533) + 2y sii (2.4.1a)

and

T =2uS, . ( Summation not implied. ) (2.4.1b)
ij ij P

In cylindrical co-ordinates i=r, 6 or z, and j=6, z or r
respectively, The strains in terms of displacement components

are given by equation (2.4.2).

on
S, = =—
Y= L
su u
L 6 T
50 "% 38 "
S =iti§
Z7Z 9z
au u
7 0
Soz TJI‘BB Y ez ) (2.4.2)
3 =13ur 5 Buz)
rz 243z or
S =1.a_u§.—.l;1§.+i.8_u£J
ro 23r r r 36

For an infinitely long bar the only stress free boundary is the
curved surface at r=a where 2a is the diameter of the bar. The

boundary conditions are therefore

o =T =0 (2.4.3)

rrl rz



w §0e

2.5 The Infinite Rod Frequency Equation

Using the displacement equation (2.3.1b) and the boundary

conditions of Section 2.4 result in the matrix equation (2.5.1).

Trr aj) aj, ap3] [A
tiel T 1222 %22 %23 B = [0} A2e3s1)
.Trz_ _a3l a32 a33‘ -C

For a non-trivial solution the determinant of the 3x3

matrix must be zero, i.e.

- N B L
asy a22 a23 = 0 (2.552)
431 %33 %33

Equation (2.5.2) is known as the infinite rod frequency
equation. The a; . terms written in normalised form convenient

for computation are

Gewdye i s 2
a,, = [n®n-B8%]0_(B) - Ba__,(B)
12 n =1
a;3 = 2n[BJ__,(B) - (n+l)J (B)]

nfad__; (@) - (0+1)J ()]



- T3 =

a,, = n[(+)J (B) - BI__, (@]
By = 2B B = (20% 21 = B°NT (B)
23 el 52 n
ay; =n J (a) - aJ, _,(a)
-2 52 o P -
ag, = 1——57——[8Jn_l(81 - nJ_(B)]
a3 =n Jn(B)

The normalised wave numbers are

? = vaj; o = oa ﬁnd B = Ba

and are related to the normalised frequency 9 (defined as %5)
7
by
g kznz =2
Ez - g2 - -2
2 . 2 _ ()=29)
where k = (Ct/Cd) = ST TosT

and ¢ is Poisson's ratio.

The above frequency equation (2.5.2) is in a more
convenient form for computer solution than that given by
Meeker and Meitzler(l4) and is very similar to that given by

£11)

Zemanek T fact equation (2.5.2) can be made identical

to equation 4 of Zemanek's by the following procedure:-



- 14 -

i) Change sign of third row

ii) Change sign of third column
iii) Take out a factor n from the
iv) Subtract the second row from
v) Change the sign of the first

column.

Equation (2.5.2) is seen to contain

and multiply by n.
second row
the first row

row and the second

three variables, the

normalised frequency 2, the normalised propagation constant

Y and Poisson's ratio o.



= 15 =

2.6 The Axially Symmetric Mode Frequency Spectra

The axially symmetric mode frequency equation is readily
obtained as a simplification of (2.5.2) by setting the circular
order n equal to zero. Thus the determinant (2.5.2.),
expanded, becomes
- a ) =0 (2.6:1)

a a

ayy (a;; az; = a2,

Note that either the first term, aj3 or the bracketed term
can be equal to zero independently. The first term equal to
zero gives the eigenvalues of the torsional modes and is

given in full by equation (2.6.2)
B JO(B) - 2Jl(B) =.0 ) 2.6 .2)
The torsional modes will not be considered further in this

thesis.

The bracketed term of (2.6.1l) is the frequency equation
for the axially symmetric longitudinal modes and is given in
expanded form by equation (2.6.3).
2= - wy 2 _a=lne - s - N
2Q q Jq (@) 3, (B) (@7-2y7) " Jy(a)J, (B) 4y"af J,(a) J,(B)=0

(2.6.3)
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2.6.1 Method of Solution of the Frequency Equation

The roots ?i of equation (2.6.3) are required over
a range of  to obtain the dispersion spectra which constitute
the basis for the work on end resonances that follows in
Chapter 3. The equation was solved for real, complex and
imaginary roots using a modification of Newton Raphsen's

iteration procedure given by equation (2.6.4).

g L f(z)
S zo L f(z+zi)_.f(z) (2.6.49)

A mode was tracked by starting at the already calculated
frequency for y=0 (the thin disc) and then obtaining Yy for
various other © wvalues. The results are sensitive to

Poisson's ratio.

The above procedure was programmed on an ICL 1904S
computer and was found to converge on a root to 4 places of
accuracy after 5 to 8 iterations. A sample of the results
are displayed graphically in the dispersion spectra of
Figure 2.1 for the longitudinal mode (n=0). The three graphs
are for differing values of Poisson's ratio. Features of the
dispersion spectra for both longitudinal and flexural modes

are discussed in Section 2.8.
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2.7 Non-Axially-Symmetric Mode Frequency Spectra

When the circular order n is greater than zero, no
further simplification of the frequency equation (2.5.2) is
possible. The first flexural mode of the bar occurs with
n=1 and is considered by Hudson(s). A second computer program
was written to obtain the roots of the more general equation
(2.5.2) for real,complex and imaginary propagation.constants

for any value of n using an identical technique to that given

in Section 2.6.1.

Figure 2.2 shows the results obtained for the first
flexural mode (n=1) with higher flexural modes (n=2 and n=3)
shown in Figures 2.3 and 2.4. Although the programs were
used to obtain results up to circular order 6 the spectra

are not shown since no new features appear in the spectra.
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2.8 Features of the Frequency Spectra

The information relating frequency, propagation constant
and velocity can normally be presented in two ways. The
curves shown in Figures2.l to 2.4 are known as frequency
spectra or dispersion spectra. An alternative to this
representation are the velocity dispersion curves such as
those shown in References (4) and (5). The frequency spectra
method of displaying the information is probably the most
useful since it also contains all the information required
to plot velocity dispersion characteristics. While velocity
dispersion curves could in principle be drawn for real,
imaginary and complex velocity, only real velocity curves
are plotted since the other velocities are not physically
meaningful. The method of obtaining the velocity dispersion

characteristics is illustrated using Figure 2.5.

angular
frequency

Propagation
constant

Y Re<Y)

FPig. 2.5
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The slope of the line OA in Figure 2.5 is the phase velocity
at the propagation constant Ts and frequency W, . The
tangent to the curve at the point A is the group veloecity

at Yo Thus

Phase Velocity C, = % (2,8.3)
F
and
Group Velocity Cg, = '%$ (2:8.2)
it

In addition the cut-off phencmena are readily observed
from the frequency spectra when the propagation constant
tends to zero and the frequency remains finite. However,
the cut-off phenomenon is also implied in the velocity

dispersion curves by the infinite phase velocity.

2.8.1 1Imaginary and Complex Propagation

Where the propagation constant of a mode is real the
energy will travel as a wave along the rod. The significance

of imaginary and complex values of y is readily seen:-

-y Imaginary exp(—yiz} exp (-jwt) (2.8.3a)

"y Complex exp(—yiz) expj(er—mt) (2,8.32b)




DR

Where Ty and Y; are the real and imaginary parts of complex y
respectively. The equation (2.8.3a) represents a spatially
decaying non-propagating vibration while equation (2.8.3b)
shows the same amplitude decaying form but is a propagating
wave. The frequency spectra of Figures 2.1 to 2.4 are drawn
in two dimensions, but to fully represent the solutions to the
frequency equation a three dimensional figure would be
required. The real and imaginary solutions of Y occur in
positive and negative pairs while the complex solutions occur
in positive and negative complex conjugate pairs, thus the
spectra shown contain all the numerical information necessary
to reconstruct all the solutions by suitable adjustment of
the signs of vy.

X (8,1,13,14)
2.8.2 Mode Designations

The notation L(O,m) is used to identify the various
longitudinal modes of the frequency spectra where m is the
mth.solution of the frequency equation. The flexural modes
are identified by F(n,m) denoting the mth solution for
circular order n (of equation (2.3.1)). Thus the designation
of the real modes of Figures 2.1 to 2.4 is obvious. The
designation of the imaginary and complex modes is not soO
clear. The method adopted here is to associate the complex
and imaginary mode with a real mode. For example, consider
the spectra of 2.lc. Starting at a frequency of Q of 7
and travelling down the L(0,3) curve with Q decreasing

eventually reaches cut-off at 2=4.7. At this point an
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imaginary mode emerges and is still designated the L (0,3) mode
until it returns to the line y=0. This point also corresponds
to the cut-off frequency of the L(0,2) mode. Similarly this
point could have been arrived at by travelling along the line
of the L(0,2) mode. It is worth noting at this point that

the portion of the L(0,2) wave between y=0 and 1.0 has a
negative group velocity. This point has been discussed by

(45 who points out that the energy propagates with

Meitzler
a positive group velocity and the phasé velocity is negative
relative to the group velocity. Applying strictly the
arguments that the mode designation is determinéd from the
real mode with @ decreasing, this portion of the curve could
equally well be associated with the L(0,3) mode. This is not
entirely satisfactory since it would imply that the L (0,3)
mode would have two cut-off frequencies arild for this reason
the negative slope portion is associated with the L(0,2) mode.
The lowest complex mode, the L(0,2&3) can be arrived at
following the path of the L(0,3) mode discussed above and also

via the L (0,2) mode with @ decreasing. The complex L (0,2&3)

branches at a minimum of the L(0,2) curve.

The Figure 2.1lb drawn for ¢=0.30 shows that the L(0,2)
and L(0,3) modes have very nearly the same cut-off frequency
and that the L(0,3) imaginary mode joining the two cut-off
points has almost disappeared. 1In fact, as will be seen in

the next section this occurs at ¢g=0.28.

There are some interesting differences between the

longitudinal and the flexural modes as shown in Figures 2.1 to
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2.4. The flexural modes all show modes with Yy imaginary
extending to zero frequency, this does not occur with the
longitudinal modes in Figure 2.l. Also with the exception
of the first flexural modes (F(l,m)), the lowest real modes
have a cut-off frequency. This point is discussed further
in Chapter 3 where it is shown that difficulties are
encountered in trying to account for end resonances in

cylinders of n>2,.

2.8.3 Cut-off Frequencies

The cut-off frequency equations are obtained from
equation (2.5.2) by letting §+0 with @ remaining finite.
With n=0 to give the axially symmetric modes the cut-off

frequency equation becomes:-

Jl(Q)[QJO(kQ) - 2le(kQ)] =9 (2,8.4)

The first term of (2.8.4) is not a function of Poisson's
ratio and is the axial shear cut-off frequency since at
cut-off vibrations are entirely axial. The bracketed term
at cut-off is denoted radial shear, since vibration is
purely radial. Cut-off frequency versus Poisson's ratio
for axially symmetric modes is plotted in Figure 2.7.

It is clear that the L(0,2) and L(0,3) modes have the same
cut-off frequency at 0=0.28. This is the case where the

L(0,3) imaginary mode entirely disappears.
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The non-axially symmetric mode cut-off frequency equation
is given by equation (2.5.2) and letting y tend to zero.

Denoting the terms of the determinants with Y=0 as aij, they

arez:=—
Q% 2
ail = {f -n -n] Jn(kﬂ) + kQ Jn_l(kﬂ)
2L, & [n2+n-92] () - 93 _, (@)
aj, = 2n[ 3, (@) - (n+l)Jn(Q)]
aél = n-kQJn_l(kQ) - (n+lJn(kQ)]
. (2.8.5)
aéz = nh(n+l)Jn(Q) - QJn_l(Q)]
¢ =207 () = (21 +2n-022)3_(@
Ay3 S, By rau=0 10, ()
aél = an(kQ) - kQJn_l(kQ)
aj, = QJn_l(Q) - an(Q)
aé3 = an(Q)

The variation of flexural mode cut-off frequencies with

Poisson's ratio are shown in Figure 2.7.
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CHAPTER 3

END RESONANCE IN SOLID CYLINDERS

3.1 Introduction

This chapter describes attempts to obtain theoretical
solutions for the frequencies of non-axisymmetric (flexural)
mode end resonances and follows techniques already used
successfully for the axisymmetric (longitudinal) mode end

resonance., -

Using the wire drive technique the end resonance
frequency for each circular order mode up to n=7 has been
measured for materials having a wide range of Poisson's
ratio. These frequencies are very useful for the theoretical
work as they indicate quite accurately the values where a

solution is to be expected.

Tt will be shown later in this chapter (equation (3.3.6))
that the function of y representing the stress at the end
face of a semi-infinite bar is odd for normal and even for
shear stresses. The end face boundary conditions cannot
therefore be satisfied by the reflection of any single mode.
The superposition of all possible modes are necessary,

(Ref. 11, 17, 50V i.e, all modes below the cut-off frequency

of the associated propagating mode.,

In the case of the longitudinal mode (n=0) these consist
of a single real mode and the infinity of complex ones

(Figure 2.1). For the second flexural mode (n=2) there is
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no real mode but an infinity of those with both complex

and imaginary propagation constants. Zemanek(ll) in a
theoretical study found that, when using a summation of
reflected real and complex modes to satisfy the boundary
conditions, the amplitude coefficients of the complex

modes rose to a high value close to experimentally observed
and resonance frequency. A number of other workers have also
observed end resonance in cylindrical solids with Oliver(lg)
usually credited with being the first to observe the
phenomenon. The majority of work on end resonances has been

carried out on the longitudinal (symmetrical) mode end

resonance with only passing attention to higher order

(20) (22)

resonances, although McMahon and Booker and Sagar

mention having observed end resonances at n=2 and n=3,

A possible explanation for the lack of interest in higher
order end resonances in the literature is the difficulty
in observing them using piezo-electric transducers, coupled
with the fact that they only appear at the end face of the
bar. The experimental technique given here allows end
resonances to be observed of any order within the frequency
limits of the transducer system, nominally to about 200 KHz.
Experimental observations are presented of end resonances
up to circular order n=7 in isotropic materials having a

wide range of Poisson's ratios.

The method used by Zemanek(ll)

to obtain the longitudinal
end resonance frequency at a Poisson's ratio of 0.33 (the

value for Aluminium) has been extended to cover the range



of Poisson's ratio 0.1 to 0.5 and experimental results have
been obtained over the range 0.1 to 0.33. It is shown in
Section 3.5 that this theoretical technique cannot be
directly extended to include the higher order flexural mode
end resonances since these modes occur below the cut-off
frequency of the corresponding propagating mode. Attempts
to establish the relative phase of the two lowest complex
modes as an indicator of resonance, or standing waves over
the relevant frequency range did not show any positive results.
Nevertheless, experimentally obtained end resonance
frequencies are given and compared with the corresponding
mode cut-off frequencies and disc frequencies. Differences
between the longitudinal mode and flexural mode end
resonances are apparent from Figures 3.6 and 3.9. The
longitudinal mode end resonance is very close to a linear
function of Poisson's ratio while the flexural modes all
have a distinct minima at a Poisson's ratio about O.3l.

In addition the two types of mode have different slopes at
the low values of Poisson's ratio and it is unlikely that

this is due to any fault in the experimental technique.

An uncertainty concerning the isotropy of the material is
always present. Rods which are drawn will have longitudinal
grains and may be subject to radial cooling. Radial
anisotropy, which would result in a splitting of many
distortion modes in discs, has not been observed in steel,
aluminium or brass discs cut from rods but is conspicuous in
discs cut from rolled sheets. The glass rod, unambiguously

isotropi¢ was not perfectly circular.
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3.2 Boundary Conditions on End Plane

The stresses at the z = constant plane are obtained by
combining (2.3.1a),(2.4.1) and (2.4.2) to give explicit

equations for the stress T, 0 Tez and Trz which are required

to be zero and take the form.

TZZ = Tzzcosne exp(j(yz-wt)) = O

t—; 3 3 - s— (3-201J
Tez TgSinnd exp(j(yz-wt)) = O
Trz = Trzcosne exp (j (yz-wt)) = o

The problem of satisfying (3.2.1) with a single reflected
mode lies in the fact that: if Tzz and Tez are satisfied
exactly at the end face the Trz cannot be (Refs. 3, 23).

It will be seen that in equation (3.5.1) Tzz and Tez are

odd functions of ? and Trz is an even function of ;. Early
solutions (Ref. 2) to the finite length rod set Trz to zero
for the condition r/A small. Since Trz is already equal to
zero on the curved boundary, its value on the end face can be
taken to be approximately zero. However when r/A is large it

is Ffoung't1)

that this approximation is no longer valid and
that a series solution is necessary to cancel the residual

stresses.
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3.3 ' The Symmetric Mode End Resonance

The symmetric mode is obtained from equation (3.2.1) by
setting n=0 leaving only two stress components T _ and T, at
the flat boundary. The zero stress condition is obtained by
setting the sum of all possible modes, with real, complex and

imaginary propagation constants, equal to zero (equation

(Za3el) du
Tzz(r) = mi AmTzzm(r) =0
(B3 el
Trz(r) - mio Am rzﬁr) e

AL is the amplitude coefficient of the mth mode and may
be complex, containing magnitude and phase information. In
the experimental study a long burst of oscillations is
launched via a magnetostrictive line transducer ihto the
end face of the bar. The various modes are generated at
this face (z=0) with amplitude coefficients A which take
on values such that the sum of all modes at any position on
the end face result.in zero stress. Modes with real
propagation constants propagate in the positive z direction,

the direction into the bar.

In the case of complex propagation constants, there are
four solutions to the frequency equation but physical
arguments lead to only two of these solutions being valid

for the case in question. Since the amplitude of the
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vibrations cannot increase indefinitely in the direction of
propagation it is clear that the only two solutions
acceptable are of the fofm a+jb and its negative complex
conjugate. This implies that the amplitude variation with

increasing z is a decreasing function..

With n=0 the displacement equations are

[
Il

—AaJl(ar) - YBJl(Br)
(3.3.2)
u_ = ijJO(ar) - jBBJO(Br}

One of the arbitrary constants can be eliminated by

applying the boundary condition Trz=0 at r=a. 1i.e.

ou au

2 r Zy -
r.2 iy u(gg“ - 35_) o] (3:3:3)
r=a
which gives the ratio
A (B2%) 9,
i< o (3.3.4)
2ya Jl(a)

The stress components (3.2.1) can then be written

T, = =27%-2%) 27%+ -2k @) 3, (B) o, (BE)
- 0
+ 477383, ()3, (BD) }e (3.3.6)
T = 23R((25°~a%)0, (B)T. (GT)=F, (2)T, (BE) IC
rz Jat ey 1 1% j Wl

where C is a constant.



3.4 Reflection Coefficients of the Symmetric Mode

The methodg¢solving the symmetric mode end resonance

follows essentially that of Zemanek(ll)

. The only difference
is to take account of the transmission line driving technique
and the assumption is that all modes are generated
simultaneously at the driving point. However, Zemanek only
dealt with one material, aluminium, The method is used here
to plot the spectrum of symmetric mode end resonances, not

previously obtained and is compared to a number of

experimental values.

Symmetric mode end resonance occurs when the reflection
coefficient Am of the complex modes rise to large values.
Although all complex mode coefficients have a larger amplitude
at this frequency it is found that the reflection coefficient
of the first complex mode takes on a value much larger than
the two real modes, i.e. the incident and reflected

real—-modes.

Equation (3.3.1) is solved for A after normalisation to
the real mode with positive propagation constant. To make
such a solution achievable, equation (3.3.1) must be
restricted to a finite number of modes and it was found that
nine modes were a convenient number to take. Increasing the
number beyond this figure only increased the computation
time and did not significantly influence the computed end
resonance frequencies. To solye equation (3.3.1) for these

nine values of Am the stresses (Equation (3.3.6)) were
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evaluated at nine discrete points along a radius. The

normal stresseswere calculated at five points along the radius
including the centre and edge of the bar and the shear
stresses were calculated at points midway between the normal
stress points; Thus the approximate version of equation

(3.3.1) can be written

a
~T (G B L (£:5) (3.4.1a)
e m=1 T zzm
a
-T ) =% 2 A T (x.) (3.4.1L)
rzg i me] B rE. - d
where r, in the case of (3.4.1a) is given by:
r, = 224-1 1=1,2,...,22 (3.4.2)
and for (3.4.1b)
_2ai _ m-1
ri _m . = 1"2'...'_2""' (3-4.3)

and m is the total number of points taken, in this case hine.

Equation (3.4.la) and (3.4.1b) represent a total of nine
equations conveniently written in matrix form as equation

(3.4.4).

= [7,][a,] (3:4-4)

Ty is a column matrix of the values of the stress components
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due to the real mode with positive propagation constant, the
first five elements being normal stresses and the remaining
four shear stresses. Tm is a 9%x9 square matrix whose

columns represent individual stresses calculated at 9 positions
along a radius and whose rows represent the 9 modes taken in
the approximation. Am is a column matrix of reflection
coefficients. Computer programs were written to solve
equation (3.4.4) with the propagation constants obtained from
programs giving the specrta discussed in Chapter 2. The
reflection coefficients were calculated as a function of
frequency and the process repeated over the region of rapidly
increasing Am until the frequency of the peak was obtained to
four significant figures. The phase of the reflection of the
real mode coefficient is shown in Figure 3.1l. This mode

always has a magnitude of 1 and a phase of zero except in

the region of end resonance where the phase is 180°. Also

at this point the magnitude of the complex mode coefficients
increase very rapidly to a peak. The behaviour of the magnitude
of the first complex mode close to end resonance is shown in
Figure 3.2.with the real and complex parts shown separately in

FPigure 13,3,
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3.5 Non-axisymmetric Modes

When the circular order n is greater than zero an
additional stress component Tez must be included. This
considerably complicates the stress equations at the end
face of the bar since no simplification of equation (3.2.1)

is possible. The components of stress Tzz' T and Tr are

0z Z

obtained from equations (2.4.1) and (2:4.2). The stress

coefficients of equation (3.2.1) are given by equation

(BB E).
RO L TR TR T A
Ta fi= b ba b fs (B (3.5.1)
| Trz] Lb31 P32 Baglic
where
by = - —‘ﬁ%ﬁ’- r%5_(ar)
b,, = Bar’a, (B7)
by, =0
by = 2$EnJm(EI-)
By = n((?fézﬂ(éf}z) Jn(éz)
b,y = Yr(Brd,_, (Bx) - nJ_ (BX))
by, = 2yr(ard,_, (ar) - nJ (ar))
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—=2 == 2

by, = HEL={E0) ) 5y | (BD) - ng (BE)
Br

by, = n?EJn(EE}

The three constants A; B and C can be written in terms

of one arbitrary constant obtained from the boundary condition

T = T = 0 (3.5.2)
rrl. . s X2 |

The constants are given below, denoted by a bar since

strictly they differ from the above by a common ‘constant.

A = a, b3 - a, b2
B = a;b; -a; b, (3.5.3)
C = a,; b2 - a, bl
where
a; = —2{(—@%Zﬁl -nz)Jn(&) +J._;(e) - nd (a)]
a, = X223 (B) - Ba__, (B) + n3_ (B))
a; = 2n{By_ _,(B) - nJ (B) - J_(B)}
b, = 2j5y{as _, (@) - an(a)}

-2 =2
_ . (¥°-B%) (% ¥
b, = 3———5—— {BJn_l(B) an(B)}

by = jn7 g_(§)



e

The zero stress condition for the three stress
above are obtained from an infinite sum due to the

contributions from all possible modes.

Tzz(r) =0 & mzo AmTzz(r} B2
®

Tez(r) 2550 > mio AmTez(r) L
o

Trz(r) H g L mio AmTrz(r) P

components

(3.5.4)
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3.6 Reflection Coefficients of Non-axisymmetric Modes

The boundary conditions for the non-axisymmetric mode
involve an additional stress component Tez that was not
present in the axisymmetric case. The stress components also
depend on the angular co-ordinate @ (Equation (3.2.1)). The
solution of equation (3.5.4) was carried out using a total
of nine modes of complex and imaginary propagation constants.
In the case of the axisymmetric mode the stress sums were
set equal to zero at sufficient points along a radius to form
the requisite number of equations to satisfy the boundary
equations approximately. These points of zero stress
represent zero stress circles in the case of the symmetric
mode but this is not true for the antisymmetric mode resulting

from the independence of the stress components.

The reference mode in the case of the axisymmetric mode
was the real mode that extends to zero frequency. In the case
under consideration here, no real mode extends to zero
frequency so the reflection coefficients were referred to
the first complex mode. Now however, the criterion of end
resonance used for the longitudinal mode is no longer
relevant. Since the end resonance is found experimentally to
occur at a clearly defined frequency, the implication is that
a standing wave is present in the surface and over the
region within a few wayelengths of the end. It is possible
therefore that the relative phases of the negative conjugate

modes will indicate the resonance condition. The phase



relationship of the reflection coefficient that will
indicate resonance is an in phase condition since the
reflection coefficient is normalised to the wave
travelling in the positive z direction and they appear

on opposite sides of equation (3.4.4).

Tzz set equal to zero
l b Tez- at these points
o8
rz

(a)

Bounday Conditions (1)

: f*Tzz- set equal to zero
bTrz at these points

éﬂ\\_xT set qual to zero

at these points

(b)

Boundary Conditions (2)

Approximate boundary conditions for antisymmetric

end resonance investigation

Figure 3.4
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Two sets of boundary conditions are shown in Figure 3.4
for an eight mode solution. In Figure 3.4a the stresses are
set equal to zero along a radius at 45° to a reference
normal stress mode. Although the figure applies to the (2,1)
mode the boundary condition was used in the (3,1). Setting
the radius at 450 allows the sinnf, cosnf terms to be
removed as a common factor. The results for the reflected
complex mode for the (2,1) and (3,1) modes are shown in
Figures 3.5 and 3.6 respectively. These modes indicate zero
phase at Q values of 2.05 in the case of the (2,1) mode and
2.83 for the (3,1) mode. The experimental results for
nickel (0=0.31) for the corresponding modes are 2.1l1 and
3.22. Applying boundary condition 2 of Figure 3.4, however,
gave reflection coefficients which were not consistent with
the first set of boundary conditions. In fact over the
region plotted the two boundary conditions have nearly opposite
phases around the experimental end resonance frequency. No
obvious reason can be found to account for this sensitivity
to the boundary condition approximation. The positions at
which the stresses were set equal to zero were chosen to
simplify the calculations. Perhaps a choice of points that
minimise the averagé residual stresses would givye more
consistent results,this would however be an extremely lengthy

procedure to implement.
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3.7 Discussion of Results

In the case of symmetric modes, the explanation of end
resonance seems to be that at the end resonance frequency the
amplitude of the complex mode rises very rapidly to cancel
the residual stress resulting from the reflection of the
propagating mode. This sharp increase in amplitude is
shown in Figure 3.2 for Poisson's ratio of 0.30. The end
resonance frequencies were calculated over the range of
Poisson's ratio of 0.1 to 0.45. Table 3.2 shows a comparison
of experimental points and the end resonance frequency
obtained by calculation. Figure 3.6 is a comparison of the
variation of theoretical cut-off frequency (Qc), thin disc
frequency (Qd), and end resonance frequency(ﬂe), as a function
of Poisson's ratio. It is apparent that the experimental
point at 0=0.217 (soft glass) has a large error from the
theoretical plot. It is likely that this is'caused by lack
of circularity and imperfections in.the end of the bar. The
transmission line was joined to the glass by a heat setting
epoxy adhesive. The subsequent cooling of the bar caused

small cracks to appear as a result of thermal stresses.

In each case shown in Table 3.2 a disc was cut from the
end of the rod and its Poisson's ratio measured by the method
described in Chapter 5. The shear velocity was also calculated
which enabled the end resonant frequency parameter Qe to be

calculated from equation (3.7.1).

wa £3..7.1)



+ exnerimental points

2,5 . s 4 + +
SRR 1 AP 0 0,1 o D3 0, n 0,5
Poisson's Ratio (o)
Comparison of end resonance disc and cut off

frequencies for symmetric mode (n=0)

FIGURE 3.7
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The experimental technique of determining resonances
is discussed in Chapter 5, however, it is convenient to

include the essential features of the technique here.

magnetostrictive driving line

45
bar
probe
to oscilloscope
Figure 3.8

Vibrations are induced in the bar of Figure 358 via the
magnetostrictive line which is a line of permandur or
telcoseal of diameter between O.5mm and 1.0mm. Stored enargy
re-radiates down the line and interferes with the launched
burst. As explained in Chapter 5 the echo return displays
a well defined null when the signal frequency is equal to the
resonance frequency. It is this clearly defined phase effect
that allows precise determination of the resonant frequency.

The probe is a short length of magnetostrictive line with a
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cail to receive the vibrations. The probe is placed in
contact with the end surface. The amplitude detected is the
component of vibration in the direction of the wire. By
comparing the phase of this signal with the echo, nodal areas
can be mapped out. On crossing a nodal line the phase
reverses. By suitable electronic gating circuits Lissajou
figures,which greatly simplify this process, could be

displayed.

The theoretical calculations of end resonance assume
a semi-infinite bar, however, in these e#perimeﬁts the
lengths of bars used were limited to the order of 300mm to
500mm. It is unlikely that this fact seriously influenced
the experimental results since it was observed with the probe
that vibrations could not be detected at a distance greater
than about 50mm, from the end of the bar except for n=0. In
addition heavy loading of the centre region of the bar with
plasticene affected neither the frequency of end resonance,

nor the amplitude of the received signal.

In the case of n=0 there is a very low amplitude
propagating mode which is virtually undetectable midway down
the line, but it produces high amplitudes at the remote end.

An electrical analogue would be two tuned circuits of identical
frequency coupled by a low impedance transmission line many
wavelengths long. A more detailed study of this mode could
be of value. This is as would be expected from the dispersion

spectra shown in Chapter 2.



Results of the calculations of reflection coefficients
for the antisymmetric modes with n=2 and n=3 for two sets of
boundary conditions were not consistent. Figures 3.4 and 3.5
show the real and imaginary points of the reflection
coefficients calculated at two different approximate boundary
conditions. Boundary Condition 1 shown in the graphs is that
the stresses are evaluated at equally spaced points along a
radius that avoids any nodes. The centre and circular
boundaries are not used since Trz is already zero at this
point. It has already been stated that there is no
propagating mode associated with the antisymmetric vibration
so it was anticipated that some phase characteristic may
indicate end resonance. A possibility would have been that
the complex reflection coefficients were exactly in phase at
only one frequency as shown by the Boundary Condition 1 of
Figures 3.4 and 3.5, the condition is that the reflection
coefficients are both 1. That is at Q=2.05 for n=2 and
0=2.83 for n=3. The result given as Boundary Condition 2
established that the technique used is extremely sensitive
to the choice of zero stress points. The Boundary Condition
2. 18 that Tzz and Trz are calculated along a radius of their
maximum amplitude and To, is calculated along a second radius

at its maximum amplitude.

The phase of the reflection coefficient for this
boundary condition however, failed to establish any indication
of end resonance. In view of the lack of encouragement from

the results of the second and third antisymmetric modes



- 50 =

nothing was to be gained from attempting higher order modes.
A summary of the experimental observations of end resonance

is given in Table 3.,3.

Qualitative confirmation that the amplitude of vibration
dies away with distance moved along the axis is obtained
with the probe. This also confirmed that there is no
resonance at the remote end of the bar. Figure 3.9 illustrates
the results of probing the end surface of the 60 kHz end
resonance in dural. The plus and minus signs denote the

relative phase change across the nodes.

+ denotes relative phases
driving line
-- denotes nodal lines

Phase relationship for non-axisymmetric mode

end resonance (n=2)

Figure 3.9

A definite radial mode was observed on the circular
surface of the bar, this occurred at 19.5mm from the end of
the bar for the 60 kHz 2,1 mode in dural. The amplitude of
vibration decayed rapidly so that a second node, if it exists,

was not observed.
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The phases indicated in Figure 3.9 are the phases of
vibration normal to the surfaces of the bar since these are
the only ones that the probe was capable of detecting with

any certianty.

The theoretical cut-off frequencies and disc frequencies
are compared to the experimental end resonance frequencies
in Figures 3.9.1 to 3.9.4. The disc frequencies and cut-off
frequencies have the same value at zero Poisson's ratio. In
all cases the end resonance frequencies are well below cut-off
of the lowest propagating mode. There is a distinct minimum
in the experimental results for these values of end
resonance. This does not occur in the experimental results of
longitudinal mode (L(0,1)) end resonance and differs
considerably from the forms of.the curves for both & and Qd.
This behaviour of the end resonance frequency seems to be a
genuine phenomenon dependent on Poisson's ratio since the
total error in measurement does not exceed 0.5%. Additional
confidence is given by the fact that the experimental values
for the L(0,1) mode shown in Figure 3.6 lie very close to the

theoretical curve.



CHAPTER 4

THIN DISC SPECTRA

Introduction

Thin Disc Wave Equation

Thin Disc Displacement Equationﬁ

Thin Disc Boundary Conditions

Thin Disc Frequency Equation

Thin Disc Spectra

Determination of Poisson's Ratio from Thin Disc Spectra

Effect of Finite Disc Thickness



CHAPTER 4

THIN. DISC SPECTRA

4.1 Introduction

In the previous chapter the variation of the end
resonance frequency parameter with Poisson's ratio was
given. The elastic constants were determined in each case
by dynamic measurements from a disc cut from the end face
at which the end resonance measurements were taken.

Chapter 5 describes the practical technique used to measure
the frequencies of the various modes required to obtain the
elastic constants (Young's modulus and Poisson's ratio), of
isotropic materials at high temperature. It is the purpose
of this chapter to describe the theoretical basis of these
measurements and to compile sufficiently comprehensive tables
for accurate determination of the elastic constants from the

thin disc spectra.

3)

Love established the general frequency equation

for in plane vibrations of thin discs, however, no numerical
calculations were carried out at that time. The frequency

(23,24)

equation received little attention until Onoe in 1956

published graphical data of the variation of the dimensionless

(=5 produced tables of results

frequency parameter. Holland
for the frequency parameter up to circular order 7 and up to
the tenth zero of the frequency equation at the low circular

orders. As in Chapters 2 and 3, the circular order



corresponds to the number of nodal diameters of the disc

and the mth zero corresponds to m nodal circles. Modes with

n>0 are referred to as compound or contour extensional modes.
Holland's numerical solutions of the frequency equation are

evaluated at intervals of Poisson's ratio of 0.05 over the

range of 0.25 to 0.5. It was found that in the case of

graphite, discussed in Chapter 5, that the Poisson's ratios

for the majority of samples tested lie below 0.2. The

numerical values of the frequency parameter were calculated

to extend these tables from Poisson's ratio of -0.5 to +0.5 in

steps of 0.01.

The experimental technique used in Reference 25 is only
applicable to piezo-electric materials since it relies on
plated electrodes to excite the vibrations and involves
switching the phases of the eléctrode components to select
the various modes to be studied. The experimental technique

given by Sharpefzs)

, involving the use of magnetostrictive
transmission lines, eliminates this complication. It is also
noted that with this technique the higher zeros, with the

exception of the 0,2 and 1,2 modes are rarely excited.

The spectra of the lowest solutions up to circular

order 10 were calculated in addition to the 0,2 and 1,2

modes,
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4.2 Thin Disc Wave Equation

The wave equations for a thin disc are given in terms of

(3)

dilation and rotation .
- 2 2
A ow p(l=0") 9" u
S8 Il=g) S W0 (45 205)
X oy E at2
- 2 2
A W o Ri{X=6") AW
SR g ) (4.2.2)
Yy 90X E atz
Where A is areal dilation and w is rotation . given
by (4.2.3) and (4.2.4).
S T v
fl e "a—x + "a""y- : (4.2.3)
s Nap | an
2w B,z 5y (4.2.4)

To obtain a solution and hence a frequency equation, it
is necessary to transform the above into cylindrical

(a8 ) p (e N However, considerable simplification

co-ordinates
is apparent if the problem is treated in cylindrical
co-ordinates from the beginning in a similar fashion to the

treatment in Chapter 2.

The wave equation for thin disc is similar to equation

(2.2.5) with a modification of the velocity term.



-~ 69 -

v = 39 (4.2.5)
“p

o "

P o= 59 (4.2.6)
Ct

where
2 = CAL2T)
P p(1-07)

Cp is called the thin plate velocity and Ct’ the torsional

velocity has thesame meaning as used previously.
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4,3 Thin Disc Displacement Equations

For a thin disc (z is small) then u_ is approximately O

and u_ and u_ independent of z. Hence ﬁ; has only a ,

component. The
radial and angular displacements are obtained from the usual

definition of displacement in terms of scalar and vector

potential (2.2.4).

With the omission of the exp(-jwt) term and noting that

the equations no longer involve a function of z

u_ = {AJ}! (a,r) + -I;: CJ_ (B;r)} cosng (4.3.1)
u, = -{-2- AJ_ (a;x) + CJI!(B;x)} sinng (4.3.2)

It will be noted that the radial and angular wave
numbers (a and B) differ from those values in Chapters 2 and

3 and are now,

2 2
4y = (4.3.3)
Cc
P
2
82 o A (4.3.4)
1 2
€t
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4.4 Thin Disc Boundary Conditions

Using the fact that T =0 to eliminate SZZ from

equation (2.4.1), the stress equations for the thin disc

become:
= SR
Trr es I (srr+Ses) + 2uSrr (4.4.1)
and
Tr6 =2uSre _ (4.4.2)
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4,5 Thin Disc Frequency Equation

Applying the boundary condition of Section 4.4, at the

circular boundary of the disc r=a gives the equation (4.5.1).

= A &
i lEl 2,45 (4.5.1)

r

The frequency equation is given by the determinant of]a]being

equal to zero.

a

411 12

= 0 (4.5.2)

0T R .

The coefficient in terms of normalised variables in a

form suitable for computation are;

-2
. .t == -~ -
L -{I:% - n(a+l)} I:rn(ml) i N Jn(al)
a;, = 2n{B; 3 _;(B)) - (+l) 3, (B))}
&y = n{(n+l) J_(a;) - El Jn_l(al)}
B = (EY S ntin} 3 U0 G
22 il g (sl 1N tel

Putting n=0 in equation (4.5.2) leaves only the ajg and

as, terms in the determinant. The first term having only al
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as its argument represents the pure radial modes and has the
simple form of equation (4.5,3).
a,J, (a,)
e WL R (4.5.3)
J, (aq)
The second term aso has only El as its argument and is

given by equation (4.5.4).

B 3, (B)
3, (B

= g (4.5.4)
1
This term represents the torsional mode solution and has only

au displacement component. Since all the above frequency

0
equations are solved for El as a function of Poisson's ratio,
the equation (4.5.4) also depends on Poisson's ratio. The

relationship between the shear and radial wave numbers is

given by (4.5.5).

{4.5.5)
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4.6 The Thin Disc Spectra

The dimensionless frequency parameter above al is
renamed Ko in the table given in Appendix A.4.l1l. The
r

subscripts of the K parameter indicate the modes in an

identical way to those of Chapters 2 and 3.
Thus

a. .= K =) e (4.6.1)

The frequency could equally well be normalised to the
shear velocity as used in Chapters 2 and 3. The relationship

is shown in equation (4.6.2).

O m = Ry n@/tl=a))® (4.6.2)
The result of the solution of the frequency equation is
given in the spectra of Figure 4.1 in terms of K. Values of
K : as a function of Poisson's ratio are given in Appendix
4.1. The solution of the torsional modes is not given since
it requires a modification to the method used to excite
radial and contour extensional (compound) vibrations. For

this reason it is not of interest in the measurement of

Poisson's ratio via the method described here.
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4.7 Determination of Poisson's Ratio from Thin Disc Spectra

It is clear from Figure 4.1 that the contour
extensional modes, that is the (2,1); (3,1); (4,1l)etc., have
a decreaéing frequency with increasing positive Poisson's
ratio. In contrast the first and second radial modes (0,1)
and (0,2) show an increasing frequency with increasing
Poisson's ratio. Also the second root of the first flexural
mode (1,2) has nearly zero slope below 0=0.35 and intersects
"the (5,1) flexural mode at approximately 0=0.23. The terms
contour extensional and flexural are used interchangeably
since the disc contour extensional modes show close resemblance

to the flexural end resonance modes discussed in Chapter 3.

Since the spectra of the various modes shown in
Figure 4.1 have varying dependence on Poisson's ratio,
comparison of two modes will give a measure of Poisson's ratio.
1L fn 0 is the mode frequency obtained by experiment, then,

:

fn,ml % fn,m2 Kn,ml Y Kn,m2

= % = gl(o) (4.7.1)

The frequencies of the modes can be measured experimentally
with high accuracy, typically better than 0.1%. The ratio
g(o) can be obtained from the theoretical dimensionless

frequency parameters K in Appendix 4.1.

It would be possible to use a combination of any two

modes but it is clear that certain combinations will give



g(ao)

Sensitivity ratios for Poisson's ratio measurement
FIGURE 4.2
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better sensitivity than others. Where possible it is
desirable to choose modes with opposite slopes. Such a
combination is given by the (0,1); (3,1) pair of modes.

To allow for all possible values of Poisson's ratio it is
necessary to tabulate g(o) for other combinations. This
becomes necessary because at or close to the points of
intersection it is often not possible to decide the exact
resonant frequency as a result of coupling between the two
modes. Four combinations of modes g(o) are tabulated in

Appendix 4.2.

The sensitivity of the mode comparisons chosen is not
constant with o and some combinations have better sensitivity
than others. The function g(c) is plotted in Figure 4.2 for

the four mode comparisons generally used. They are:

ke e
1 K31
. iy he iy
Ea% 5 K
5,4
s Bp g 7 Rgea
o K
9,1
M S
Sg = K
4,1

For positive Poisson's ratio, the frequency ratio S,,
shows greatest sensitivity in Poisson's ratio since it has

the largest slope in Figure 4.2. At around 0=-0.1, S, still
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has the largest slope but the sensitivity is unusable since
it is seen from Figure 4.1 that the three lowest modes
intersect at this value and experimentally the modes become
very difficult to separate. It is shown in Chapter 5 that
this is the value of ¢ for pyrolytic graphite. For this
reason the ratio 54 would be used in this region. While it
is only necessary to find one ratio of frequencies to obtain
values of o, in practice more than one ratio is used since

this gives a test of the overall measurement technique.
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4.8 Effect of Finite Disc Thickness

The accuracy
thin disc depends
theory represents

finite thickness.

of determination of Poisson's ratio from
on the accuracy with which the thin disc
the practical case where the discs have a

As stated in previous chapters, there is

no exact theory for cylindrical solids of arbitrary

(28) (29

and Lucey give corrections to

dimensions. Moseley

the frequency of vibration for the radial mode vibration.
These corrections are given in terms of the radial mode
eigenvalue by equations (4.8.1) and (4.8.2) corresponding to

Moseley's and Lucey's correction respectively.

i

K 0] 2
. LT
Ky,1 = ¥o,1 L=l T-077 iy (4.8.1)
T
2K 255
s 1 0,1
K = K 1 - (—=L=) (4.8.2)

Where Ko 1 is the corrected eigenvalue with Kg 1 being
r r

the thin disc eigenvalue. n is the thickness to diameter

ratio. Taking 0=0.3 for a thickness to diameter ratio of

0.125 equation (4.8.1l) predicts a correction to the lowest
radial mode eigenvalue of 0.2% and equation (4.8.2) predicts

0.4%. Provided the thickness to diameter ratio is sufficiently

small (of the order of 1/10) then the corrections are

Correction factors for the contour extensional
(51)

negligible,

modes are not available in the literature but Ambati has
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shown experimentally that the effect of thickness on the
resonant frequency is always less than that of the radial mode
vibrations. Tables 4.1 and 4,2 compare calculated and
experimental values of the disc resonant frequencies for steel

and aluminium.

Disc resonance and end resonance experimentally obtained
frequencies are compared with theoretical cut-off frequencies
in Table 4.3. The ratios Qd/ﬂe and Qd/QC are given.. As
Poisson's ratio decreases, the disc frequencies and cut-off
frequencies approach the same value, i.e. the ratio ﬂd/ﬂc

approaches 1 for all modes.
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CHAPTER 5

MEASUREMENT OF ELASTIC CONSTANTS

5.1 Introduction

Methods of measuring the dynamic elastic moduli of
materials generally fall into two distinct groups(30}. The
two major categories are resonance and time of flight
techniques. The resonance method requires a high material
Q and with metals can normally be used up to about 70% or
80% of their melting point. Resonance measuremeﬁt of thin
discs however, have a wide range of application particularly
in the measurement of the elastic constants of metals and
ceramics. Specimens are easily manufactured to high
tolerances and sample sizes of about 1 cm diameter usually
have the first 8 or 9 resonances 6ccurringat frequencies
below 200 kHz. Resonances up to this frequency can be readily

excited using magnetostrictive delay line techniques.

Because the identification of resonance depends. on the
phase change phenomenon described later in this chapter, high
precision is attainable. The reproducibility for a 'Q'
factor of 100 is better than 0.05%. An approximation inherent
in the derivation of the frequency parameters given in
Chapter 4 is that no allowance is made for losses in the
material and for acoustic coupling from the driving line into
the resonator. The effect of this is discussed in Section 5.3

where simple calculations show that provided care is taken



the effect of the driving line (the major effect) can be

made negligible.

Although time of flight methods of measurement are
discussed in later chapters a comparison with resonant
techniques could be introduced here. Time of flight methods
are capable of measuring materials with much lower Q, that
is in materials with high losses or at temperatures beyond
which the null indication of resonance cannot be obtained.
That is to say time of flight methods can extend elastic
constant measurement much closer to the melting point of
metals. Sensitive measurements of the variation of flight
time of a pulse can be obtained fairly readily. A system is
described in Chapters 6 and 7 which will track these
variations automatically once the instrument is initially

locked onto the flight time.

Returning to resonance methods for the remainder of this
chapter, the magnetostrictive transmission line method of
excitiﬁg vibration is particularly suited to measuring the
variation of the elastic constants of refractory materials
with temperature. The transmission line itself can be chosen
for its refractory properties and only the transducer portion
needs to be a magnetostrictive material . For example the
lead-in line into the furnace could be made from the same
material under test and the low temperature portion of the
transmission line could be steel with a magnetostrictive portion
at the end. The overall length of the line has to be

sufficiently long to accommodate the anticipated maximum
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number of oscillations in a burst at the lowest frequency
used, about 100 oscillations is generally a suitable figure

to use but may necessitate a long line at low frequencies.

The majority of measurements described in this chapter
were carried out on graphite discs supplied by PERME Westcott.
Because of their refractory properties graphites are widely
used in the manufacture of rocket motors. However,
engineering design data at high temperatures is lacking
because of the absence of a simple technique for measuring
the variation of elastic constants at high temperatures. The
simplicity of the thin disc and delay line combination is ideal
for this application since it enables large numbers of
measurements to be taken to form a data base for material
comparisons. Results obtained for a variety of graphite
grades are given for temperatures up to lOOOOCr are presented.
Pyrolytic graphite is a highly anisotropic material but is
almost isotropic in the plane of deposition, that is the
plane of the disc sample. It was found to have a negative

Poisson's ratio in the plane of the disc.

Of major importance in the use of thin disc measurements
is to establish the relative positions of the resonant modes
with absolute confidence. Although this is usually simple at
some values of Poisson's ratio the modes merge and it can be
difficult to identify them. The methods used to resolve the
modes are given below. Although only two frequencies are
needed to obtain both Young's modulus and Poisson's ratio it

is worthwhile investigating resonances up to about circular



order 7, at least at room temperature. It is apparent from

Chapter 4 that the ratio K Y is constant for all values
n,m’ "n,m

of n and m and this ratio gives a useful check on the correct

jdentification of the resonant modes. Several mode comparison

ratios are given in Appendix A4.2 and consistency between

independent measurements of Poisson's ratio is a further

confirmation of their identity.

Anisotropy can sometimes be introduced into graphites as
a result of the manufacturing process. Although this is not
normally noticeable in the disc specimens occasionally the
anisotropy is sufficient to cause the low frequency modeslto
show two closely spaced resonant frequencies. Also in contrast
to the isotropic materials tested, the nodal positions are not
wholly dependent on the position of the driving line. It was
found that attaching the line to various positions on the
periphery allowed a position to be found that excited only
one resonance. Using this position gave consistent values
of the Kn,m/fn,m ratio indicating correct mode identification.
In the absence of solutions to the wave equations for generally
anisotropic materials this was the procedure adapted at room

temperature and the high temperature results were taken with

this drive position.
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5.2 Transmission Line Technique

A schematic representation of the transmission line and
resonator layout is shown in Figure 5.1. A block diagram of
the associated electronic system is given in Figure 5.2.
Although a disc resonator is shown in Figure.5.1, the
transmission line technique can be applied to a resonator of
any arbitrary geometry. 1In addition the shape of the echo
that is seen on the oscilloscope is independent of the exact
shape of the resonator. In various applidations'discs, rods,
plates and tuning forks have been used 27+ 32 33) | qpig

method was of course used to obtain the end resonant frequencies

of cylinders described in Chapter 3.

The source of excitation of the resonator is the burst
frequency oscillator. A preselected number of cycles are
gated through to the buffer amplifier at a rate determined by
the pulse repetition frequency (p.r.f.) oscillator. This
frequency is chosen so that the signal reverberation on the
line has decayed sufficiently to avoid interference with the
next transmitted burst. If the p.r.f. oscillator frequency is
too high the crossover (Figure 5.3) will be obscured by
reverberation from the previous transmission but conveniently
this can be distinguished from say a lossy resonator picture

from noise preceding the sharp rising edge of the next burst.

The transmit/receive switch can be as simple as two back
to back diodes in series with a resistor, the oscilloscope

being connected across the diodes. This limits the peak
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amplitude of the signal to about 1.2V p-p. Using a
transmitted signal of 30V p-p and a coil tuned to the
transmitted frequency the two way insertion loss is such

that the maximum echo signal is about 800 mV p-p.

The frequency of the burst oscillator is adjusted until
the resonant frequency is detected by the cross-over
criterion, discussed in Section 5.3. An alternative to the
cross-over method is to measure the frequency of the
excitation burst and compare this value with the frequency of
the decrement part of the echo return. This is the part of the
echo signal from the free vibration of the resonator that occurs
after the excitation burst. Since the frequency of the

4)

decrement signal is at the resonant frequency, Fathimani(3 used
a closed loop control system to maintain an oscillator at the

resonator frequency.
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5.3 The Echo

The modulation envelope of the echo is shown in
Figure 5.3a, and a typical echo oscilloscope photograph in

Figure 5. 3b.

Sharpe(35) has analysed the case of a line resonator and
transmission line combination in the Laplace domain. The
expression for the first reflected echo is given by equation

(5.3.1) where Vl(s) represents the forcing function.

Z,(s) = Z,(s)tanh(y2)
Vgls) = Zy(s) + Z,(s)tanh(yl) Yyie)

(5:3.1)

Equation (5.3.1) shows that the transfer function is the
usual reflection coefficient from a boundary, which in this
case has a terminating impedance of Zz(s)tanh(YR) . Using
a numerical inversion technique a good representation of the
echo was obtained. It is interesting to compare the echo
envelope obtained in Reference 35 with the reflection of a
rectangular pulse on a string from an elastic boundary in
Graff(lB'pp33). The reflected pulse undergoes considerable
distortion and shows very close similarities with the
envelope of Figure 5.3a. The exception being that there is no
increase in amplitude immediately before the decrement part

of the signal.

The equation (5.3.1) is not,of course, directly applicable

to the line-disc resonator combination since the load impedance
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of the resonator will depend on the mode and the geometric
form of the resonator. The mechanical impedance is defined

by equation (5.3.2),

_F
7 = o 050320

and Glazanov(BB) has shown that for the radial mode of
vibration of a disc the impedance takes the form of
equation (5.3.3),

Iy tkpa) (-0)

Jl(kpa) kpa

Z = =-4pC A Ssds 3
Jec Al ( )

m

where A is the effective area of coupling between the line

and disc, and k_ = s/C_.
P P

A similar equation to (5.3.3) could be obtained for the
contour extensional modes, noting the term in the square
bracket corresponds to the frequency equations given in

Chapter 4.

The transfer function of (5.3.1) yields a harmonic
spectrum of poles and these poles can be obtained in explicit
form. However, when the transmission line is terminated by
an impedance of the type given by (5.3.3), this will not be
true. The poles of (5.3.3) could ke obtained experimentally
or by numerical techniques to obtain s. This has not been
carried out owing to the complexity involved for radial and
contour extensional modes, and also, the results are unlikely
to lead to any new information not already obtained

experimentally. The difference is that changing the



= 98 =

terminating impedance merely shifts the location of the poles

in the s plane.

The effect of line impedance on the resonator frequency
is of importance since this determines the accuracy with
which material constants are calculated, The displacement
equation of a lossy resonator is given by (5.3.4) where

Q is the total Q of the system and

2 w

9 u O Ju by % e
== + T + wu f(t) (5.3.4)
ot 2

is composed of the coupling "Q" =~ Qc and the material

"On - Qm where,

]l—"

+ (5:3.5)

0] =
©

1
c Qm
For most materials the line diameter can be chosen to

make the coupling Q much less than the material Q while

maintaining a total Q of 100. In this case the resonant

frequency of the composite system will be given by (5.3.6).

w = w l - — {5.3.6)

Q N

As expected the effect of the line impedance is to reduce the
resonance frequency of the system. For the resonant frequency
to be within 0.1% of the undamped natural frequency, then a

minimum value for the coupling Q can be obtained., Thus, for
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the above condition,

Qc =+ 112

(36)

It is also known that in the decay of free vibrations

Q is the number of cycles for the amplitude to fall to ol

of its initial value. So, from these figures it is clear that
if during the echo decrement (free vibration) part of the
signal, the amplitude has not fallen below 4% (27.3 dB) of its
value at the beginning of the decrement, within 13 cycles, then
the observed frequency will be within 0.1% of the unloaded
resonance. In practice, coupling Qs are normally in the

range 20-200 which results in a drop from the undamped natural

frequency of between 0.03% and 0.005%.

The shape of the return echo can be understood by
considering the reflection of a pulse modulated signal from
a distributed resonator, the echo being a composite of the
reflected echo and re-radiated signal from the resonator.
In Figure 5.4 a half wave length line resonator with no
internal energy loss is used as a simple illustration of

the build up.

: s Initially the wave reaching the interface is partly
reflected and partly transmitted in proportions
determined by the usual reflection and transmission
coefficients. The displacement of the reflected
component is 180° out of phase with the incident

vibration (Figure 5.4.1).
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The displacement wave transmitted through the
interface is reflected at the free boundary with no
phase change. The total delay through the resonator
is always an integer number of wavelengths. Therefore,
the re-transmitted wave is out of phase with the

initially reflected portion. (Figure 5.4.2).

The steps (a) and (b) are now repeated but the wave in
the resonator now contains a portion due to the first
wave which is reflected from the interface back into
the resonator and is in phase with the second wave.

(Figure 5.4.3).

This process continues and clearly the displacement
amplitude of the resonator builds up exponentially.
The re-radiated part of the echo waveform also builds up
exponentially, but is in antiphase with the reflected
part of the transmitted waveform. Thus the composite
echo decreases exponentially through a null amplitude

to a steady state value.

When resonance is fully established and limited by the
small but finite losses in the system, the amplitude at
the boundary is twice the incident amplitude, i.e.,

at resonance the interface appears as a free boundary to
incident vibrations, the amount of energy transmitted

being equivalent to the losses of the resonator.

When the incident pulse stops there is an immediate

increase in amplitude since there is no longer



o L

a phase cancellation and the echo observed is twice
the amplitude of the echo just before the end of the
incident pulse. This part of the echo then decays
exponentially due to energy lost to the line and

internally.
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5.4 Optimisation of Echo Signal

A number of factors influence the signal amplitude and
signal to noise ratio. Signal amplitude is controlled by the
transducer section and signal to noise ratio is controlled
by the metallurgical state of the transmission line. Surface
imperfection and impedance discontinuities increase
reverberation noise and no amount of increase in signal power
can improve the signal to noise ratio. For this reason it is
necessary to obtain a 'clean' line by careful preparation
and handling and also to have good acoustic isolation from

any mechanical supports.

The transmission lines as supplied by the manufacturers
come in coiled loops. Two materials were used as transmission
lines in the experiments described here and they required
different treatments. Telcoseal (an iron-nickel alloy) was
initially strained in order to straighten the wire and remove
kinks. The wire was pulled by hand until further plastic
yield was not possible. The end of the wire to be inserted
into the coil was then heated to a red heat along about 50
to 100 mm of its length. The effect of straining the wire
reduced spurious echoes from the body of the wire and the
magnetostrictive coefficient. The latter is restored by

heating the end.

Permandur did not exhibit any plastic yield and could
not be straightened by cold pulling. In this case the

transmission line was heated to a red heat by passing a
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current of a few amps along its length and allowed to cool
under tension. An unexpected phenomenon was observed with
0.5 mm permandur in that noise from the line increased very
rapidly at 50-55 kHz. A search of the literature yielded
little clarification of this aspect. It was thought that
the phenomenon might be due to mode coupling in the body of

(

the transmission line. Meitzler 21 discusses this aspect

and attributes mode coupling to the fact that at certain
points of the dispersion curves, the various modes have

the same phase velocities. This is readily seen by
superimposing the dispersion curves in Chapter 2. Modes with
the same phase velocities occur at the frequencies where the
mode curves cross. However, Meitzler's theory gives a

lowest frequency of mode coupling for 0.5 mm permandur at
about 45 MHz where the lowest longitudinal (L(O,1)) and the
second flexural mode (F(2,1)) intersect. The typical
operating frequencies of the transmission lines (below 200 kHz)
ensure that the only propagating mode is the lowest longitudinal
mode. Lange(38) also observed a phenomenon of mode coupling
at long wavelengths. He postulates that surface imperfection
much smaller than the wavelength of the propagating mode can
act as centres of mode conversion. This seems a likely
explanation for the phenomenon described above. It is

thought that the process of heat annealing forms an oxide
layer on the surface of the transmission line thereby giving
centres for mode conversion. Permandur is unsuitable for use

at high temperatures since repeated temperature cycling of

the wire rapidly degraded the noise performance due to an
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increase in attenuation and defects created by expansion.
This gives added support to the likely cause being surface

effects resulting from heat treatment.

The transducer design influences the maximum amplitude
of the observed signal. The nominal coil length for maximum
signal should be a half wavelength at the operating frequency,
although to allow for fringing effects, the coil length is
wound 0.42) with between 200 and 300 turns. In practice
a single coil will be used over the full frequency range of
the experiments, (between about 50 kHz to 200 kHz) and at
the higher frequencies a loss of signal amplitude is
tolerated. The transducer end of the transmission line is
left as a free boundary for vibration reflection and use is
‘made of this by adjusting the length protruding from the end
of the coil to give an increase in signal amplitude. The
mechanism of energy conversion in the magnetostrictive
material is related to the strain magnitude. At a free end
the strain is reflected with a 180° phase shift so the total
length of transmission line protruding from the centre of the
coil is A/4 so that the total phase shift due to the delay
and reflection phasé shift is 360°. This length is adjusted

throughout the experiment to maximise signal amplitude.

The positioning of the bias magnet also has an effect on
signal amplitude. Ideally the bias should be at half the
magnetic saturation value and its position relative to

the coil is adjusted to obtain maximum signal amplitude.
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An additional factor affecting signal amplitude is the
electrical tuning of the coil. This is carried out with a
capacitor connected in parallel with the coil. However, as
an aid to mode identification the tuned circuit is made
fairly wide band by resistive damping to lower the circuit
Q. A low Q circuit can be useful as an aid to mode
identification and must always be very much less than the

resonator Q.
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5.5 Identification of Disc Modes of Vibration

In order to obtain the material constants of a
particular disc specimen the modes of vibration have to
be identified with absolute certainty. If some prior
knowledge of an approximate value of Poisson's ratio for the
specimen is known this presents no problem. The spectrum of
modes is given in Chapter 4. If an approximate value of the
material constants is not known then there are a number of
techniques that can be used as an aid to mode identification.
It is an experimental fact that radial modes are not as
strongly coupled as the contour extensional modes of vibration.
This effect is apparent from the number of oscillations
before the cross-over point. As an example, Table 5.1 shows
the number of oscillations to cross-over (nx) for modes of

vibration of a rolled steel disc.

The parameters of the disc are -

diameter =" 3B.4. mm
thickness = 3,3.mm
line diameter = 1.2 mm telcoseal

Identification of contour extensional modes are readily
made by use of a probe to find the number of circular modes.
A gquicker technique is to radially clamp the disc at the
nodal points. This does not affect the resonance condition

and so modes are easily identified.
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Frequency Osciltgtions o
Kz cross-over (nx)
68.96 52 22k
80 ® 1,1
100.08 150 0,1
105.86 70 3,1
137.67 100 4,1
167.41 120 Bl
173.28 250 s G
196.12 150 6,1

* No cross—-over was obtained for this mode

Frequencies of rolled steel disc (0=0.28)

Table 5.1

A useful technique available for mode identification is
to exdite the disc at opposite-ends of a diameter. This makes
use of the fact that for modes such as 2,1 and 4,1 the
opposite ends of a diameter are in phase and for those such
as 3,1, they are in anti-phase. The method is to place the
driving coil at the centre of the transmission line. This
is achieved by having the ends of the transmission line free
and move the coil uﬁtil the echoes from both ends exactly
overlap. The anti-phase position is to adjust for maximum
cancellation. The disc is then fixed to the transmission
line. When the coil is at an even phase position only even
modes are detected and odd modes when the coil position is

moved by A/2.
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3,1 Mode of aluminium

5,1 Mode of aluminium

Stepped nature of antisymmetric

FIGURE ‘5.5

disc modes
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Figure 5.5 shows a typical oscilloscope trace of the
contour extensional 3,1 and 5,1 modes. The stepped nature
of the echo can be made more obvious by lowering the Q of
the magnetostrictive transducer to widen the bandwidth. In
the case of the 3,1 mode the total phase delay of the
transmitted wave is 3) since six nodes have to be traversed
before the first transmitted wave is retransmitted into the
line in anti-phase with the reflected signal. Thus three
peaks of the reflected part of the signal will have occurred
pefore the transmitted part of the first peak is retransmitted.
Similarly in the case of the 5,1 mode, the totél phase delay is

51 since 10 nodes have to be crossed.

Identification of the full mode spectrum of the specimen
is determined at room temperature while the disc is
accessible. It is normally desirable to use modes close
together in frequency for the determination of material
constants since retuning of the transducer is not required
to optimise signals; also any frequency dependent effects

are unlikely to influence the measurements.
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5.6 Choice of Modes for Elastic Constant Measurement

Tn certain materials with Poisson's ratio around B35y
problems arise in trying to identify the resonant frequencies
by the cross-over technique of the 0,1 and 3,1 modes. It is
clear from the mode spectra given in Chapter 4 that for this
value of Poisson's ratio, the 0,1 and 3,1 modes intersect.
The reflected signal from the resonator combines both modes
which have almost the same frequency but different coupling.
The resultant signal has a modulated appearance which changes

rapidly with freqguency.

In this case another combination of modes would be used
to determine Poisson's ratio such as the 5,1 and 1,2
combination, or 0,2 and 8,1 combination. Particularly
confusing was the 0,1 1,17 2.1 interaction at Poisson's
ratio of -0.1 in the case of pyrolytic graphite. However,
it was this phenomenon which occurred at the freqguency of
lowest detectable mode that gave a clue to a likely value of
Poisson's ratio. The only useable combination of modes in

this case were the 1,2; 4,1 combination.
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ANy | dode K £/K
24.790 2,1 | 1.5548 | 15.944
30.898 0,1 1 2.0267 | 16.087
38.099 T WO T A T
49.363 4,1 | 3.0770 | 16.043
59.876 5.1 4 3.7334 | 95.038

69.876 6,1 | 4,3686 | 15.995
78.832 7,1 | 4.9922 | 15.791
85.46 0,2 | 5.3515 | 15.969
89.75 8,1 |-5.632% | 15,915
99,227 9,1 | 6.2209 | 15.951

d = 38.2 mm
¢ = 0,116
Av.f/K = 15.974 (Std. dev. = 0.078)
c, = 1917 ms ™
Table 5.2

Typical thin disc frequencies of graphite
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5.7 Elastic Constants of Graphites

The mode spectrum for the specimen is first established
at room temperature. Having identified the modes with
confidence, Poisson's ratio can be calculated from the tables
in Appendix A4. Using the calculated value of Poisson's ratio

the Km value is obtained, again from Appendix A4 by

el
interpolation. A useful check on the accuracy and also that
the modes are correctly identified is to divide the frequency
of the mode by the K value obtained by interpolation. The
ratio of f/K should be constant for all modes. The plate

velocity Cp is easily obtained from equation (5.6.1).

Cp = md(£/K) (5.6.1)

If d is in millimetres and f is in KHz then Cp ie in metres/sec.
A typical set of room temperature results for graphite are

given in Table 5.2.

The graphites measured with the exception of GR5 and
pyrolytic graphite were manufactured by an extrusion
process. Two samples of each grade of graphite were measured
denoted by the letter G or P, meaning with grain or
perpendicular to grain respectively. The orientation of the

discs is best seen with reference to Figure 5.6.

A summary of the room temperature results of 9 samples
of graphite is given in Table 5.3. Graphite type GR5 does

not have any grain orientation since it was isostatically
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Gg:ggi:e Po;ii?g : Frgéizncy Mode K £/K
p £ (kHz)

| 31.402 2,1 | 1.550 | 20.28

39.124 0,1l 15991 20.26

3 47.944 5% 2.367 20.286

GR1P 0.123 62.010 4,1 3.067 20.22

(=282 75.201 5,1 | 3.722 | 20.21

87.931 6,1 | 4.356 | 20.19

27.933 2,1 1.514 18.45

36.373 0,1 | 1.960 | 18.55

42.949 3,1 | 2.315 | 18.55

GRIG 0.164 55.600 4,1 | 3.004 | 18.51

(d=i8, 2mm) 67.932 5,1 | 3.648 | 18.62

78.944 6,1 4,272 18,38

29.071 2,1 | 2 608l 2817

34.208 o,1 | 1.882 | 18.17

44.470 3,1 | 2,447 | 18.17

GR2P 0.055 57.490 4,1 3.163 18.17

(=38, lue) §9.388 s,1 | 3.832 | 18.11

81.012 6,1 | 4.496 | 18.02

27.134 2,% |as7e | 1748

33090 0,1 | 1.907 | 17.35

41.778 3,1 | 2.408 | 17.35

GR2G 0:089 53.850 03 |2.08 ) 27,35

(d=33 1) 65.316 5,1 | 3.779 | 17.29

76.129 6,1 | 4.420 | 17.22

26.294 2,1 | 1.532 | 17.16

33.480 0,1 | 1.948 | 17.18

40.266 3.1 | 2aa [f17.20

GR3P 0.144 52.204 4,1 | 3.035 | 17.20

{d=38. 1am) '63.305 5,1 | 3.677 | 17.22

74.055 6,1 Lalaid | 1aae

31.005 2,1 | 1.519 | 20.42

39.950 0,1 | 1.957 | 20.42

47.399 3,1 | 2.322 | 20.15

GR3G 0.159 61.565 4,1 3.024 20.3¢

{4=38, 3mm) 75.068 5,1 | 3.658 | 20.52

86.616 6,1 | 4.283 | 20.22

24,797 2,1 1.360 15.30

30.540 o,1 | 1.924 | 15.88

37.795 3,1 | 2.381 | 15.88

GR4P 0.112 49.041 4,1 | 3.083 | 15.90

(d=38. Lmm) 59,140 5.1 | 3,242 ) 35.81

§9.201 6,1 | #.277 | 15,82

30.633 2,1 | 1.538 | 19.92

38.45 0,1 | 1.941 | 19.81

46.533 3,1 | 2.350 | 19.81

GR4G 0.137 60.475 4,1 3.046 19.85
(d=38. 2mm) 73.579 s,L | 3.697 | 15.%0 !
85.026 6,1 | 4.328 | 19.66 |

29.793 g 1.493 19.96

39,327 0,1 1.976 192,30

45,457 3.1 2,285 13.90

GRS 0.188 59.047 4,1 2.966 19.91

(d=38, Lmm) 71.820 5.1 | 3.6p5 {iia.vo
83.824 6,1 | s.222 | 19.85 |

Table 5.3

Thin Disc frequencies for 'P' and 'G' orientated graphites
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pressed and not extruded. 1In all cases the measured
Poisson's ratio of 'P' cut samples was lower than that of
'G' cut samples. The measured plate velocity did not show

the same consistency.

In some samples the plate velocity was higher in 'P'
cut materials and lower in others. The plate velocities are

summarised in Table 5.4.

Graphite Plate
Sample Velocity
ms—l
GR1P 2428.2
GR1G 2223.4
GR2P 21.70.7
GR2G 2068.1
GR3P 2057.4
GR3G 2442.0
GR4P 1898.8
GR4G 2319.2
GR5 2377+

Table 5.4 ,



“£=29.494 KHz

(b) ; £=31.058 KHz

' £=31.093 KHz
(c)

Effect of anisotropy on the echo
FIGURE 5.7
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5.8 Effects of Anistropy

Initially considerable difficulty was experienced in
identifying the modes of vibration of graphite GR4G. The
modes above 4,1 were readily identified from the number of
oscillations in the echo steps but below the 4,1 mode there
were more resonances than could be accounted for by the disc
spectrum. This anomaly was not apparent in the graphite GR4P.
At the lowest detectable modes , resonance occurred
initially at 29.494 kHz and 31.058 kHz, These two resonances
showed a modulation of the echo envelope.typicai of two disc
resonances. The oscilloscope traces are shown in Figures

S.ia and 5.01b.

Further investigation revealed that this behaviour
depended on the position of the line drive around the
periphery of the disc. A position was found on the disc where
the lowest mode showed no modulation, due to a second close
resonance and the oscilloscope trace is shown in Figure 5.7c.
The most likely reason for this effect is a small amount of
macroscopic anisotropy in the manufacturing process of this
particular graphite. The problem of mode identification was
eventually resolved by use of the two position excitation
technique described above to resolve odd and even modes using
an 0.3mm permandur line at two positions at 90° apart. The
results of this experiment are given in Table 5.5 for each
position. Use is made of the fact that f£/K is constant to
identify the modes. In the 90° position the two even modes at

84.985 kHz and 86.230 kHz give f£/K values of 19.6 and 19.95
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o° Position 0=0.1353 90° Position 6=0.1385
odd o odd o

fkHz oo o | Mode £/K fkHz o o | Mode £/K
30.707 e 2,1 | 19.946 | 29.413 e 2.1.] 19.139
38.674 e 0,1 |19.932 | 38.708 e 0,1 | 19.928
46.857 o 3,1 | 19.926 | 46.769 o 3.3 19,921
60. 704 e 4,1 |19.914 | 60.727 e 4,1 | 19.951
73.843 o 5,1 | 19.956 | 73.756 o 5,1 | 19.962
84.985 e 6,12 | 19.650

85.208 e 6,1 |19.674 | ge'o5 |° e | 6.12] 19.938
97.957 o 7,1 |19.788 | 97.810 o 7,1 | 19.785
110.026 e 8,1 |19.780 | 109.836 e 8,1 | 19.772

Table 5.5

Effect of driving line position on observed frequencies

of GR4 graphite.
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respectively. The average value of f/K is about 19.9
implying that 86.230 kHz is the 6,1 mode resonance. The
effect of the anisotropy is to increase the scatter in the
£/K value and is particularly noticeable in the 2,1 mode in
the 90° position. However, the effect on Poisson's Ratio is
fairly small but does of course increase the uncertainty of

the measurement.
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Frequency

KHz K Mode £f/K

52.778 1.7238 | 2,2 30.615
53.306 1.7530 | 1,1 30.408
54.068 1.7661 | o,1 30.614
79.349 2.6030 | 3,1 30.483
101.408 3.3373 | 4,1 30.386
107.649 3.5424 | 1,2 30.388
122.257 4.0233 | 5,1 30.388
142.257 4.6890 | 6,1 30.300
160.741 5.9122 | 0,2 30.260

161.830 5.3444 5 30.280

179.819 5. 98938 8,1 30.000

(4,1), (1,2) comparison ¢ = =0.099
(0,2), (7,1) comparison ¢ = =-0.102
(0,1), (2,1) comparison o = -0.094

Table 5.6

Thin disc frequencies of pyrolytic graphite
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5.9 Pyrolytic Graphite

Pyrolytic graphite is manufactured by a chemical vapour
éeposition (C.V.D.) process onto a former made of some
refractory material at high temperatures, (about 2000°C) .

The pyrolytic graphite is very highly anisotropic with the
basal planes parallel to the former and the planes stacked one
on top of another. The disc used in the measurements performed
was cut from a flat sheet of pyrolytic graphite deposited

on a tungsten former. A discussion of the manufacture of
pyrolytic graphite and a review of its properties is given

in reference 39 .

The anisotropy of pyrolytic graphite does not have any
influence on the present technique of measurement. The use
of in-plane disc modes measures the in-plane value of
Poisson's ratio. The disc of pyrolytic graphite of course
appears isotropic in-plane. The measurement of modes of
vibration do not in this case depend on the position at which
the transmission line is coupled to the disc. The Poisson's
ratio was measured by comparing the 1,2; 4,1 modes and as a
check on accuracy, with the 2,1; 0,1 and 0,2; 7,1 modes. The
room temperature frequency of vibrations are given in Table
5.6. The ratios (KZ,IEKO,l)/KO,l and (KO'2—K7’1)/K1,? are
not included in Appendix A4.l since they are not generally
of sufficient sensitivity over the more conventional range
of Poisson's ratio. However, a supplementary table over the

range of Poisson's ratio -0.07 to -0.12 is given in Table 5.7.
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The. average value of Poisson's ratio obtained from the
frequencies of Table 5.6 is -0.098. A negative value of
Poisson's ratio for the basal plane Poisson's ratio of -0.15
is also given in reference 39 . A negative value of Poisson's
ratio implies an increase in lateral dimensions with tension.
smith and Leeds state that this is a consequence of the very
large compression perpendicular to the basal planes. The c¢
axis strain resulting from in-plane stress given in reference
42 corresponds to a ¢ value of 0.90. This of course exceeds

the normal range of Poisson's ratio for isotropic materials.

folsscn's | 92,1 Rgae R e s 1 5o 2 0
Ratio By X, S o
~0.07 0.06982 | -0.04463 0.00130
-0.08 0.06681 | -0.03560 | -0.00135
~0.09 0.06393 | -0.02800 | -0.00390
=0, 10 0.06119 | -0.01851 | -0.00627
=011 0.05859 | -0.00963 | -0.00855
~0.12 0.05613 | -0.00067 | -0.01070

Table 5.7

It was not possible in this case to obtain a second
Poisson's ratio using the disc technique. Samples of pyrolytic
graphite sufficiently thick to cut discs perpendicular to the
basal planes were not available. The value of plate velocity
for pyrolytic graphite was considerably in excess of the values

of conventional graphites given in Table 5.4. For the pyrolytic

graphite sample investigated the plate velocity Cp was 3484 rrls_:L
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5.10 Variation of Graphite Elastic Constants with Temperature

Graphites, because of their low density and refractory
properties,are an important material in such applications
as the throats of rocket engines. For this reason the
temperature coefficients of elastic constants are of
importance to designers. The transmission line technique is
particularly applicable to the measurement of temperature
coefficients. The transmission line can be chosen for its
refractory properties and a section of magnetostrictive
material can be brazed or butt-welded to the transducer end.
By matching the characteristic impedances of the two materials
spurious reflections can be avoided. This is often achieved
from stock sizes of materials by etching with acid until the

required dimensions are obtained.

The interface between the transmission line and the
resonator in the hot zone is required to maintain good acoustic
integrity over the temperature range being used. In the case
of the graphite discs a small hole about 1-2 mm deep and
slightly larger than the transmission line was made and the
two joined with an alumina based cement "autostic". This

cement is suitable for use up to 1600°C.

The furnace used in the temperature experiments was a
quartz tube capable of accepting discs up to about 40 mm with
a temperature range of about 1000°C. The atmosphere around
the disc is maintained inert by a small overpressure of

nitrogen or argon.
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In all cases except pyrolytic graphite the 0,1 and 3,1
resonances are measured over the full temperature range. In
the case of pyrolytic graphite the 1,2 and 4,1 resonances are
measured. Readings of the two modes were taken alternately
at intervals of two minutes together with the temperature
from a chromel alumel thermocouple. The thermocouple junction
was placed in close proximity to the centre of the disc. The
readings of temperature (mV from chromel alumel thermocouple)
and frequency were recorded automatically via a Solatron data
transfer unit on a teleprinter. A typical temperature run to
1000°C took about five hours to complete. The frequency
variation over the temperature range is given in Figures 5.8,
for a typical sample GR3P. Although the frequencies of the two
modes are measured alternately, the increase in temperature can
be assumed to be linear over a time of about ten minutes, and
the frequencies are interpolated to give their values at the
same temperature to calculate Poisson's ratio. The results of
this calculation are shown in Figures 5.9. No information of
the variation of density with temperature is available, so
Figures 5.10 show Young's modulus/density for the temperature
O—IOOOOC although room temperature densities for these samples
is typically 1.8.103Kgm_3, and it is not expected that this

will change very much over the temperature range.

Figures 5.9 show the variation of Poisson's ratio for all
graphites including pyrolytic graphtie to be very small up to
a temperature of 1000°C. The Young's modulus curves (Figures

5.10) of conventional graphites show an initial decrease in
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Poisson's ratio to definite minima. Depending on the graphite
type this minima occurs at about 100°c - 200°C. This behaviour
has been noted by Mason and Knibbs(40). They account for this
behaviour by postulating that the crystallites expand initially
to fill the voids in the polycrystalline graphite. During this
time the Young's modulus decreases. Once the voids are filled,
the stiffness of the material tends to increase. It would be
expected that at some higher temperature (higher than 1000°C)
Young's modulus must then fall again. Figure 5.10.6 shows
Young's modulus variation with temperature for pyrolitic
graphite. The modulus for pyrolitic graphite is between two
and four times the room temperature values for the_other
conventional graphites., The density of pyrolytic graphite is
slightly higher than conventional graphites, 2.1 x 103 Kgrn"3
compared to about 1.5 X 103 Kgm—3. The temperature coefficient
for the pyrolytic graphite is again small, up to a temperature
of 1000°Cc. It should also be noted that in this case there is

no minimum in the Young's modulus for pyrolytic graphite and

shows a steady fall with temperature.

The conspicuous elasticity differences between commercial
and pyrolytic graphites can now be considered. Commercial
graphite cohsists of grains of pyrolytic graphite of wvarious
sizes and are random in their orientation. The grains in turn
usually consist of single crystals possibly, but not necessarily,
randomly oriented. It must be emphasised that the measurements
on the pyrolytic graphite are in the plane of the hexagonally
structured atoms, strongly held together by covalent bonds.

In the orthogonal direction the sheets of atoms are well
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separated and weakly bound together by a metallic like linkage
of free electrons. The elasticity in this direction will be
very low and the anomalous increase in elasticity with
temperature of all commercial graphites must arise in some way

from this anisotropy.

The results on pyrolytic graphite are typical of a single
covalent crystal. The elasticity is high and falls only
slightly with temperature for the comparatively limited range
measured. In the transverse direction the metallic bond would
be expected to produce a large negative elasticity coefficient

and a high Poisson's ratio for this orientation.

Recent results on mica, which has a structure similar to
graphite in which hexagonal atomic planes are widely separated,
the inter-plane binding in this case however being covalent,

show similar small changes in in-plane properties.

The room temperature properties of commercial graphite
are consistent with these features, at least qualitatively.
The randomness of orientation means that there is an averaging
between the high and low elasticities of the crystals and of
the Poisson's ratioé. The wide scatter of results can be
attributed to the variations in orientation due to the initial
forms of carbon or carbon compounds used in their manufacture
and variations in heat treatment. The production of graphite
requires holding the material at a temperature of the order of
2500°C for a number of days. The very large furnaces used take

a long time to cool down but no process analogous to annealing
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of metals can be expected. The large anisotropy of graphite
will result in the crystals within the grains,and to some
extent the grains themselves,being under stress. The
contraction during cooling could result in the presence of

voids in the grains and their intensities.

The paradox that the elasticity of commercial graphite
having fallen to aminimum at one or two hundred degrees and
increases over the full range of temperatures measured must
be attributedtothe effect of changes in voids and stress. The
features are common to graphites formed from a fariety of
source materials including graphite fabric,.graphite composites,
and 'densitised' graphite which is multiple graphitised material
where a hydrocarbon liquid has been soaked into the material
between each stage.. Recent measurements on a very fine
grained "Poco" graphite,produced as a reference material by
the National Bureaux of Standards, reveal the same phenomenon.
At the present state of knowledge this paradox must remain
unresolved. If the crystals are under stress at low
temperatures the elasticity is expected to be high and this
will fall as the stress is relieved. The reverse appears to
occur. Knoﬁledge of the effect of temperature and stress on
pyrolytic graphite in the transverse direction would be a
major contribution to the resolution of this paradox. As far
as is known only silica, the elasticity of which increases
to 14000C, shows the same effect. The structural differences,
silica being devoid of even microcrystalline structure, makes

it unlikely that they have common sources.
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CHAPTER 6

TIME OF FLIGHT MEASUREMENT OF ELASTIC CONSTANTS

6.1 Introcduction

Time of flight methods of measuring elastic constants
offer an alternative to resonance techniques and find
applications in areas of measurement where resonance methods
have limitations. For example, in the resonance method a
material Q factor of 20 requires a coupling of the same order
giving a net Q of 10. The transducer is selective to an extent
amounting to a 'Q' of about 3. An observation will thus be
biased significantly by the transducer tuning. In the time
of flight method the corresponding signal attenuation for a
distance of 10\ will be of thé order of 14 dB. This gives a
good signal to noise ratio and there is no deterioration in
measurement accuracy. As has already been covered in previous
chapters the loss in polycrystalline metals makes resonance
methods ineffective at about 2/3 of the melting point. Single
crystals and certain non-metals such a silicon nitride and
graphite have low léss to their temperature limits. A variety
of methods of measurements using piezo-electric and
magnetostrictive sources have been described in the
literature(4l'42'3llThis present work deals only with pulses
derived from magnetostrictive transducers and is specifically

designed to operate with thin transmission lines.

Bell (ICA 1959) proposed a notched line technique for
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monitoring temperature in the centre of nuclear fuel rods.
Single pulse methods of measuring temperature are fairly well
established although the difficulties imposed by working in a

nuclear environment still present considerable problems(43).

Instruments have been designed to measure time of flight(qd)

with a tuning accuracy of about *100 ms relying on estimating
the 3 dB points of the return echo pulses. 1In ultrasonic
thermometry applications, Fathimani(34) described a probe
design and associated instrumentation for tracking temperature

changes of frequency of resonant tuning forks.

This present chapter gives a technique based on the
transmission of two pulses that enable small changes in the
elastic modulus of a material to be detected. Although the
method has general applications it is particularly suited,
after probe calibration, to ultrasonic temperature measuring
applications. The material chosen to demonstrate the method
was a sample of 2% thoriated tungsten, a material often used

as probes in nuclear fuel rods.
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6.2 Pulse Overlap Velocity Measurement

The reflection and transmission coefficients for
displacement at an impedance discontinuity are given by
equations (6.2.1) and (6.2.2) respectively.

AR

I "2

Ri= ot (6.2.1)
Zl+Z2

T o= - (6.2.2)
Z2+Zl

The impedance mismatch is arranged in this case for 7,
to be less than Z,. The physical arrangement is shown in
Figure 6.1(a),and Figure 6.1(b) shows the polarity of the
reflected echoés. The time between the echoes 1 and 2 is
the fiight time in the sensor length d. If the velocity in
the sensor material is c then the flight time t is given

by equation (6.2.3).

t = — (6.2.3)

The peak of the pulse is not necessarily the centroid of
the energy and Papaaakis(44) uses the 3 dB points to find the
centroid. All methods will be subject to some error if the
spectral content and hence the shape of the pulse changes, say,

due to a reactive impedance at a junction.

The pulse overlap method consists of transmitting pairs
of pulses. The time between launching these two pulses is

adjusted so that the reflection from the impedance mismatch

-
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The first pair of echoes are from the junction
and the second pair are the end echoes.

Period= 48.55.s (less than the 2 way flight time).
FIGURE 6.3.a.

The first echo is the junction echo, the second
junction echo and first end echo are overlapped.

Period = 79.892us (equal to 2 way flight time).
FIGURE 6.3. b.
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of the second transmitted pulse is made to coincide exactly
with the pulse reflected from the free end of the sensor due
to the first transmitted pulse. This is illustrated in
Figure 6.2 where the echo timing relationships are shown
schematically. If the two transmitted pulses are gated from
an oscillator, then at overlap the period of the oscillator
is the flight time in the sensor d. Figure 6.3(a) shows the
typical echoes produced from a transmission of two pulses
whose separation is less than the flight time in the sensor.

Figure 6.3(b) shows the overlap condition where the period of

the oscillator is adjusted until the amplitude of the combined

pulse is at a maximum.
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6.3 The Composite Echo

Equations (6.2.1) and (6.2.2) give the reflection and
transmission coefficients. Putting z = ZZ/Zl the reflected

signal from the junction is:

]l Z
L Z (6.3.1)

and the transmitted signal is:

o
T12 = —(T'i:—Z—T (6.3.2)

The signal transmitted back from the sensor section d into

the transmission line ¢ of Figure 6.1 is:

o 2z
TZl —m (6. 3231
The composite echo is then the sum of the signal reflected
from the junction and the signal that has travelled the
additional path in the sensor. The composite echo of the

overlapped pulses is then:
C =R+ T]_2T21. (6.3.4)

The ratio of reflected to transmitted pulses is more easily

measured in practice and is given by

2

o kg
R/leTZl =l e (6.3.5)
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Figure 6.4 shows this ratio as a function of z. Figure
6.3(a) was obtained using a sensor of 1 mm 2% thoriated
tungsten butt welded to a 1.5 mm line of the same material.
These figures correspond to an impedance ratio of about 0.44.
The measured ratio of pulse heights is 0.43 compared to a
calculated ratio of 0.46. The variation of the ratio
R/Tl'l‘2 is shown in Figure 6.4 as a function of z over the
range 0.1 to 1.0. Clearly the case of z = 1.0 represents the

absence of an impedance mismatch and there is no reflection.
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6.4 Factors Affecting Choice of 7,/Z, Ratio

The impedance ratio ZZ/Zl can be controlled by selecting
the ratio of diameters of the lead-in line to sensor line.
To optimise the signal to noise ratio the composite echo
signal should be made as large as possible. While the ratio
of reflected to transmitted signal is infinitely variable,
this is not true of the amplitude of the composite echo
signal. Figure 6.5 shows the variation of composite signal
amplitude relative to the incident signal over the range of
z of O to 1. A family of curves is given where the attenuation
figure shown is the percentage of additional attenuation in
the sensor line. It is preferable to maximise the combined
signal at its high temperature and hence high attenuation
than maximise it at room temperature. For example, the
maximum composite echo amplitude with no attenuation is 1.25
and occurs for an impedance ratio of 0.35. At 20% attenuation
at this z, the signal falls by about 12%%. However, if the
signal is maximised at the 20% attenuation, an amplitude of
1.11 corresponding to a z of 0.20 it will have fallen by only

about 8%.

(45)

Arave and Buchenauer give attenuation for tungsten -
2% thoria, up to 2800°C. If B is the attenuation in Neper/unit

length, then the attenuation in dB is given by

Attenuation (dB/unit length) = 8.686p e Y
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For a sensor length of 150 mm the expected

attenuations are shown in Table 6.1.

ATTENTUATION
TEMPERATURE | .
dB 2
1600 - -
2000 1.6 17
2400 5.9 50
2800 10.3 70

Calculated on the basis of data given in
Reference 45 for a 150 mm W-2% Thoria sensor

Table 6.1

The available furnace for testing the probe was only
capzble of achieving a temperature of 1800°C. For this reason
the sensor was optimised for an expected attentuation of
" about 10%. From the curves in Figure 6.5 the maximum for
10% attenuation occurs at about z = 0.3. Since the lead
in line and the sensor are made from the same material the

ratio of the diameters is

i Y o TR T
1

The sensor was machined from a solid length of tungsten
1l.5m long and 1.5 mm diameter, this gives a sensor diameter

of 0.82 mm.
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£(t)

/2 Bt/2

Idealised echo waveform

FIGURE 6.6,a

F(w)

2n/T i/ T w w

Spectrun of echo waveform

FIGURE 6.6.b
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6.5 Young's Modulus Measurement by Pulse Transmission

The theory of pulses in transmission lines has been

(46“48). For an idealised

discussed by several authors
rectangular pulse input the received echo waveform as shown
in Figure 6.6(a) is produced. Figure 6.6(b) shows the
Fourier spectrum of a pulse of this shape. In practice the
pulse shape differs from this rectangular shape as a result
of finite speeds of rising and falling edges and also as a
result of fringing effects in the transducer coil(4?). Most
of the energy in the pulse can then be considered to occur

at frequencies less than 2n/T. Since the pulse width is

approximately 4us this corresponds to a frequency of 250 kHz.

The value of sensor diameter given above and this frequency
gives a value of normalised frequency parameter for tungsten
(as defined in Chapter 2) of approximately 0.2. Inspection of
Figure 2.1(a) shows that the first longitudinal mode (L(O,1))
is essentially linear in this region and hence the group and
phase velocity take the same value. This means that the
frequency components of the pulse spectrum travel with the
same velocity and there is no dispersion thus preserving the
pulse shape independent of delay time. Under these conditions

the pulse propagates with velocity (Appendix 6.,1).

: 5 # %
=T e e - N (E/p) (6.5.1)

Accurate absolute measurement of Young's modulus for a

material depends on accurate knowledge of the dimensions of
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the sensor. Changes in Young's modulus can be inferred from
flight time information without this knowledge. The method
of estimating Young's modulus change is from equation (6.5.2).
220 2
E, = (—?H) p (6:5:.2)
o
where % is the room temperature sensor length and ol is the

delay at room temperature.

The ratio of Young's modulus at temperature 6, EB to

the room temperature value E0 is given by

2

E T
2 = (=2) (1+a8) (6.5.2)
6

B
o

The factor o in (6.5.3) is the thermal coefficient of linear
expansion and can generally be considered small and is not

taken into account in the following.

An instrument was designed to track small changes in time
of flight with temperature. This instrument, based on the

pulse overlap method, is described fully in Chapter 7.
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6.6 Temperature Coefficient of Young's Modulus

A sensor as describéd in Section 6.4 was machined from
tungsten - 2% thoria. It was installed in a Metals Research
PCAlO furnace capable of a maximum temperature of 1800°¢.
Temperature was monitored using a tungsten/tungsten rhenium

thermocouple.

The operating procedure of the flight time tracking
instrument is as follows. The echo pulses were overlapped
by manually tuning the echo pulse oscillator and observing
the composite echo on an oscilloscope. The instrument was
then switched to automatic track and no further manual
tuning was required over the temperature range of the furnace.
The echo was continually monitored on the oscilloscope to
check that tracking lock was maintained. The period of the
oscillator with the instrument in lock is the flight time in
the sensor. Period and thermocouple e.m.f. were recorded
automatically at two minute intervals on a teletype using a
Solatron Data Transfer Unit. Figure 6.7 shows the variation
of Young's modulus normalised to the room temperature value
over the temperature'range 0-1800°C. The total variation of
Young's modulus is about 5%. The first temperature cycle is
for the sample in "as received" metallurgical condition. The
second temperature cycle shows some variation resulting from
the annealing of the sensor. The Young's modulus of the
annealed sensor is slightly higher than the un-annealed sensor,

a feature common to other metals. Dislocations and
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imperfections which tend to reduce Young's modulus are

removed during annealing resulting in increased material
strength. There is an indication of a change of slope of the
second heating cycle at about l?OOOC, although insufficient
data points are available to confirm this. However, it is
known that at the recyrstallisation temperature (about half the
melting point) mobile grain boundaries result in easier

deformation.

The room temperature velocity value for one sample was
measured as 4659 ms-l. Appendix A6.2 describes a standing
wave method of measuring the velocity of the same probe and

shows very good agreement.
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6.7 The Sensor as a Temperature Transducer

The first and second temperature cycles are shown in
Figures 6.8 and 6.9 respectively. There is a definite knee
in the heating curve of the first cycle that is not apparent
in the second cycle. This is most likely due to removal of
dislocations by annealing. It is interesting to note that
a second specimen also shows this knee at the same

temperature (Figure 6.10).

The considerable difference between the heating and
cooling curves of Figure 6.9 is almost entirely due to the
different rates of heating in the furnace rather than
hysteresis in the specimen. Figures 6.1l and 6.12 show the
first and second cooling curves of two different specimens
plotted together. Hysteresis is not as pronounced in this
case indicating that the differences in Figure 6.9 are almost
certainly due to the differential thermal time constants of

the tungsten/tungsten rhenium thermocouple and the sensor.

The implication of the above results is that before such
a sensor could be used as a temperature transducer, several
heating and cooling cycles (five or six) are necessary before
calibration, in order to stabilise the transducer. Also, the
transducer should be calibrated at several spot values both
during heating and cooling, allowing sufficient time for the

transducer to reach thermal equilibrium at each point.
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CHAPTER 7

INSTRUMENTATION FOR TIME OF FLIGHT TRACKING

7.1 Introduction

The measurement of variation of flight of time of an
ultrasonic pulse over a wide temperature is a tedious process
if carried out manually. A typical measurement cycle in

Chapter 6 takes over six hours.

In this chapter an automatic system is described which,
after initially locked onto the pulse, will track the flight
time variation over a wide range with.good accuracy. The
measurements discussed in Chapter 6 were obtained using this

instrument.

The instrument was initially designed as a pulse
ultrasonic thermometer for nuclear fuel rod centre line
temperature measurement, but clearly it is not restricted
solely to the measurement of temperature. Since, primarily
it is the variation of velocity that is being measured, the
additional effect of parameters such as magnetic field or

neutron flux could be determined.

The technique of using double pulse overlap has already
been explained in Chapter 6. The two pulses transmitted
every pulse repetition interval (P.R.I.), are derived from
a voltage controlled oscillator, the period of which, at

overlap is the two way flight time in the sensor. This



G e

V.C.0. is continuously adjustable over a finite range. The
stability of the V.C.O. is a possible limitation of the
accuracy in both manual and automatic mode. In the former

it arises from the time interval between setting the composite
echo amplitude and observing the period. 1In the latter there
is a random fluctuation about the mean period due to what is

essentially a control sampling system.
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7.2 Modified Pulse Overlap Technique

To obtain a control signal to adjust the V.C.O.
automatically, a modification to the double pulse overlap
method is introduced. On alternate cycles of the P.R.I.
oscillator the time interval between two pulses derived from
the V.C.0. is lengthened and then shortened by the same small
amount. This perturbation is symmetrical about the period of
the V.C.0. Figures 7.1(a) and (b) show the echo overlap
situation if there was no perturbation of the second pulse
and the frequency of the V.C.0. adjusted so that the echo
peaks exactly coincided. In Figure 7.1(c) the second pulse
is in advance of the exact overlap condition by a small
amount At. This causes the peak of the junction echo resulting
from the second pulse to be somewhere on the rising edge of
the end echo from the first pulse. Similarly, by delaying
the second pulse by an amount At as in Figure 7.1(d), the
second pulse junction echo is on the falling edge of the end

echo of the first pulse.

Assuming that the V.C.0. period is slightly shorter
(<At) than the sensor flight time, then the composite of
(d) and (a) of Figure 7.1 will have a peak amplitude larger
than the composite of (c) and (a). The reverse will be true
if the V.C.0. period is slightly greater than the flight time
in the sensor. Clearly the difference between these two
conditions can then be used to control the V.C.0., When the
V.C.O0. period is identical to the sensor flight times, the

amplitude of the composite echoes of the advanced and delayed
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FIGURE 7.2 (b)

Pulse amplitude relationships used for tracking control.
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pulses will be identical and hence applying zero voltage to
the control I/P of the V.C.0., Figure 7.2 shows the pulse
amplitudes of the advanced and delayed composite echoes in
a steel sensor with a nominal flight time about 50us from a
sensor length of 125 mm, Figure 7.2(b) is the difference

between the two composite pulses.

The oscilloscope photographs in Figure 7.3 show the
typical composite echoes. Figures 7.3(a) and 7.3(b) are
the advanced and delayed composite echoes without tracking.
In Figure 7.3(a) the V,.C.O, is at a slightly higher period
than the flight time while Figure 7.3(b) shows the condition
when the V.C.0. is at a longer period. Figure 7.3 (c) shows
the two composite echoes with the tracking loop closed and
the V.C.0. period locked to the flight time of the

ultrasonic pulse in the sensor.
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7.3 The Electronic System

The block diagram of the system is shown in Figure 7.4.
There are essentially three sections. The master V.C.O.
supplies the pulses via some decision logic and pulse
amplifiers to the transducer. This V.C.0. has a range of
500 kHz to about 1 MHz, A divider chain reduces this frequency
to a value suitable for the particular sensor in use. The rate
at which the double pulses are supplied is controlled by a
second oscillator of much lower frequency, variable between
10 Hz and 100 Hz. This second oscillator, the P.R.I. oscillator
supplies a control to the decision logic which determines
whether the advanced or delayed pulses are launched and also
synchronises the receive circuitry to guide the echo returns
to the correct sample hold circuits. The outputs from the
sample hold circuits are subtracted and integrated before

being fed back to the master V.C.O.

7.3.1 Pulse Selection Circuitry

The output from the V.C.O. and divider is a square wave
of equal mark space ratio. This is the waveform Xl in
Figure 7.5. On the rising and falling edges of this waveform,
very short pulses are derived, typically 50 ns which are then
lengthened to between 1 and 2 us. This waveform forms the
clock to Ck in Figure 7.5,the propagation delay in the remaining
logic circuitry and the width of the pulse is the total

symmetrical delay about the W.CO. frequency. The clock C, is
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then used to synchronise Xl to give the waveform X2 which is

identical to Xy but delayed by the width of the clock pulse.

The waveforms Xy X2 and C, are the three main inputs
to the pulse selectors. In addition there is an input C from
the P.R.I. oscillator which controls whether the two pulses
Zl or 22 are enabled. This occurs on alternate cycles of
the P.R.I. oscillator. The two sets of pulse groups are
transmitted via the same line to an amplifier which drives
the transducer. The mechanism by which the relevant pulses are
selected is summarised in the state map of Figure 7.6, where
g denotes the circuit states. The hold state dg is also used
to enable the receiver after the pulses have been transmitted

to avoid breakthrough to the receiver,

7.3.2 The P.R.I. Oscillater

The P.R.I. oscillator is also a TTL voltage controlled
oscillator with a frequency range between 10 Hz to 100 Hz.
The basic function of this oscillator is to control the rate
at which the pulses are launched into the transmission line.
The maximum permissible rate is determined by the length of
the lead-in line. Reverberations are allowed to decay
sufficiently to have minimum interference with subsequent
transmissions. The frequency at which the P.R.I. oscillator
operates has an effect on overall accuracy, the greater the
sampling rate the better the control. As is shown later this

effect is an instability in the tracking loop resulting from
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the delay time of the pulses in the transmission line before
the controlling error voltage is integrated and applied to

the V.C.O0.

The P.R.I. oscillator also supplies a control signal to
the V.C.0. oscillator which selects delayed or advanced pulses.
In addition a clear pulse is supplied to the pulse selection
circuitry and also, the oscilloscope trigger is derived from
the P.R.I. oscillator. A facility is included to enable
either the early, late or both pulses to be viewed on the

oscilloscope independently.

7.3.3 The Receiver

The function of the receiver is to amplify the echo pﬁlses
to a convenient level and gate the peak level of the pulses to
the appropriate sample hold circuits. The difference between
the two sample hold channel voltages (error signal) is then

integrated and fed to the V.C.0. control voltage input.

Precautions have to be taken in the receiver circuitry
to ensure that only the required pulse amplitudes are
measured. This is achieved by the use of a comparator with
the reference input taken from the peak detector. After
detection of a pulse and allowing sufficient time for the
sample hold circuits to acquire the new peak value, the
peak detector is allowed to decay approximately 3 dB from its
peak.value. Subsequent peaks are then gated to the sample

hold circuits if they exceed this value. Having detected
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a peak,the peak detector is then inhibited until the

transmission of the next set of pulses.

Allowing the peak detector to decay by 3 dB imposes
a restriction on the impedance mismatch between the
transmission line and the sensor. This means that the
amplitude of the first junction reflection must not exceed
-3 dB of the composite pulse amplitude. This was not found
to be a restriction in the application described in Chapter 6.
However,if this is unduly restrictive in any application,it
can be overcome fairly simply by ensuring that the first pulse
is always detected and gating the peak detector output to the

sample hold circuits on detection of the second pulse.

The complete circuitry for the time of flight tracking

instrument is given in Appendix 7.
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7.4 Performance

The accuracy with which flight time variations can be
measured with the instrument depends on the P.R.I. oscillator
period and the time constant of the final integrator. The
effect of these two parameters appears as instrument noise
in the period measurements of the V,C.0. Figure 7.7 shows the
typical noise component of the V.C.O. when the control loop is
open. A small drift is apparent due to temperature variations
in the V.C.O. This long term drift is of no importance in
closed loop since the V.C.O. period is controlled by the

flight of the time in the sensor,

In closed loop, the noise component is a function of both
the integrator time constant and the P.R.I. period. Figures
7.8 and 7.9 show the typical noise for a nominal P.R.I. period
of 15 ms with the integrator time constants of 0O.ls and 1s.
The dependence of the noise on these two parameters is a
result of the delay time in the transmission line. This is
because the integrator runs continuously and the V.C.O. period
is changing during the time of travel of the pulses in the
transmission line. The period of the V.C.O. is different at
the instant the control signal is updated to when the pulses
were transmitted. The minimum permissible time that can
occur is the flight time in the lead-in line, although the
P.R.I. oscillator period is usually several times this
value, the requirement to avoid reverberation effects, So for
an error at the V.C.0. input of e volts, the correction after

one P.R.I. interval of t seconds will be et;t where 1 is the
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Horizontal scale 1mS./div.
Vertical scale 5V/div.
Noise build up in sensor
FIGURE 7.10
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integrator time constant. Generally this will cause the V.C.O.
to overshoot the required value and the overshoot is inversely
proportional to the integerator time constant and proportional
to the P.R.I. period. The reverberation noise is shown in
Figure 7.10 and the optimum choice of P.R.I. is the smallest
period where this does not contribute significantly to
subsequent transmissions. This adjustment is carried out
visually on the oscilloscope. Table 7.1 shows typical rms
values of data noise obtained from the V.C.0. with the sensor

held at a fixed temperature in the furnace.

In normal operation the instrument is designed to track
a changing flight time as a function of temperature. Figures
7.11 and 7.12 show the integrator output response to a step
change of 600 mV. This represents a lock in range of about
2 us which corresponds to several hundred degrees centigrade

in the case of the tungsten sensor described in Chapter 6.

INTEGRATOR TIME CONSTANT
P.R.I. PERIOD 0.1 T
Open Loop 0.5 ns 0.5 ns
10.7 ms 3.2 ns 142 ns
15.3 ms 5.4 ns 1.3 ' ns
20.9 ms 4,7 ns 1.8 ns

R.M.S. V.C.0. Period Noise
TABLE. 7.1



Horiz=100mS/div.
. Vert=200mV/div.
I/P step 550mV

| a)P.R.I.=16.9mS
i T=0.1s
|

~ b)P.R.I.=29.05mS
| T=0.1s

—

"~ ¢)P.R.I.=31.6mS
T=0.1s

Integrator step response

FIGURE 7.11



Horiz.=500mS/div.
\Vert.=200mV/div.
iI/P step=550mV

i

@) P.R.I.=10mS
T=1s

) P.R.I.=20mS
T=1s

i¢) P.R.I.=30mS
T=1s

Integrator step response

FIGURE 7.12
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With an integrator time constant of O.ls the rise
time to 90% of the final value is 400 ms. This implies that
temperature changes of about lOOOOC/sec can be tracked but
there were no means available to check this capability in
pracﬁice. The effect of a 1 second time constant is clearly
visible in Figure 7.12. The rise time is clearly longer but
the oscillation about the mean value is greatly reduced over

the 0.ls time constant.
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CHAPTER 8

CONCLUSIONS

Two sensitive methods of measuring the elasticity of
materials have been dealt with. The first method consists of
a comparison of two known modes to give a value of Poisson's
ratio and Young's modulus. A number of modal frequency ratios
are given in Appendix A4.2 which allows some redundancy in the
data and enhances confidence in the result. The second method
is applicable to measurement of temperature changes of Young's
modulus by a time of flight technigue. The principle of this
method is well known but a modification based on junction and
end echo overlap enable the method to be automated. An
instrument has been designed to accomplish this and is shown
to have good flight time variation tracking accuracy. The
pulse overlap method is particularly suited to high temperature
measurement in hostile environments. The probe material can
be chosen to suit the temperature range and environment of the

application.

The disc resonance method has been applied to the
measurement of the temperature coefficient of Poisson's ratio
of a number of grades of graphite. It has been shown that
mild anisotropy introduced by the manufacturing process can
cause spurious modes of resonance. However, with careful
technique it is possible to resolve the modes required to
utilise the tables given in Appendix A4.2 and obtain consistent

results. It is worth noting that while repeatable results
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can be obtained for any one particular disc from a sample, it
was later found that considerable variation of Poisson's
ratio can occur between discs from nominally the same
material. It is not yet possible to extend this method of
elastic constant measurement to generally anisotropic
materials. However materials that appear isotropic in the
plane of the disc can be dealt with. Pyrolytic graphite as

a result of the vacuum deposition manufacturing technique

has this property and its in plane Poisson's ratio and
Young's modulus together with their temperature coefficients
over 1000°C temperature range have been successfully measured.
In order to obtain the measurements it was necessary to extend
previously published solutions to the disc frequency equations
to include negative values of Poisson's ratio. It is also
shown that the temperature variation of Young's modulus of
pyrolytic graphite does not have the same form as isotropic
graphite. The results would seem to confirm that the initial
fall in Young's modulus of isotropic graphites is due to c
axis expansion to fill the voids in the structure. 1In the
case of pyrolytic graphite c asix expansion will not influence
in plane measurements. Sufficient data has been presented to
enable this method of elastic constant measurement to be used
systematically for a large variety of materials with

confidence,

An attractive method of measuring elastic constants would
be direct measurement on an extruded bar. End resonances
would have application here but require greater theoretical

knowledge than exists at present. A previously unpublished
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spectrum of end resonance frequencies has been obtained for

the longitudinal mode end resonances and the data obtained

has shown good agreement with experiment. To make end
resonances a viable method of elastic constant measurement
theoretical values of frequency are required for higher mode
end resonances. These modes have not received much attenuation
in the literature, the most likely reason being that they only
exist at the driving end of the bar (in contrast to the
longitudinal mode end resonance). A simple method has been
given for obtaining these end resonances‘experimentally. The
theoretical approach successfully used for longitudinal mode
end resonances, modified to account for the absence of a
propagating mode did not give conclusive confirmation of the
experimental results. The method showed a sensitivity to boundary
value approximation and needs further investigation.
Nevertheless, the method presented here may well show results
if the boundary value approximation is chosen carefully. This
may necessitate some form of iteration over the points at
which the boundary value is set to zero in such a manner as to

minimise the mean or r.m.s. residual stress at the end face.
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APPENDIX A4.1

SOLUTIONS TO THIN DISC FREQUENCY EQUATION

The data given in these tables are the eigenvalues (K)
of the thin disc frequency equation normalised to the plate
velocity CP. Conversiocn to the eigenvalue () referred to
the shear velocity Cg is achieved by multiplying each K

value by a factor /5/(1—0).
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0,1 0,2 1,1 1.2 231 3,1 4,1
1.84118 5.33144 1.74965 3.53782 1.65192 | 2.50683 3.23202
1.84886 5.3333, 1.74819 3.53764 1.64396 | 2.49623 3.21990
1.85647 5.33533 1.74652 3.53750 1.63595 | 2.48547 3.20752
1.86403 $.33727 1.74464 3.53740 1.62788 | 2.47458 3.19491
1.87153 5.33921 1..74256 3.53735 1.61976 | 2.46354 2.12206
1.87898 5.34115 1.74027 3.53733 1.61158 | 2.45236 3.16897
1.88637 5.34309 Y.732713 3.53734 1.60334 | 2.44104 3.15565
1.89371 5.34503 1.73507 3.53738 1.59505 | 2.42958 3.14211
1.90099 5.34697 Y.73017 3.53745 1.58670 | 2.41800 3.12835
1.90822 5.34891 1.72906 3.53754 1.57830 | 2.40627 3.11437
1.91959 5.35084 1.72575 3.53764 1.56984 | 2.39442 3.10018
1.92252 5.35278 1.72223 3.53776 1.56132 | 2.38243 3.08577
1.929:9 5.35471 1.71852 3.53788 1.55274 | 2.37032 3.07116
1.93661 5.35665 1.71460 3.53801 1.54417 | 2.35808 3.05634
1.94359 5.35858 1.71048 3.53813 1.53541 | 2.34571 3.04131
1.95051 5.36051 1.70617 3.53523 1.52666 | 2.33321 3.02608
1.95739 5.36244 1.70165 3.53832 1.51784 | 2.32058 3.01065
1.96421 5.36437 1.69693 3.53838 1.50897 | 2.30785 2.99502
1.97099 5.36630 1.69201 3.53839 1.50003 | 2.29495 2.97920
1.97773 5.36823 1.68690 3.53835 1.49103 | 2.2819% 2.96317
1.98441 5.37015 1.68158 3.53825 1.48197 | 2.26881 2.94695
1.99105 5.37220 1.67507 3.53807 1.47284 | 2.25555 2.93054
1.992765 5.37401 1.67036 3.53779 1.46365 | 2.24216 2.91393
2.00420 5.37593 1.66445 3.53740 1.45439 | 2.22865 2.89712
2.01071 5.37785 1.65835 3.53687 1.44507 | 2.21500 2.c8012
2.01717 5.37977 1.65024 3.53618 1.43568 | 2.20123 2.86292
2.02359 5.38159 1.64554 3.53530 1.42621 | 2.18733 2.84553
2.02997 5.38361 1.63884 3.53420 1.41668 | 2.17330C 2.32795
2.03630 5.38553 1.63195 3.53283 1.40780 | 2.15913 2.81016
2.04260 5.38745 1.62485 3.53115 1.39740 | 2.14483 2.79218
2.04885 5.38936 1.61756 3.52912 1.38765 | 2.13040 2.,77400
2.0¢5506 5.39128 1.61007 3.52666 1.37783 | 2.11583 2.75563
2.06123 5.39319 1.60237 3,52371 1.36793 | 2.10112 2.73705
2.06736 5.39511 1.59448 3.52018 1.35795 | 2.08628 3.71827
2.07346 5.39702 1.58639 3.51599 1.34789 | 2.07129 2.69928
2.07951 5.39893 1.57809 3.51103 1.23774 | 2.05616 2.68009
2.08552 5.40084 1.56959 3.50518 1.32752 | 2.04089 2.66069
2.09150 5.40274 1.56089 3.49831 1.31721 | 2.02547 2.64108
2.09743 5.40465 1.55199 3.49029 1.30681 | 2.00990 2.62126
2.10333 5.40656 1.54288 3.48099 1.29633 | 1.99417 2.60122
2.10920 5.40846 1.53356 3.47029 1.28576 | 1.97829 2.58096
2.1156.2 5.41036 1.52403 3.45806 1.27509 | 1.9622% 2.56048
2.12081 5.41227 1.51430 3.44422 1.26432 | 1.94606 2.53977
2.12657 5.41417 1.50435 3.42873 1.25346 | 1.92970 2.51884
2.13229 5.41607 1.49419 3.41156 1.242510 1 1.91318 2.49767 |
2.13797 5.41796 1.48318 3.39274 1.23144 | 1.89648 2.47626
2.14362 5.41986 1.47321 3,.37231 1.22028 | 1.87961 2.45461
2.14923 5.42176 1.46239 3.35037 1.209C0 | 1.89256 2.43271
2.15481 5.42365 1.45135 3.32699 1.19762 | 1.84533 2.41056
2.16036 5.42554 1.44009 3.30229 1.18612 | 1.82791 2.33315

2,16587 5.42743 1.42859 3.27635 1.17451 1.81030 2.36548




0,2 3 o |

.23358 1 1.53514

SIGMA 0,1 1,2 7.1 3,1 41
0.00 | 1.84118|5.33144 | 1.74965 | 3.53782 | 1.(51%2 | 2.50685 | 3.23202
-0.01 | 1.83345|5.32950 [ 1.75090 | 3.53804 | 1.65982 | 2.51728 | 3.24389
-0.C2 | 1.82566|5.32755 | 1.75194 | 3.53832 | 1.66767 | 2.52758 | 3.25580
-0.03 | 1.81780| 5.32561 | 1.75277 | 3.53864 | 1.67546 | 2.53772 | 3.26685
-0.046 | 1.80989 | 5.32366 | 1.75339 | 3.53902 | 1.68320 | 2.54770 | 3. 2?7°°
-0.05 1.80191 | 5.32171 | 1.75379 | 3.53945 | 1.69088 | 2.55751 | 3.233
-0.06 | 1.79386 | 5.31977 | 1.75398 | 3.5399 | 1.69851 | 2.56716 | 3. 2@99°
-0.07 | 1.78576| 5.31782 | 1.75396 | 3.54048 | 1.70607 | 2.57663 | 3.20943
-0.08 | - 1.77758 | 5.31587 | 1.75372 | 3.54108 | 1.71359 | 2.53591 | 3.31935
-0.09 | 1.76934 | 5.31392 | 1.75329 | 3.54174 | 1.72104 | 2.59502 | 3.32392
-0.10 | 1.76104 | 5.31197 | 1.75260 | 3.54246 | 1.72844 | 2.60393 | 3.33819
-0.11 1.75266 | 5.31002 | 1.75171 | 3.54324 | 1.73577 | 2.61264 | 3.23713
-0.12 | 1.74422 | 5.30806 | 1.75061 | 3.54408 | 1.74365 | 2.62114 |° 3.33573
-0.13 | 1.73570 [ 5.30611 | 1.74928 | 3.54498 | 1.75027 | 2.62944 | 3.36397
~0.14 | 1.72711]5.30416 | 1.74773 | 3.54595 | 1.75742 | 2.63751 | 3.37184
-0.15 1.71845 | 5.30220 | 1.74597 | 3.54698 | 1.76452 | 2.64533 | 3. 3;934
-0.16 | 1.70971 | 5.30025 | 1.74398 | 3.54807 | 1.77154 | 2.65296 | 3.38345
-0.17 | 1.70090 | 5.29829 | 1.74176 | 3.54923 | 1.77851 | 2.66022 | 3.3931%5
~0.18 | 169201 |5.29634 | 1.73933 | 3.55046 | 1.7854C | 2.66742 | 3.3954%
-0.19 | 1.68305 | 5.29438 | 1.73666 | 3.5517s | 1.79225 | 2,67425 | 3.40632
-0.20 | 1.67400 | 5.29243 | 1.73378 | 3.55310 | 1.79898 | 2.6808" | 3.41074
-0.21 | 1.66487 | 5.29047 | 1.73066 | 3.55453 | 1.80568 | 2.6870¢ | 3.41570
-0.22 1.65566 | 5.28851 | 1.72732 | 3.55610 | 1.81227 | 2.693C0 | 3.42019
-0.23 | 1.64637 | 5.28656 | 1.72375 | 3.55757 | 1.81879 | 2.69866 | 3.42419
-0.24 | 1.63699 | 5.28460 | 1.71994 | 3.55919 | 1.82524 | 2.70392 | 3.42768
-0.25 1.62752 | 5.28264 | 1.71591 | 3.56087 | 1.83159 | 2.70587 | 3.43054
-0.26 1.61797 | 5.28068 | 1.71164 | 3,56262 | 1.83786 | 2.71344 | 3.43307
-0.27 1.60832 | 5.27872 | 1.70714 | 3.56444 | 1.84404 | 2.71763 | 3.43494
-0.2¢8 1.59859 | 5.27676 | 1.70240 | 3.56632 | 1.85011 | 2.72142 | 3.43624
-0.29 | 1.58876 |5.27480 | 1.69743 | 3.56827 | 1.85608 | 2.72479 | 3.43635
-0.30 1.57883 | 5.27284 | 1.69222 | 3.57029 | 1.86195 | 2.72771 | 3.437C4
-0.31 1.56880 | 5.27088 | 1.68677 | 3.57236 | 1.86769 | 2.73018 | 3.43651
-0.32 1.55868 | 5.26892 | 1.68108 | 3.57450 | 1.87331 | 2.73218 | 3.43333
=0.33 1.54845 | 5.26696 1.67514 | 3.57671 | 1.87880 | 2.73363 | 3.43343
~0.34 1.53812 | 5.26499 1.66896 | 3.57898 | 1.88415 | 2.73458 | 3.43096
0.35 | 1.52769 | 5.26303 | 1.66254 | 5.58131 | 1.88935 | 2.73438 | 3.42775
-0.36 1.51714 | 5.26107 | 1.65587 | 3.58371 | 1.89438 | 2.73481 | 3.42579
~-0.37 1.50649 | 5.25911 1.648v4 | 3.58616 | 1.89924 | 2.73404 | 3.41911
-0.38 1.49572 | 5.25714 | 1.64177 | 3.58868 | 1.90391 | 2.73466 | 3.41369
-0.39 1.48483 | 5.25518 | 1.63434 | 3.59126 | 1.90858 | 2.73063 | 3.40730
~0.40 1.47383 | 5.25322 | 1.62666 | 3.59389 | 1.91262 | 2.72793 | 3.40052
-0.41 1.46721 | 5.25126 1.61872 | 3.59659 | 1.91661 | 2.72455 | 3.39276
-0.42 1.45146 | 5.24929 1.61051 | 3.59935 | 1.92036 | 2.72046 | 3.58417
| -0.43 1.44008 | 5.24733 1.60205 | 3.60216 | 1.92377 | 2.71566 | 3.37476 |
-0.44 1.42858 | 5.24535 1.59331 | 3.60503 | 1.92638 | 2.71006 | 3.36452
-0.45 1.41694 | 5.24340 | 1.58431 | 3.60796 | 1.92964 | 2.70671L | 3:35343
-0.46 1.40516 | 5.24144 1.57503 | 3.61094 | 1.93201 | 2.69657 | 3.34147 |
-0.47 1.39324 | 5.23947 1.56548 | 3.61398 | 1.93394 | 2.68863 | 3.32383
-0.48 1.38118 | 5.23751 1.55565 | 3.61707 | 1.9394l | 2.67987 | 3,3d4%2
-0.49 1.36897 | 5.23554 1.54554 | 3.62022 | 1.93635 | 2.67027 | 3.3.T3.
-0.50 1.35660 | 5 3.62341 | 1.93671 | 2.65832 | 3.28479




w LSk~

SIGMA 5,1 6,1 YN 8,1 951 10,1 %
0.00 3.90945 | 4.56565 | 5.21067 | 5.84907 | 6.48317 | 7.11431
0.01 3.89595 | 4.55073 | 5.19428 | 5.83116 | 6.46372 7.09527
0.02 3.,88212 | 4.53540 | 5.17741 | S.81271 | 6.44364 | 7.07155
0.03 3.86795 | 4.51966 | 5.16006 | 5.79370 | 6.42295 7.04915
0.04 3.85346 | 4.50353 | 5.14224 | 5.77416 | 6.40166 7.02609
0.05 3.83866 | 4.48700 5.12396 | 5.75409 | 6.37977 7.00236
0.06 3.82355 4.47009 | 5.10523 | 5.73350 | 6.35731 | £.97800
0.07 3.80813 | 4.45281 | 5.08605 | S5.71241 | 6.33427 | 6.95300
0.08 3.79241 | 4.43515 | 5.06643 | 5.69081 | 6.31066 | 6.92373
0.09 3.77640 | 4.41713 | 5.04639 | 5.66872 | 6.28650 | 6.90113
0.10 3.76010 4.39875 | 5.02592 | 5.64614 | 6.26180 6.87428
0.11 3.74351 | 4.38002 | 5.00503 | 5.62308 | 6.23655 | 6.84683
0.12 3.72664 | 4.36094 | 4.98373 | 5.59954 | 6.21076 | 6.81878
0.13 3.70949 | 4.34151 | 4.96202 | 5.57554 | 6712645 | 6.790153
0.14 3.69207 | 4.32174 | 4.93990 5.55107 | 6.15762 | 6.76095
0.15 3.67437 | 4.30153 | 4.91739 | 5.52614 | 6.13027 | 6.73117
©.16 3.65640 | 4.28118 | 4.89448 | 5.50076 | 6.10242 | 6.70082
0.17 3.63817 | 4.26041 | 4.87118 | 5.47493 | 6.07405 | 6.66991
0.18 3.61967 | 4.23931 | 4.84749 5.44866 | 6.04515 | 6.63845
0.19 3.60090 | 4.21788 | 4.82342 | 5.42194 | 5.01582 | 6.60645
0.20 |°3.58188 | &.19613 | 4.79896 | 5.39479 | 5.98596 6.57386
0.21 3.56259 | 4.17406 | 4.77413 5.36719 | 5.95561 | 6.54075
0.22 3.54304 | 4.15166 | 4.74891 | 5.33917 | 5.92477 | 6.50709
0.23 3.52324 | 4.12895 | 4.72332 | 5.31071 | 5.89344 | 6.47289
0.24 3.50318 | 4.10592 | 4.69736 | 5.28182- | 5.86163 | 6.43316
0.25 3.43286 | 4.08257 | 4.67102 | 5.25250 | 5.82933 | 6.40289
0.26 3.46228 | 4.05091 | 4.64430 | 5.22275 | 5.79635 | 6.36708
0.27 3.44144 | 4.03493 | 4.61722 | 5.19257 | 5.76330 6.33074
0.28 3.42035 | 4.01C63 | 4.58976 5.16197 | 5.72955 6.29387
0.29 3.39%00 3.98601 | 4.56192 | 5.13094 | 5.69533 6.25646
0.30 3.37783 3.96108 | 4.53372 | 5.09948 | 5.66063 6.21852
0.31 3.35551 | 8.93583 | 4.50514 | 5.06759 5.62544 | 6.18004
0.32 3.33338 | 3.91026 | 4.47618 | 5.03526 | 5.58977 6.14102
0.33 3.31098 | 3.88437 | 4.44684 | 5.00251 | 5.55361 6.101456
0.34 3.28832 | 3.85815 | 4.41712 | 4.96932 | 5.51696 6.06136
0,35 3.26539 3.83161 | 4.38703 | 4.93569 | 5.47982 6.02072
0.36 3.24219 3.80474 | 4.35654 | 4.90163 | 5.44219 5.97955
0.37 3.21872 | 3.77753 | 4.32567 | 4.86712 | 5.40405 5.93779
0.38 3.19497 | 3.75000 | 4.29441 | 4.83216 | 5.36542 | 5.89549
0:39 3.17095 3.72213 | 4.26275 | 4.79675 | 5.32628 | 5.85262
0.40 3.14664 3.69391 | 4.23069 4.76088 | 5.28662 | 5.80920
0.41 3.12205 3.66535 | 4.19823 4.72456 5.24645 5.76519
0.42 3.09717 3.63644 | 4.16536 | 4.68776 5.20576 5.72061
0.43 3.07200 3.60718 | 4.13208 | 4.65050 5.16454 | .5.67544
0.44 3.04653 3.57756 | 4.09837 | 4.61275 5.12277 5.62968
0.45 3.02076 3.54757 | 4.06424 | 4.57452 5.08047 5.58332
0.46 2.99468 | 3.51721 | 4.02968 | 4.53580 5.03761 5.53634
0.47 2.96828 3.48647 | 3.99467 | 4.49657 | 4.99418 5.48:74
0.48 2.94156 3.45534 | 3.95922 | 4.25683 | 4.95019 5.44051
0.49 2.91452 3.42382 | 3.92331 4.41657 | 4.90561 5.39163
0.50 2.88715 3.39191 3.88693 | 4.37578 | 4.86044 5.34210




SIGMA 5,1 6,1 151 8,1 §,T 10,1
0.00 3.90945 4.56565 5.21067 5.84907 6.48317 7.11431
-0.01 3.92261 4.58014 5.22656 5.86641 6.50199 7.13464
-0.02; | 3.93542 4,59421 5.24195 5.88317 6.52915 7.15425
-0.03 3.94787 4.60783 5.25682 5.89934 6.53768 7.17314
-0.04 3.95998 4.62101 5.27116 5.91491 6.55452 7.19128
~0.05 3.97166 4.63372 5.28497 5.92987 6.57067 7.20866
-0.06 3.98299 4.64597 5.29822 5.94420 6.58613 7.22528
-0.07 3.99392 4.65773 5.31092 5.95789 6.60087 7.24110
-0.08 4.00444 4.56900 5.32304 5.97093 6.61488 7.25612
-0.09 4,01455 4.67976 5.33457 5.98330 6.62814 7.27032
-0.10 4,02423 4,6900L 5.34549 5.99499 6.64065 7.28369
-0.11 4.03347 4.69793 5.35581 5.00598 6.65238 7.29619
-0.12 °| 4.04228 4.70890 5.36549 6.01626 6.66331 7.30783
-0.13 4.03039 4,71752 5.37453 6.02518 6.67344 7.31857
-0.14 4.05245 4.72556 5.38291 6.03462 6.68274 7.32841
-0.15 4,06582 4.73302 5.39062 6.04267 6.69119 7.33732
~0.16 4.,07268 4,73988 5.39753 5,04993 6.69878 7.43527
-0.17 4.07903 4.74615 5.40394 6.05641 6.70549 7.35222
-0.18 4.08434 4.75175 5.40952 6.06702 6.71130 7.35327
-0.19 4.09011 4.75672 5.41437 6.06690 6.71819 7.36326
-0.20 4.09482 4,76102 5.41846 6.07088 6.72013 7.36723
-0.21 4.09896 4.76465 5.42177 6.07399 6.72312 7.37015
-0.22 4.10250 4.76759 5.42429 6.07622 6.72514 7.37200
-0.23 4.10543 4.76981 5.42601 5.07755 6.72¢15 7.37275

1 -0.24 4.10773 4,77130 5.42689 6.07795 6.72815 7.37240
| -0.25 4.10940 4.77205 5.42694 6.07741 6.72510 7.37091
1 -0.26 4.11041 4.77204 5.42612 6.07591 6.722C0 7.36826
1 0.27 4.11074 4,77125 5.42442 6.07343 6.71983 7.36444
1 -0.28 4.11038 4.76966 5.42182 6.06995 6./1555 7.35942
-0.29 4,10931 4.76725 5.41830 6.06546 §.71016 7.35319

| -0.30 4.10752 4.76402 5.41836 6.05993 6.70363 7.34571
-0.31 4.10458 4.75994 5.40846 6.05335 6.69594 7.33697
-0.32 4.10168 4.75499 5.40209 6.04569 6.68707 7.32695
-0.33 4.09761 4.74915 5.39474 6.£3694 6.67701 7.31563
-0.34 4.,09275 4.74244 5.38638 6.02709 6.66573 7.30298
1-0.35 4.08708 4.73480 5.37701 6.01610 6.65322 7.28899
-0.36 " | 4.08058 4.72623 5.36660 6.00397 6.63¢45 7.27364
-0.37 4.07324 4.71672 5.35513 5.99068 6.62641 7.25690
-0.38 4,06506 4,70624 5.34260 5.97621 6.60808 7.23876
-0.39 4.05600 4.69480 5.32898 5.96055 6.59044 7.21920
-0.40 4.04606 4.68236 5.31427 5.94367 6.57148 7.19819
-0.41 4.03522 4,66892 5.29843 5.92556 6.55117 1.17512
-0.42 4.02347 4.65445 5.28147 5.90621 6.52949 7.15177
=0.43 4.01080 4.63896 5.26336 5.88559 6.50643 7.12632
-0.44 3.99719 4.62243 5.24409 5.86370 6.48198 | .7.09935
-0.45 3.93263 4.60483 5.22365 5.84051 6.45611 7.07¢84
-0.46 3.96711 4.58616 5.20201 5.81401 6.428281 7.04077
-0.47 3.95062 4.56641 5.17917 5.79018 6.40005 7.00913
-0.48 3.93315 4,54556 5.15512 5.76301 6.36932 7.97588
-0.49 3.91467 4.52359 5.12983 5.73448 6.33811 7.94012
-0.50 3.89520 4.50051 5.10329 5.70458 6.30489 7.90452
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0,1 151 1.2 5,1 0,2 Gl 1.2 bt
SIGMA L3.1 K5.1 K9,1 Bt
o) -0.26553 -0.09506 -0.17765 0.09462
0.01 -0.25934 -0,09197 -0.17487 0.09868
0.02 -0,25307 -0.08877 -0.17200 0.10288
0.03 -0.24662 -0.08546 -0.16903 0.10720
0.04 -0.24031 -0.08206 -0.16596 0.11165
0.05 -0.23381 -0.07850 -0.16280 0.11624
0.06 -0,22723 -0.07485 -0.15954 0.12095
0.07 -0.22056 -0.07110 -0.15617 0.12580
0.08 -0.21382 ~0.06723 -0.15271 0.13077
0.09 -0.20698 -0.06325 -0.14914 0.13588
0.10 -0.20006 -0.05916 ~-0.14548 0.14111
0: 31 -0.19304 -0.05496 -0.14171 0.14648
0.12 -0.18692 -0.05065 -0.13783 0.15197
0,43 -0.17873 -0.04623 -0.13385 0.15760
0.24 -0,17110 -0.041569 -0.12976 t 0.16336
0.15 -0.16202 -0.03705 -0.12557 I 10.16925
0.16 -0.15651 -0.03229 -0.12126 (0 a.127527
0.17 -0.14889 ~-0.02743 ~-0.11684 0.18142
0.18 -0.14116 =0.02246 -0.11230 0.18770
05 19 ~0,;13331 =02 DL 737 -0.10765 C.19421
0.20 -0.12535 -0.01218 ~-0.10288 0.20065
0.21 -0.11727 -0.00638 -0.09798 0.20731
OV22 -0.10905 -0.00148 -0.09296 0.21410
0.23 -0.10071 0.00402 -0.08781 0. 22101
0.24 -0.09223 0.00962 -0.08253 0.22803
0.25 -0.08362 0.01531 -0.07712 ©.23517
0.26 ~0,07486 D.02199 -Q.07157 Q.24240
.27 -0.06595 0.02695 ~0.06588 0.24974
Boag -0.056389 0.03289 ~-0.06004 0.25716
0.29 -0.04766 0.03888 -0.05406 0.26466
0.30 -0.03828 0.04493 -0.04792 0.27221
0.31 -0.02872 0.05101 -0.04163 0.27980
0.32 -0.01899 0.05710 ~0.03517 0.28741
0.33 -0.00907 0.06318 -0.02854 0.29501
0.34 0.00105 0.06924 -0.02174 0.30257
0.35 0.01136 0.07523 ~-0.01476 0.31004
0.36 0.02187 0.08111 -0.00760 0.31740
0.37 0.03260 0.08686 -0.00024 0.32458
0.38 0.04355 0.09243. 0.00731 0.33153
0.39 0.05474 0.09778 0.01507 0.33821
0.40 0.06617 0.10286 0.02305

0.34457




i R g 0.2 9.1 s oo I

SIGMA Kq.1 Kg 1 gl 1 By o1
-0.00 -0.26552 -0.09568 -0.17764 0.09600
-0.01 -0.27165 -0.09804 -0.18033 0.09068
-0.02 -0.27770 -0.10090 -0.18291 0.08687
-0.03 -0.28369 -0.10366 -0.18540 0.08320
-0.04 -0.28960 -0.10630 -0.18779 0.07965
-0.05 -0.29544 -0.10882 -0.12008 0.07624
-0.06 -0.30123 -0.11124 -0.19228 0.07296
-0.07 -0.30694 -0.11353 -0.19438 0.06982
-0.08 -0.31259 -0.11571 -0.19638 0.06681
-0.09 -0.31818 -0.11777 -0.19828 0.06393
-0.10 ~0.32370 -0.11972 -0.20008 0.06119
-0.11 -0.32916 -0.12154 -0.20179 0.C5859
-0.12 -0.33456 -0.12324 -0.20339 0.05613|
-0.13 -0.33990 -0.12482 -0.20489 0.05381 |
-0.14 -0.34517 -0.12628 -0.20629 0.05154 |
-0.15 -0.35039 -0.12761 -0.20758 0.04961/
-0.16 -0.35555 -0.12888 -0.20877 0.04773|
-0.17 -0.36064 -0.12988 -0.20986 0.04600
-0.18 -0.36568 -0.13082 -0.21083 0.04442
-0.19 -0.37065 -0.13162 -~0.21170 0.04300
-0.20 -0.37556 -0.13229 -0.21245 0.04174
-0.21 -0.38041 -0.13282 -0.21309 0.04064
-0.22 -0.38520 -0.13321 -0.21362 0.03971
-0.22 -0.289092 -0.13345 -0.21402 0.03895
-0.24 -0.39459 -0.13354 -0.21432 0.03837
-0.25 -0.39919 -0.13348 -0.21449 0.03796
-0.26 -0.40372 -0.13327 -0.21454 0.03774
-0.27 -0.40819 -0.13290 -0.21446 0.03770
-0.28 -0.41259 -0.13236 -0.21425 0.03786
-0.29 -0.41692 -0.13166 -0.21391 0.03821
-0.30 -0.42119 -0.13079 -0.21344 0.03877
-0.31 -0.42539 -0.12975 -0.21282 0.03953
-0.32 -0.42951 -0.12853 -0.21207 0.04051
-0.33 -0.43356 <0.12712 -0.21118 0.04172
-0.34 -0.43753 -0.12553 -0.21014 0.04314
-0.35 -0.44143 -0.12375 -0.20895 0.04451
-0.36 -0.44525 -0.12176 -0.20760 0.04671
-0.37 -0.44899 -0.11958 -0.20610 0.04886
-0.38 -0.45265 -0.11719 -0.20444 0.05126
-0.39 -0.45623 © -0.11458 -0.20261 0.05393
-0.40 -0.45973" -0.11176 -0.20060 0.05656
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APPENDIX Aﬁ;l

THE PHASE AND GROUP VELOCITY IN THE LINEAR REGION

OF THE L(O,l) DISPERSION CURVE

The frequency equation for axially symmetric yibrations

is:

202

form and for small arguments only the first terms of the
series are taken the zero and first order Bessel functions

are:
JO(ZI = 1
and
J,(z) = %2z
Equation (A.6.1l) then becomes:
0?5’ (21-40%7%+47h-43%% = 0

By definition

then
3 1 D e T

43, (313, (B)- (@2-27*) %3, ()3, (B)-47°5BI, (@) 34 (B)=0

0

If the Bessel functions are expanded in theirx series

(A.6.2)

(A.6.3)

(A.6.4.)

(A.6.5)

(A.6.6)
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with the bracketed term equal to zero gives

LS e B a0 T (A.6.7)

Since only the linear portion of the curve is being

considered at low Y values, group and phase velocities are

equal.
Since,
2 H
k == m (A.G.B)
2
9 _ 32 + 2y (A.6.9)
Y e
and returning to un-normalised variables,
SLAR AR s A#E2n P
Hence,

c :/f_ _ (A.6.11)
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APPENDIX A6.2

VELOCITY OF SOUND IN THORTATED TUNGSTEN

An independent check of the sound velocity in 2%
thoriated tungsten was carried out on one of the sensors

used in Chapter 6. The measured sensor length was 167.5 mm

with a two way flight time of 71.893us. The rod velocity

is therefore

B 187.5.10"" 1

3 4659.7 ms
71.893.10

The method uses standing waves between the junction at the end
of the specimen. The sensor is excited with a long burst of

oscillations such that the junction and end echoes overlap.

When the overlap signal amplitude is at a minimum then the
wave in the sensor must have travelled an odd number of half
wave lengths. i.e. so that the junction and end echoes are
180P out of phase.
The results obtained for the 167 mm probe were
f(kHz) | 118.16 132.08 145.87 160.25 173.64
n 8% 9% 10% 11% 12%
£/n 13,901 13,903 13.892 13,935 13,891
f(kHz) | 187.69 201.65 215.45 229,78 243,58
n 13% 14% 15% 16% 17%
f/n 13,903 13.907 13.900 13.926 13919
Mean = 13.907 kHz
Standard deviation o = 0.014

Velocity v

I

ses0 1 met




= 199 -

It will be seen that that the two measurements
are in close agreement. The time of flight corresponds
to a frequency of 13.909 kHz which is almost identical
with the value obtained by the alternative method. If
some systematic error were associated with the junction
this would probably show up as a phase error. The
constancy of the values of f/n indicate that any such

error is less than the sensitivity of the observations.
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