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Summary 

A magnetostrictive delay line technique is used to excite the 
resonant modes of vibration of thin discs, The temperature variations 
of Poisson's Ratio and Young's modulus are measured using these modes, 
The elastic constants of a variety of grades of graphite, including 
pyrolytic graphite (which was found to have a negative Poisson's Ratio 
paradilel to the basal plane) have been measured up to a temperature of 
1000°C. Tables of a nomialised frequency parameter for thin discs are 
given covering the ranges of Poisson's Ratio -0.5 to +0.5 in steps of 
0.01 to enable the calculation of Poisson's Ratio and Young's modulus 
fxom the thin disc resonant frequencies. 

The delay line technique was found to be applicable to the excitation 
of end resonances in cylindrical solids. Experimental evidence is given 
of end resonant modes having 2 or more nodal diameters. Comparisons are 
made between the end resonant frequencies and those of the corresponding 
thin disc modes. It was found that in all these cases the end resonant 
frequency was below the cut-off frequency. 

A technique of elastic constant measurement at high temperatures, 
complementary to the resonant thin disc method is given. This consists 
of a double pulse, time of flight method which does not require a high 
material Q and easily lends itself to automation. A design for an 
instrument is presented which automatically tracks the variation in 
time of flight resulting from the temperature change of the material. 
The method is demonstrated by measuring the variation of the Young's 
medulus of Thoriated Tungsten up to 1g00°c. 

ACOUSTIC VELOCITY, END RESONANCE, PYROLYTIC GRAPHITE, ULTRASONIC MATERIAL 

CHARACTERISATION
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CHAPTER 1 

INTRODUCTION 

The resonant spectrum of a solid body depends on the 

physical form and the elastic constants of the material. 

For a limited number of geometries theoretical solutions for 

the spectrum are known and hence an experimentally determined 

spectrum allows the elastic constants to be calculated, For 

isotropic materials the number of independent elastic 

constants reduces to two, in this work Young's Modulus and 

Poisson's Ratio are chosen. These constants are convenient 

for engineering calculations, the latter constant changes 

only slightly with temperature, variations mainly affecting 

Young's Modulus. 

Work has been concentrated on isotropic and near 

isotropic solids with cylindrical geometry. The already 

existing theory of the in-plane vibrations of thin discs has 

been used. The numerical tables available have been extended 

to include the wide range of Poisson's Ratio of currently 

available engineering materials at intervals of 0.01. Eryvors 

arising from the evaluation of high order Bessel's Function 

in previous work 1) were detected and have been eliminated. 

A theoretical and experimental study has been made of the 

trapped resonances which occur at the end of cylindrical 

structures. Experimental results have been obtained for 

various materials having a wide range of Poisson's Ratio.



An experimental pulse echo technique using a 

magnetostrictive delay line enables the solid to be driven at 

any selected point and orientation. The line introduces 

sufficient delay to separate the transmission from the echo. 

Modes of vibration haying a displacement component in the 

direction of the drive will be excited. In the case of a 

free isotropic disk a radial drive will automatically be at 

an antinode of the modes having nodal diameters. With disks 

having weak anisotropy the nodal orientation is not wholly 

determined by the drive position which similarly affects the 

degree of coupling to the mode. For torsional vibration an 

angled drive is necessary. 

In material studies the length of the delay line enables 

the specimen to be in a furnace while the magnetostrictive 

transducer is located outside. This system has considerable 

flexibility. The specimen can be made integral with the line, 

thus avoiding a high temperature joint. While the section of 

the line at the transducer must be magnetostrictive the main 

length can be chosen for low loss or refractory properties 

relevant to a particular application, 

It has been found that as the melting point of a 

polycrystalline material is approached, the internal friction 

becomes so high that any resonance method of obtaining the 

elastic constants is unworkable. In these circumstances the 

"Time of Flight" method is more appropriate. It has the 

advantage that while the signal is attenuated by high loss 

materials it is still strong and quite measurable. Again the



method is ideally suited to magnetostrictive excitation 

techniques since thin wires can be used. An additional 

advantage is that the method is easily automated, allowing 

the variations in flight time to be tracked without further 

operator intervention. 

In the end resonances of solid cylinders the energy is 

confined to a region within one or two radii of the end. 

They are readily excited by a line drive and have nodal 

patterns which are very similar to those of thin discs. The 

frequencies are a few percent lower than the disc frequencies 

and below the cut-off frequency of the lowest corresponding 

propagating mode. In all experimental investigations of end 

resonance no evidence was found of modes with nodal circles 

although modes with a full range of nodal diameters were 

found. Results are given for modes up to circular order 7 

(corresponding to 7 nodal diameters). Theoretical attempts 

to solve these non axi-symmetric end resonances use a 

summation of a number of modes at selected points over the 

end face to satisfy approximately the stress free boundary 

condition on the end. The solution of the Pochhammer Chree 

equations for an infinite cylindric solid yields an infinite 

number of modes with real, complex and imaginary propagating 

modes. The modes with complex and imaginary modes exist below 

the cut-off frequencies of the non axi-symmetric propagating 

mode. The evidence points to the fact that end resonance 

is associated with these complex propagation constants. This 

is similar to the approach used successfully by zemanek 11)



dealing with symmetric mode end resonance and Bell and 

Karlmarezie (5?) solving the case of the unique end resonance 

that occurs in a thin strip. 
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CHAPTER 2 

WAVE PROPAGATION IN INFINITE CYLINDRICAL SOLIDS 

2.1 Introduction 

An understanding of the propagating modes in an infinite 

cylinder is central to any discussion of vibrations in semi- 

infinite or finite cylindrical bodies. For example, the modes 

of vibration that exist in the semi-infinite bar at a given 

frequency are a subset of the modes that exist in an infinite 

bar. In the former there are two stress free surfaces and in 

the latter only one. It was thought at one time that only a 

finite number of real modes could exist at a finite frequency, 

that is modes with real propagation constants. It was later 

discovered that complex solutions to the frequency equation 

could exist and moreover that there were an infinity of these 

complex solutions at any finite frequency. 

Historically the development of the theory of 

cylindrical propagating modes is generally attributed to 

(1) (2) 
Pochhammer and Chree in the last quarter of the 

nineteenth century. ‘The equations of motion and the resulting 

(3) 
frequency equation are discussed by Love . in 2941 Bancroft \4) 

carriéd out some numerical solutions of the frequency equation 

and gave velocity dispersion curves as a function of bar 

diameter to wavelength ratio for seyeral values of Poisson's 

ratio. Bancroft's work was restricted to the longitudinal 

mode (n=0 in the following), the lowest frequency mode which is



of considerable importance in elasticity measurements. 

Hudson ‘°} in 1943 extended this work to give velocity 

dispersion curves for the longitudinal and first flexural 

modes (the first flexural mode has one nodal diameter) for the 

range of Poisson's ratio 0.0 to 0.5. adem (©) demonstrated the 

existence of complex roots for the symmetric mode frequency 

equation. 

The barrier to the accurate numerical solution of the 

frequency equation was removed by the introduction of high 

speed digital computers in the 1960's. Mindlin and McNiven ‘7) 

in 1960, using approximate equations derived the axially 

symmetric mode dispersion curves at low frequency for real, 

imaginary and complex propagation constants. Also in 1960 

Pao and Minalin ©) gave a grid of bounds for the real 

propagation constants of the first flexural mode and pao !?) 

extended this to include imaginary propagation constants. In 

1972 Zemanek gave full dispersion spectra for longitudinal 

modes and flexural modes up to circular order 4 at a Poisson's 

ratio of 0.3317 (the value for Aluminium). 

In this chapter. longitudinal dispersion spectra are 

computed for real, complex and imaginary solutions of the 

frequency equation for 3 yalues of Poisson's ratio, 0.25, 

0.30 and 0.35. The dispersion spectra for higher circular 

orders are illustrated with the flexural mode spectra for 

n=1 to 3 at a Poisson's ratio of 0.3. The computer programmes 

used ta compute these spectra were developed as a preliminary 

to obtaining the end resonance spectra of the longitudinal mode 

discussed in more detail in Chapter 3.



2.2 The Wave Equation for an Isotropic Solid 
  

If the deformations of an elastic solid are small then 

stress is linearly related to strain. This is stated 

mathematically by the generalised Hooke's Law in tensor form. 

a5 = Ci 5xg eke (2.2.1) 

Equation (2.2.1) represents nine equations giving a total 

of 81 elastic coefficients C, (3) that 
ijkr° 

for an isotropicelastic solid the number of independent 

It is shown by Love 

elastic constants reduces to 2 and the total number of 

equations reduces to 6. Equation (2.2.1) can then be written. 

c At2u ON x oO Oo oO S5 

iy n At2u A Oo Oo oO S5 

rT. i a A+2u OO oO oO a, 

D, c ° ° ° 2u ° ° By 

a Oo oO oO oO 2u Oo $. 

1 Oo Oo oO Oo 0 2u a 

(e252) 

where A and »p are the standard Lamé elastic constants. The 

two constants can be related to any of the engineering elastic 

constants such as Young's modulus, Bulk modulus, Torsional 

(Shear) modulus and Poisson's ratio and are conveniently 

summarised by Redwood (12) |



Under conditions of zero body force the vector equation 

of motion is 

(Qt w)VV.0 + va = pa @.2-3) 

where U denotes the second differential of the displacement 

with respect to time. 

If the displacement is defined in terms of potential 

functions (equation (2.2.4)) then two recognisable wave equations 

emerge '!?) 

u = grad 9+ curl p 

and (2.2.4) 

R (Pa) +R (Yo) = 0 

(42) 926 = pd 
(.2.5) 

where ¢ is the scalar displacement potential and W is the vector 

displacement potential. 

The dilatational or volumetric wave represented by the 

scalar potential function 9 propagates with a velocity Ca and 

the rotational (Shear) wave represented by the vector potential 

function J propagates with a velocity CE where 

% a Ca eeu (2.2, 6a)



and , 

oS (HI (2.2. 6b) 

Equation (2.2.5) represents four partial differential 

equations and, in cylindrical polar co-ordinates, have the 

following solutions. 

¢ =A) J,, (ar) cosné exp{j (yz-wt) } 

J43 (Br) simnd exp{3 (yz-wt) } vy 
; (22257) 

Vy ==) I+] (Br) cosnd exp{j (yz-wt) } 

v, = A; J. (8x) sinné exp{j (yz-wt) } 

where 

ne 2 a =S5-y (2.2, 8a) 
Cc 

d 

and 

eee = ao Y (2.2. 8b)



STO) = 

ana Displacement ‘Equations 

Combining equations (2.2.7) and (2.2.4) give the 

displacement components 

a= vL cosn@ exp{j (yz-wt) } 

Uy = Uy sinné exp{j (yz-wt) } (@ieeinal)) 

u, = U, cosné exp{j (yz-wt) } 

where 

ns YB 5 n U, = AN (ar) + 2B IA(Br) + Z Cd, (Br) 

Uy = - 2 AJ, (or) - B = J, (8) - Cot (Br) (2.3.1b) 

KR 

UL =JYAS, (ax) - jBBI, (Br) 

A, B and C are arbitrary constants and the prime denotes 

differentiation with respect to r.



adele 

2.4 The Boundary Conditions 

The stress strain relationship of equation (2.2.1) written 

in terms of the Lamé constants is 

Tia = A(Sqq + Soo + $33) + 2u Say (2.4.1a) 

and 

T,. =2uS,. (Summation not implied. ) (2.4.1b) 
ij ij cn 

In cylindrical co-ordinates i=r, § or z, and j=6, z or r 

respectively. The strains in terms of displacement components 

are given by equation (2.4.2). 

= r 
Sir = UF 

du u 
ee 6 = 

Soo “roo +r 

(2.4.2)    
EX) 

s = 
ro Agr 

For an infinitely long bar the only stress free boundary is the 

curved surface at r=a where 2a is the diameter of the bar. The 

boundary conditions are therefore 

s =T =O (20453) 

  

rr| rz
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2.5 The Infinite Rod Frequency Equation 
  

Using the displacement equation (2.3.1b) and the boundary 

conditions of Section 2.4 result in the matrix equation (2.5.1). 

Ter Ciel ze cis |i 

Ty,| = |221 422 23] |8| = Lol i221) 

Tez aol) (32 aaie |< 

For a non-trivial solution the determinant of the 3x3 

matrix must be zero, i.e. 

Se PaaS 

ao, 8Q2 993 = 0 125-2) 

231. 1932 1533 

Equation (2.5.2) is known as the infinite rod frequency 

equation. The a45 terms written in normalised form convenient 

for computation are 

eye 2 = - = oe —— -n* =n] J (4) + ad, _ 4 (a 

aj, = [n?n-B7Ja,@) - 83,_, 

ag = 2n[ed,-, (8) - Mri, ()] 

= n[ad,_,(@) - (ntl)J,(@)]



a see 

2 i] 92 = AL (ntl) 5, (8) - 8,_, @)] 

ay = 283,_,(B) - (2n* + 2n - B70, (8) 

a3, = J, (G) oS aS, (4) 

» i) 

-2 -2 
- B = - ze = 

ae Tee na ng, (BI 

a33 50 J, (8) 

The normalised wave numbers are 

Yar a=aa and 6 = Ba <
1
 

i) 

and are related to the normalised frequency 2 (defined as =) 
tc 

by 

| aw Fo}
 1 

20d 2 (i=25) 
where kv = (C,/CQq) = atieoh 

and o is Poisson's ratio. 

The above frequency equation (2.5.2) is in a more 

convenient form for computer solution than that given by 

a4) 
Meeker and Meitzler and is very similar to that given by 

On In fact equation (2.5.2) can be made identical Zemanek 

to equation 4 of Zemanek's by the following procedure:-



= 14 = 

a) Change sign of third row 

ii) Change sign of third column 

iii) Take out a factor n from the 

iv) Subtract the second row from 

v) Change the sign of the first 

column. 

Equation (2.5.2) is seen to contain 

and multiply by n 

second row 

the first row 

row and the second 

three variables, the 

normalised frequency 2, the normalised propagation constant 

yY and Poisson's ratio co.



a la 

2.6 The Axially Symmetric Mode Frequency Spectra 
  

The axially symmetric mode frequency equation is readily 

obtained as a simplification of (2.5.2) by setting the circular 

order n equal to zero. Thus the determinant (2.5.2.), 

expanded, becomes 

a ,=090 (226.1) =e a A93 (441 332 12 

Note that either the first term, ay3 oF the bracketed term 

can be equal to zero independently. The first term equal to 

zero gives the eigenvalues of the torsional modes and is 

given in full by equation (2.6.2) 

8 Jo (8) a 27, (8) —aO) (226-2) 

The torsional modes will not be considered further in this 

thesis. 

The bracketed term of (2.6.1) is the frequency equation 

for the axially symmetric longitudinal modes and is given in 

expanded form by equation (2.6.3). 

5— = ne) aaa d ~ 5) _ az2sz = a 
202% J, (a)5, (8) (QY-2y")~ FQ (a) Ty (B) 4ya8 J, (a) JQ (B)=0 

(2.6.3)



-16- 

2.6.1 Method of Solution of the Frequency Equation 

The roots a of equation (2.6.3) are required over 

a range of 2 to obtain the dispersion spectra which constitute 

the basis for the work on end resonances that follows in 

Chapter 3. The equation was solved for real, complex and 

imaginary roots using a modification of Newton Raphsen's 

iteration procedure given by equation (2.6.4). 

Pre f(z) 
2 ~ %o 7 44 Eletz,)-£@) eer 

A mode was tracked by starting at the already calculated 

frequency for y=O (the thin disc) and then obtaining y for 

various other 2 values. The results are sensitive to 

Poisson's ratio. 

The above procedure was programmed on an ICL 1904S 

computer and was found to converge on a root to 4 places of 

accuracy after 5 to 8 iterations. A sample of the results 

are displayed graphically in the dispersion spectra of 

Figure 2.1 for the longitudinal mode (n=O). The three graphs 

are for differing values of Poisson's ratio. Features of the 

dispersion spectra for both longitudinal and flexural modes 

are discussed in Section 2.8.
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2.7  Non-Axially-Symmetric Mode Frequency Spectra 

When the circular order n is greater than zero, no 

further simplification of the frequency equation (2.5.2) is 

possible. The first flexural mode of the bar occurs with 

n=1 and is considered by Hudson (©) , A second computer program 

was written to obtain the roots of the more general equation 

(2.5.2) for real,complex and imaginary propagation. constants 

for any value of n using an identical technique to that given 

in Section 2.6.1. 

Figure 2.2 shows the results obtained for the first 

flexural mode (n=1) with higher flexural modes (n=2 and n=3) 

shown in Figures 2.3 and 2.4. Although the programs were 

used to obtain results up to circular order 6 the spectra 

are not shown since no new features appear in the spectra.
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2.8 Features of the Frequency Spectra 

The information relating frequency, propagation constant 

and velocity can normally be presented in two ways. The 

curves shown in Figures2.1 to 2.4 are known as frequency 

spectra or dispersion spectra, An alternative to this 

representation are the velocity dispersion curves such as 

those shown in References (4) and (5). The frequency spectra 

method of displaying the information is probably the most 

useful since it also contains all the information required 

to plot velocity dispersion characteristics. While velocity 

dispersion curves could in principle be drawn for real, 

imaginary and complex velocity, only real velocity curves 

are plotted since the other velocities are not physically 

meaningful. The method of obtaining the velocity dispersion 

characteristics is illustrated using Figure 2.5. 

  

      

     

angular 
frequency 

Propagation 
constant     

Ret) 

Figg 2.5



Se 

The slope of the line OA in Figure 2.5 is the phase velocity 

at the propagation constant ve and frequency ws. The 

tangent to the curve at the point A is the group velocity 

at exe Thus 

Phase Velocity C,, = - (2.8.4) 

Neve 

and 

Group Velocity ga = ae (2.8.2) 

Vania 

In addition the cut-off phenomena are readily observed 

from the frequency spectra when the propagation constant 

tends to zero and the frequency remains finite. However, 

the cut-off phenomenon is also implied in the velocity 

dispersion curves by the infinite phase velocity. 

2.8.1 Imaginary and Complex Propagation 

Where the propagation constant of a mode is real the 

energy will travel as a wave along the rod. The significance 

of imaginary and complex values of y is readily seen:- 

y Imaginary exp (-y;2) exp (-jwt) (2.8.:3a) 

y__ Complex exp (-Y;2) expj (7, z-wt) (2.8. 3b)
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Where a and y, are the real and imaginary parts of complex y 

respectively. The equation (2.8.3a) represents a spatially 

decaying non-propagating vibration while equation (2.8, 3b) 

shows the same amplitude decaying form but is a propagating 

wave. The frequency spectra of Figures 2.1 to 2.4 are drawn 

in two dimensions, but to fully represent the solutions to the 

frequency equation a three dimensional figure would be 

required. The real and imaginary solutions of Y occur in 

positive and negative pairs while the complex solutions occur 

in positive and negative complex conjugate pairs, thus the 

spectra shown contain all the numerical information necessary 

to reconstruct all the solutions by suitable adjustment of 

the signs of y. 

9,11, 13,14 
2.8.2 Mode Designations” : 

The notation L(0O,m) is used to identify the various 

longitudinal modes of the frequency spectra where m is the 

mth.solution of the frequency equation. The flexural modes 

are identified by F(n,m) denoting the mth solution for 

circular order n (of equation (2.3.1)). Thus the designation 

of the real modes of Figures 2.1 to 2.4 is obvious. The 

designation of the imaginary and complex modes is not so 

clear. The method adopted here is to associate the complex 

and imaginary mode with a real mode. For example, consider 

the spectra of 2.lc. Starting at a frequency OL NOL 37 

and travelling down the L(0,3) curve with Q decreasing 

eventually reaches cut-off at 2=4,.7. At this point an
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imaginary mode emerges and is still designated the L(0,3) mode 

until it returns to the line Y=0. This point also corresponds 

to the cut-off frequency of the L(0,2) mode. Similarly this 

point could have been arrived at by travelling along the line 

of the L(0,2) mode. It is worth noting at this point that 

the portion of the L(0,2) wave between Y=O and 1.0 has a 

negative group velocity. This point has been discussed by 

(>) who points out that the energy propagates with Meitzler 

a positive group velocity and the phase velocity is negative 

relative to the group velocity. Applying strictly the 

arguments that the mode designation is dec aoeel from the 

real mode with 2 decreasing, this portion of the curve could 

equally well be associated with the L(0,3) mode. This is not 

entirely satisfactory since it would imply that the L(0,3) 

mode would have two cut-off frequencies and for this reason 

the negative slope portion is associated with the L(0,2) mode. 

The lowest complex mode, the L(0,2&3) can be arrived at 

following the path of the L(0,3) mode discussed above and also 

via the L(0,2) mode with 2 decreasing. The complex L(0,283) 

branches at a minimum of the L(0,2) curve. 

The Figure 2.lb drawn for o=0.30 shows that the L(0,2) 

and L(0,3) modes have very nearly the same cut-off frequency 

and that the L(0,3) imaginary mode joining the two cut-off 

points has almost disappeared. In fact, as will be seen in 

the next section this occurs at 9=0.28. 

There are some interesting differences between the 

longitudinal and the flexural modes as shown in Figures 2.1 to
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2.4. The flexural modes all show modes with Y imaginary 

extending to zero frequency, this does not occur with the 

longitudinal modes in Figure 2,1. Also with the exception 

of the first flexural modes (F(1l,m)), the lowest real modes 

have a cut-off frequency. This point is discussed further 

in Chapter 3 where it is shown that difficulties are 

encountered in trying to account for end resonances in 

cylinders of n>2. 

2.8.3 Cut-off Frequencies 

The cut-off frequency equations are obtained from 

equation (2.5.2) by letting y70 with 2 remaining finite. 

With n=O to give the axially symmetric modes the cut-off 

frequency equation becomes:- 

3, (a) [23,, oa) oy 243, (2) | =) (2.8.4) 

The first term of (2.8.4) is not a function of Poisson's 

ratio and is the axial shear cut-off frequency since at 

cut-off vibrations are entirely axial. The bracketed term 

at cut-off is denoted radial shear, since vibration is 

purely radial. Cut-off frequency versus Poisson's ratio 

for axially symmetric modes is plotted in Figure 2.7) 

It is clear that the L(0,2) and L(0,3) modes have the same 

cut-off frequency at 9=0.28. This is the case where the 

L(O,3) imaginary mode entirely disappears.
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The non-axially symmetric mode cut-off frequency equation 

is given by equation (2.5.2) and letting ¥ tend to zero. 

Denoting the terms of the determinants with Y=0 as anny they 

are:- 

Ge at, = 5 ea -| J, (Kk) + kQ Ty, (O) 

oe [n?4n-27] J, (2) = 93,_4 (2) 

ais = 2a[ 99,_,(0) - nt), (0) | 

a5 nour, (#2) - (tas, (0) | 
21. 

(2.8.5) 

abo = a| (ns2)9,, (9) - a3, (9) 

ab, = 207, (a) — (2n' +2n-07)a, (9) 
23 n-1 n 

ah, = nd, (kQ) - KOT, (k2) 

ab. = QT, (2) - nd, (2) 

a33 = nJ,, (2) 

The variation of flexural mode cut-off frequencies with 

Poisson's ratio are shown in Figure 2.7.
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CHAPTER 3 

END RESONANCE IN SOLID CYLINDERS 

3.1 Introduction 

This chapter describes attempts to obtain theoretical 

solutions for the frequencies of non-axisymmetric (flexural) 

mode end resonances and follows techniques already used 

successfully for the axisymmetric (longitudinal) mode end 

resonance. - 

Using the wire drive technique the end resonance 

frequency for each circular order mode up to n=7 has been 

measured for materials having a wide range of Poisson's 

ratio. These frequencies are very useful for the theoretical 

work as they indicate quite accurately the values where a 

solution is to be expected. 

It will be shown later in this chapter (equation (3.3.6)) 

that the function of ¥ representing the stress at the end 

face of a semi-infinite bar is odd for normal and even for 

shear stresses. The end face boundary conditions cannot 

therefore be satisfied by the reflection of any single mode. 

The superposition of all possible modes are necessary, 

(Ref. 11, 17, 50) i.e. all modes below the cut-off frequency 

of the associated propagating mode, 

In the case of the longitudinal mode (n=O) these consist 

of a single real mode and the infinity of complex ones 

(Figure 2.1). For the second flexural mode (n=2) there is



Ge 

no real mode but an infinity of those with both complex 

and imaginary propagation constants. Zemanek (21) ina 

theoretical study found that, when using a summation of 

reflected real and complex modes to satisfy the boundary 

conditions, the amplitude coefficients of the complex 

modes rose to a high value close to experimentally observed 

and resonance frequency. A number of other workers have also 

observed end resonance in cylindrical solids with Oliver ‘+9) 

usually credited with being the first to observe the 

phenomenon. The majority of work on end resonances has been 

carried out on the longitudinal (symmetrical) mode end 

resonance with only passing attention to higher order 

(20) (22) 
resonances, although McMahon and Booker and Sagar 

mention having observed end resonances at n=2 and n=3. 

A possible explanation for the lack of interest in higher 

order end resonances in the literature is the difficulty 

in observing them using piezo-electric transducers, coupled 

with the fact that they only appear at the end face of the 

bar. The experimental technique given here allows end 

resonances to be observed of any order within the frequency 

limits of the transducer system, nominally to about 200 KHz. 

Experimental observations are presented of end resonances 

up to circular order n=7 in isotropic materials having a 

wide range of Poisson's ratios. 

The method used by zemanek (11) to obtain the longitudinal 

end resonance frequency at a Poisson's ratio of 0.33 (the 

value for Aluminium) has been extended to cover the range



of Poisson's ratio 0.1 to 0.5 and experimental results have 

been obtained over the range 0.1 to 0.33. It is shown in 

Section 3.5 that this theoretical technique cannot be 

directly extended to include the higher order flexural mode 

end resonances since these modes occur below the cut-off 

frequency of the corresponding propagating mode. Attempts 

to establish the relative phase of the two lowest complex 

modes as an indicator of resonance, or standing waves over 

the relevant frequency range did not show any positive results. 

Nevertheless, experimentally obtained end resonance 

frequencies are given and compared with the corresponding 

mode cut-off frequencies and disc frequencies. Differences 

between the longitudinal mode and flexural mode end 

resonances are apparent from Figures 3.6 and 3.9. The 

longitudinal mode end resonance is very close to a linear 

function of Poisson's ratio while the flexural modes all 

have a distinct minima at a Poisson's ratio about 0.31. 

In addition the two types of mode have different slopes at 

the low values of Poisson's ratio and it is unlikely that 

this is due to any fault in the experimental technique. 

An uncertainty concerning the isotropy of the material is 

always present. Rods which are drawn will have longitudinal 

grains and may be subject to radial cooling. Radial 

anisotropy, which would result in a splitting of many 

distortion modes in discs, has not been observed in steel, 

aluminium or brass discs cut from rods but is conspicuous in 

discs cut from rolled sheets. The glass rod, unambiguously 

isotropi¢ was not perfectly circular.
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3.2 Boundary Conditions on End Plane 

The stresses at the z = constant plane are obtained by 

combining (2.3.la),(2.4.1) and (2.4.2) to give explicit 

equations for the stress T,,, To, and T,, which are required 

to be zero and take the form. 

To, = Tzzcosn8 exp(j(yz-wt)) = 0 

hs 7 Z e is (352)5/1) 
To, T,,Sinnd exp(j(yz-wt)) = O 

Ts = Ty, cosne exp (j(yz-wt)) = om 

The problem of satisfying (3.2.1) with a single reflected 

mode lies in the fact that: if We and Ty are satisfied 

exactly at the end face the ae cannot be (Refs. 3, 23). 

It will be seen that in equation (3.5.1) ae and Th. are 

odd functions of ¥ and ane is an even function of Y. Early 

solutions (Ref. 2) to the finite length rod set Teo to zero 

for the condition r/A small. Since ee is already equal to 

zero on the curved boundary, its value on the end face can be 

taken to be approximately zero. However when r/A is large it 

is founa ‘11) that this approximation is no longer valid and 

that a series solution is necessary to cancel the residual 

stresses.
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3.3 The Symmetric Mode End Resonance 

The symmetric mode is obtained from equation (3.2.1) by 

setting n=0 leaving only two stress components ee and a at 

the flat boundary. The zero stress condition is obtained by 

setting the sum of all possible modes, with real, complex and 

imaginary propagation constants, equal to zero (equation 

(GaeaDIE 

Te (x) iat dl Ant z2, (*) +0 

(3.3.1) 

TL, (x) = ane An ee) =O 

An is the amplitude coefficient of the mth mode and may 

be complex, containing magnitude and phase information. In 

the experimental study a long burst of oscillations is 

launched via a magnetostrictive line transducer into the 

end face of the bar. The various modes are generated at 

this face (z=0) with amplitude coefficients An which take 

on values stich that the sum of all modes at any position on 

the end face result.in zero stress. Modes with real 

propagation constants propagate in the positive z direction, 

the direction into the bar. 

In the case of complex propagation constants, there are 

four solutions to the frequency equation but physical 

arguments lead to only two of these solutions being valid 

for the case in question. Since the amplitude of the
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vibrations cannot increase indefinitely in the direction of 

propagation it is clear that the only two solutions 

acceptable are of the form atjb and its negative complex 

conjugate. This implies that the amplitude variation with 

increasing z is a decreasing function. 

With n=O the displacement equations are 

c i = ~A,J, (ar) - yB, (Br) 

Glncine)) 

c I = JYATQ (ar) - 5BgJ, (Br) 

One of the arbitrary constants can be eliminated by 

applying the boundary condition T),=0 at roa. i.e. 

ou 3u, 

a = a) =0 (3.3.3) 
r=a. = 

which gives the ratio 

  

(B-¥7) 3, (B) 
2 SSS (3.3.4) 

2y¥a J, (a) 

w
D
 

The stress components (3.2.1) can then be written 

po, = 2 (272-0?) (247+ (1-2k)07)a, (8) I, (az) 
Zz y 1 ° 

+ 477GBg, (@)I4 (Bz) }c (3.3%6) 

T= 254{ (272-27)5, (BI, (GE)-T, (a) I, (BE)IC xz Jal (27 L vty err 

where C is a constant.
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3.4 Reflection Coefficients of the Symmetric Mode 

The method¢solving the symmetric mode end resonance 

follows essentially that of zemanek ‘t}) | The only difference 

is to take account of the transmission line driving technique 

and the assumption is that all modes are generated 

simultaneously at the driving point. However, Zemanek only 

dealt with one material, aluminium, The method is used here 

to plot the spectrum of symmetric mode end resonances, not 

previously obtained and is compared to a number of 

experimental values. 

Symmetric mode end resonance occurs when the reflection 

coefficient Be of the complex modes rise to large values. 

Although all complex mode coefficients have a larger amplitude 

at this frequency it is found that the reflection coefficient 

of the first complex mode takes on a value much larger than 

the two real modes, i.e. the incident and reflected 

real-modes. 

Equation (3.3.1) is solved for An after normalisation to 

the real mode with positive propagation constant. To make 

such a solution achievable, equation (3.3.1) must be 

restricted to a finite number of modes and it was found that 

nine modes were a convenient number to take. Increasing the 

number beyond this figure only increased the computation 

time and did not significantly influence the computed end 

resonance frequencies. To solye equation (3.3.1) for these 

nine values of AL the stresses (Equation (3.3.6)) were



39 — 

evaluated at nine discrete points along a radius. The 

normal stresseswere calculated at five points along the radius 

including the centre and edge of the bar and the shear 

stresses were calculated at points midway between the normal 

stress points. Thus the approximate version of equation 

(3.3.1) can be written 

a 

Gon Vee on AL ooze (3,4.1a) 

a 

Bir a = ay An "rent (3.4.1b) 

where ry in the case of (3.4.la) is given by: 

2a(i-1 ‘ +1 r, = BG) tae ee (3.4.2) 

and for (3.4.1b) 

— 2ai - m-1 
oe a aete i= 1,246.66 (3.4.3) 

and m is the total number of points taken, in this case Aine. 

Equation (3.4.la) and (3.4.1b) represent a total of nine 

equations conveniently written in matrix form as equation 

(3.4.4). 

= [TJ [A,! (3.4.4) 

To is a column matrix of the values of the stress components



= AOIe 

due to the real mode with positive propagation constant, the 

first five elements being normal stresses and the remaining 

four shear stresses. ae is a 9x9 square matrix whose 

columns represent individual stresses calculated at 9 positions 

along a radius and whose rows represent the 9 modes taken in 

the approximation. An is a column matrix of reflection 

coefficients. Computer programs were written to solve 

equation (3.4.4) with the propagation constants obtained from 

programs giving the specrta discussed in Chapter 2. The 

reflection coefficients were calculated as a function of 

frequency and the process repeated over the region of rapidly 

increasing An until the frequency of the peak was obtained to 

four significant figures. The phase of the reflection of the 

real mode coefficient is shown in Figure 3.1. This mode 

always has a magnitude of 1 and a phase of zero except in 

the region of end resonance where the phase is 180°. Also 

at this point the magnitude of the complex mode coefficients 

increase very rapidly to a peak. The behaviour of the magnitude 

of the first complex mode close to end resonance is shown in 

Figure 3.2.with the real and complex parts shown separately in 

Figure 3.3.
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3.5 Non-axisymmetric Modes 

When the circular order n is greater than zero an 

additional stress component To, must be included. This 

considerably complicates the stress equations at the end 

face of the bar since no simplification of equation (3.2.1) 

is possible. The components of stress T and a are 
zz? Ton Zz 

obtained from equations (2.4.1) and (2526 2)) The stress 

coefficients of equation (3.2.1) are given by equation 

(3.5.1). 

Tae Pio eros 

Cole al Sop Cpe oes (3.5.1) 

Tr Poa Panu) 23a 

where 
2 5-2 _ _ (20°) <2, (=< 

bi = a ee J, (ax) 

b,, = Bar2a. (Bz) OMS an 

by, =0 

Oe 2yz,J,, (ar) 

bo. w Etre) = (BF)*) 5 az, 
22 ar n 

bo, = yE(Brd,_, (Br) - nJ, (Br)) 

by, = 2yr(ard,_, (ar) - nd, (ar))



=) 45) — 

=-,2 5-2 
= Cor) = (62) arg, | BE) - ng, (BE) 32 ar 

o I 33 = nYrd, (Br) 

The three constants A, B and C can be written in terms 

of one arbitrary constant obtained from the boundary condition 

7 ST =p 30 (3.5.2) EL] a5 52 |e 

The constants are given below, denoted by a bar since 

strictly they differ from the above by a common ‘constant. 

where 

A = ay b3 ~ a3 b, 

B = a3 by - ay b3 (Gi5e3) 

Cc = ay by - a, bi 

25-2 fs 2 - = - a, = -2( (252 on?) (&) + 3, (@) - ng, (G)} 

a, = gil (n?-B%) a, (8) - Ba,_,(B) + ng, (B)) 

a3 = 2n{Bg,_, (8) - nd, (B) - 5, (B)} 

b, = 257(0I,_,(@) - ng, (@)} 

DO ee = 5 OV =B) ig e B,* eg {Ba (B) - ng, (B)} 

b, = in¥ a, @)
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The zero stress condition for the three stress 

above are obtained from an infinite sum due to the 

contributions from all possible modes. 

Cy 

    

TL, (") re) Fy aa Antes (X) mee 

Cy 

To, (x) oe ie ae Antez (¥) ie 

co 

Tz (7) g=6 . aan Antes (F) ree 
  

components 

(3.5.4)
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3.6 Reflection Coefficients of Non-axisymmetric Modes 
  

The boundary conditions for the non-axisymmetric mode 

involve an additional stress component To, that was not 

present in the axisymmetric case. The stress components also 

depend on the angular co-ordinate @ (Equation (3.2.1)). The 

solution of equation (3.5.4) was carried out using a total 

of nine modes of complex and imaginary propagation constants. 

In the case of the axisymmetric mode the stress sums were 

set equal to zero at sufficient points along a radius to form 

the requisite number of equations to satisfy the boundary 

equations approximately. These points of zero stress 

represent zero stress circles in the case of the symmetric 

mode but this is not true forthe antisymmetric mode resulting 

from the independence of the stress components. 

The reference mode in the case of the axisymmetric mode 

was the real mode that extends to zero frequency. In the case 

under consideration here, no real mode extends to zero 

frequency so the reflection coefficients were referred to 

the first complex mode. Now however, the criterion of end 

resonance used for the longitudinal mode is no longer 

relevant. Since the end resonance is found experimentally to 

occur at a clearly defined frequency, the implication is that 

a standing wave is present in the surface and over the 

region within a few wayelengths of the end. It is possible 

therefore that the relatiye phases ofthe negative conjugate 

modes will indicate the resonance condition, The phase
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relationship of the reflection coefficient that will 

indicate resonance is an in phase condition since the 

reflection coefficient is normalised to the wave 

travelling in the positive z direction and they appear 

on opposite sides of equation (3.4.4). 

Ee set equal to zero 

| x To, at these points 

ae 
XZ 

(a) 

Bounday Conditions (1) 

  

(RTL set equal to zero 

UT, at these points 

ee set qual to zero 

at these points 

  

(b) 

Boundary Conditions (2) 

Approximate boundary conditions for antisymmetric 

end resonance investigation 

Figure 3.4
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Two sets of boundary conditions are shown in Figure 3.4 

for an eight mode solution, In Figure 3.4a the stresses are 

set equal to zero along a radius at 45° to a reference 

normal stress mode. Although the figure applies to the (2,1) 

mode the boundary condition was used in the (3,1). Setting 

the radius at 45° allows the sinn@, cosn@ terms to be 

removed as a common factor. The results for the reflected 

complex mode for the (2,1) and (3,1) modes are shown in 

Figures 3.5 and 3.6 respectively. These modes indicate zero 

phase at 2 values of 2.05 in the case of the (2,1) mode and 

2.83 for the (3,1) mode. The experimental results for 

nickel (o=0.31) for the corresponding modes are 2.11 and 

3.22. Applying boundary condition 2 of Figure 3.4, however, 

gave reflection coefficients which were not consistent with 

the first set of boundary conditions. In fact over the 

region plotted the two boundary conditions have nearly opposite 

phases around the experimental end resonance frequency. No 

obvious reason can be found to account for this sensitivity 

to the boundary condition approximation. The positions at 

which the stresses were set equal to zero were chosen to 

simplify the calculations. Perhaps a choice of points that 

minimise the average residual stresses would give more 

consistent results,this would howeyer be an extremely lengthy 

procedure to implement,
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3.7 Discussion of Results 

In the case of symmetric modes, the explanation of end 

resonance seems to be that at the end resonance frequency the 

amplitude of the complex mode rises very rapidly to cancel 

the residual stress resulting from the reflection of the 

propagating mode. This sharp increase in amplitude is 

shown in Figure 3.2 for Poisson's ratio of 0.30. The end 

resonance frequencies were calculated over the range of 

Poisson's ratio of 0.1 to 0.45. Table 3.2 shows a comparison 

of experimental points and the end resonance frequency 

obtained by calculation. Figure 3.6 is a comparison of the 

variation of theoretical cut-off frequency (Q0)4 thin disc 

frequency (Qa), and end resonance frequency (2.), as a function 

of Poisson's ratio. It is apparent that the experimental 

point at o=0.217 (soft glass) has a large error from the 

theoretical plot. It is likely that this is’ caused by lack 

of circularity and imperfections in.the end of the bar. The 

transmission line was joined to the glass by a heat setting 

epoxy adhesive. The subsequent cooling of the bar caused 

small cracks to appear as a result of thermal stresses. 

In each case shown in Table 3.2 a disc was cut from the 

end of the rod and its Poisson's ratio measured by the method 

described in Chapter 5. The shear velocity was also calculated 

which enabled the end resonant frequency parameter Q, to be 

calculated from equation (3.7.1). 

wa (37.1)



  + exnerimental points     
a 0,2 On, o,s as 

Poisson's Ratio (c) 
Comparison of end resonance disc and cut off 

frequencies for symmetric mode (n=0) 

FIGURE 3.7
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The experimental technique of determining resonances 

is discussed in Chapter 5, however, it is convenient to 

include the essential features of the technique here. 

    
magnetostrictive driving line 

probe 

to oscilloscope 

Figure 3.8 

Vibrations are induced in the bar of Figure 3.8 via the 

magnetostrictive line which is a line of permandur or 

telcoseal of diameter between 0.5mm and 1.0mm. Stored energy 

re-radiates down the line and interferes with the launched 

burst. As explained in Chapter 5 the echo return displays 

a well defined null when the signal frequency is equal to the 

resonance frequency. It is this clearly defined phase effect 

that allows precise determination of the resonant frequency. 

The probe is a short length of magnetostrictive line with a
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coil to receive the vibrations. The probe is placed in 

contact with the end surface. The amplitude detected is the 

component of vibration in the direction of the wire. By 

comparing the phase of this signal with the echo, nodal areas 

can be mapped out. On crossing a nodal line the phase 

reverses. By suitable electronic gating circuits Lissajou 

figures,which greatly simplify this process, could be 

displayed. 

The theoretical calculations of end resonance assume 

a semi-infinite bar, however, in these exper nence the 

lengths of bars used were limited to the order of 300mm to 

500mm. It is unlikely that this fact seriously influenced 

the experimental results since it was observed with the probe 

that vibrations could not be detected at a distance greater 

than about 50mm, from the end of the bar except for n=O. In 

addition heavy loading of the centre region of the bar with 

plasticene affected neither the frequency of end resonance, 

nor the amplitude of the received signal. 

In the case of n=O there is a very low amplitude 

propagating mode which is virtually undetectable midway down 

the line, but it produces high amplitudes at the remote end. 

An electrical analogue would be two tuned circuits of identical 

frequency coupled by a low impedance transmission line many 

wavelengths long. A more detailed study of this mode could 

be of value. This is as would be expected from the dispersion 

spectra shown in Chapter 2,



Results of the calculations of reflection coefficients 

for the antisymmetric modes with n=2 and n=3 for two sets of 

boundary conditions were not consistent. Figures 3.4 and 3.5 

show the real and imaginary points of the reflection 

coefficients calculated at two different approximate boundary 

conditions. Boundary Condition 1 shown in the graphs is that 

the stresses are evaluated at equally spaced points along a 

radius that avoids any nodes. The centre and circular 

boundaries are not used since ioe is already zero at this 

point. It has already been stated that there is no 

propagating mode associated with the antisymmetric vibration 

so it was anticipated that some phase characteristic may 

indicate end resonance. A possibility would have been that 

the complex reflection coefficients were exactly in phase at 

only one frequency as shown by the Boundary Condition 1 of 

Figures 3.4 and 3.5, the condition is that the reflection 

coefficients are both 1. That is at 2=2.05 for n=2 and 

2=2.83 for n=3. The result given as Boundary Condition 2 

established that the technique used is extremely sensitive 

to the choice of zero stress points. The Boundary Condition 

2 is that ie and ae are calculated along a radius of their 

maximum amplitude and To, is calculated along a second radius 

at its maximum amplitude. 

The phase of the reflection coefficient for this 

boundary condition however, failed to establish any indication 

of end resonance. In view of the lack of encouragement from 

the results of the second and third antisymmetric modes



nothing was to be gained from attempting higher order modes. 

A summary of the experimental observations of end resonance 

is given in Table 3.3. 

Qualitative confirmation that the amplitude of vibration 

dies away with distance moved along the axis is obtained 

with the probe. This also confirmed that there is no 

resonance at the remote end of the bar. Figure 3.9 illustrates 

the results of probing the end surface of the 60 kHz end 

resonance in dural. The plus and minus signs denote the 

relative phase change across the nodes. 

+ denotes relative phases 
driving line 

-- denotes nodal lines 

  

Phase relationship for non-axisymmetric mode 

end resonance (n=2) 

Figure 3.9 

A definite radial mode was observed on the circular 

surface of the bar, this occurred at 19.5mm from the end of 

the bar for the 60 kHz 2,1 mode in dural. The amplitude of 

vibration decayed rapidly so that a second node, if it exists, 

was not obseryed.
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2.25 

2.20 
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  2710 

  

Comparison of Qo Qa and Qe for n=2 

FIGURE 3.10.1
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Comparison of or 2 and Qe for n=3 

FIGURE 3.10.2
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4.75 

4.70 

4.65 

4.60 

  

4:55 

4.50 

4,45 
(SS a, (experimental) 

4.40 

4.35 + 

4,30 * 

4,25 
+   4,20 1 

° 0.1 0.2 0.3 0.4 0.5 

oO 

Comparison of Qor Qa and a, for n=4 

FIGURE 3.10.3
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5.7 
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5.5 

  Q (experimental) 
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Comparison of Ar Og and 2, for n=5 

FIGURE 3.10.4
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The phases indicated in Figure 3.9 are the phases of 

vibration normal to the surfaces of the bar since these are 

the only ones that the probe was capable of detecting with 

any certianty. 

The theoretical cut-off frequencies and disc frequencies 

are compared to the experimental end resonance frequencies 

in Figures 3.9.1 to 3.9.4. The disc frequencies and cut-off 

frequencies have the same value at zero Poisson's ratio. In 

all cases the end resonance frequencies are wéll below cut-off 

of the lowest propagating mode. There is a distinct minimum 

in the experimental results for these values of end 

resonance. This does not occur in the experimental results of 

longitudinal mode (L(0,1)) end resonance and differs 

considerably from the forms of the curves for both Qe and Qa- 

This behaviour of the end resonance frequency seems to be a 

genuine phenomenon dependent on Poisson's ratio since the 

total error in measurement does not exceed 0.5%. Additional 

confidence is given by the fact that the experimental values 

for the L(0,1) mode shown in Figure 3.6 lie very close to the 

theoretical curve.
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CHAPTER 4 

THIN. DISC SPECTRA 

4,1 Introduction 

In the previous chapter the variation of the end 

resonance frequency parameter with Poisson's ratio was 

given. The elastic constants were determined in each case 

by dynamic measurements from a disc cut from the end face 

at which the end resonance measurements were taken. 

Chapter 5 describes the practical technique used to measure 

the frequencies of the various modes required to obtain the 

elastic constants (Young's modulus and Poisson's ratio), of 

isotropic materials at high temperature. It is the purpose 

of this chapter to describe the theoretical basis of these 

measurements and to compile sufficiently comprehensive tables 

for accurate determination of the elastic constants from the 

thin disc spectra. 

GB) 
Love established the general frequency equation 

for in plane vibrations of thin discs, however, no numerical 

calculations were carried out at that time. The frequency 

(23,24) 
equation received little attention until Onoe in 1956 

published graphical data of the variation of the dimensionless 

) produced tables of results frequency parameter. Holland 

for the frequency parameter up to circular order 7 and up to 

the tenth zero of the frequency equation at the low circular 

orders. As in Chapters 2 and 3, the circular order



corresponds to the number of nodal diameters of the disc 

and the mth zero corresponds to m nodal circles. Modes with 

n>O are referred to as compound or contour extensional modes. 

Holland's numerical solutions of the frequency equation are 

evaluated at intervals of Poisson's ratio of 0.05 over the 

range of 0.25 to 0.5. It was found that in the case of 

graphite, discussed in Chapter 5, that the Poisson's ratios 

for the majority of samples tested lie below 0.2. The 

numerical values of the frequency parameter were calculated 

to extend these tables from Poisson's ratio of -0.5 to +0.5 in 

steps of 0.01. 

The experimental technique used in Reference 25 is only 

applicable to piezo-electric materials since it relies on 

plated electrodes to excite the vibrations and involves 

switching the phases of the electrode components to select 

the various modes to be studied. The experimental technique 

(2G) involving the use of magnetostrictive given by Sharpe 

transmission lines, eliminates this complication. It is also 

noted that with this technique the higher zeros, with the 

exception of the 0,2 and 1,2 modes are rarely excited. 

The spectra of the lowest solutions up to circular 

order 10 were calculated in addition to the 0,2 and 1,2 

modes, 
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4,2 Thin Disc Wave Equation 

The wave equations for a thin disc are given in terms of 

(3) 
dilation and rotation . 

- ie a 
oA ow p(l-o7): ou Sega (leo) oe ae (452.0) 
x ay E at 

= 2 2 
34 (lec) 2 = pune. de CaN, CAG ae). 

7 at 

Where A is areal dilation and w is rotation given 

by (4.2.3) and (4.2.4). 

= ou ov 
A a By : (4.2.3) 

= eave coe 29 eae oy (4.2.4) 

To obtain a solution and hence a frequency equation, it 

is necessary to transform the above into cylindrical 

(26), (27) However, considerable simplification co-ordinates 

is apparent if the problem is treated in cylindrical 

co-ordinates from the beginning in a similar fashion to the 

treatment in Chapter 2, 

The waye equation for thin disc is similar to equation 

(2.2.5) with a modification of the velocity term.



269 — 

vo = 456 (4.2.5) 
c 

P 

vp = 4 (4.2.6) 
C. 

where 

2 E ce = — (4.2.7) 
P 9 (1-07) 

c. is called the thin plate velocity and Chr the torsional 

velocity has thesame meaning as used previously.
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4.3 Thin Disc Displacement Equations 

For a thin disc (z is small) then uy is approximately 0 

and uy and uy independent of z. Hence ~ has only a We 

component. The 

radial and angular displacements are obtained from the usual 

definition of displacement in terms of scalar and vector 

potential (2.2.4). 

With the omission of the exp(-jwt) term and noting that 

the equations no longer inyolve a function of z 

uu, = fags (ayr) + Cd, (8yr) } cosn@ (4, 351) 

RI
D 

  

E Ag, (az) + CO! (8,x)} sinno (4.322) 

It will be noted that the radial and angular wave 

numbers (a and 8) differ from those values in Chapters 2 and 

3 and are now, 

2 ie ee ee (4.3.3) ae C2 

Pp 

w2 
ea a (4.3.4) 

ae



eae 

4,4 Thin Disc Boundary Conditions 

Using the fact that To27° to eliminate Soe from 

equation (2.4.1), the stress equations for the thin disc 

become: 

ra 2du 

Try ~ 42u (S,ptSg9) + 2uS_y (4.4.1) 

and 

Tr =2US yo 
(4.4.2)
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4.5 Thin Disc Frequency Equation 

Applying the boundary condition of Section 4.4, at the 

circular boundary of the disc r=a gives the equation (4.5.1). 

eae tal (4.5.1) 

The frequency equation is given by the determinant of |a|being 

equal to zero. 

a 21 12 
= 0 (4.5.2) 

a a 
2 22 

The coefficient in terms of normalised variables in a 

form suitable for computation are; 

=2 
ee -(73 - n(ntl)} 3, (G,) + &, 5, Gy) 

ay. = 2n{B, d,_, (By) - (ntl) J, (8,)} 

ay, = nf(mtl) J, (04) - a, Jy) (G))} 

eae 5 = 5 
ay = (By - 2n°-n} J, (B)) + 28, J, By) 

Putting n=O in equation (4.5.2) leaves only the ayy and 

ar terms in the determinant. The first term having only ay



on 

as its argument represents the pure radial modes and has the 

simple form of equation (4,5,3). 

% Iq (44) 
eh ee elag, 44.5.3) 
J, (a4) 

The second term Az has only By as its argument and is 

given by equation (4.5.4). 

8459 (By) else eet (4.5.4) J, (By) 

This term represents the torsional mode solution and has only 

au displacement component. Since all the above frequency 8 

equations are solved for ay as a function of Poisson's ratio, 

the equation (4.5.4) also depends on Poisson's ratio. The 

relationship between the shear and radial wave numbers is 

given by (4.5.5). 

(4.525)
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4.6 The Thin Disc Spectra 

The dimensionless frequency parameter above a is 

renamed Ky in in the table given in Appendix A.4.1. The 
, 

subscripts of the K parameter indicate the modes in an 

identical way to those of Chapters 2 and 3. 

Thus 

a. = = 02 a. = Km c (4.6.1) 

The frequency could equally well be normalised to the 

shear velocity as used in Chapters 2 and 3. The relationship 

is shown in equation (4.6.2). 

On om = Xppm(2/ (1-0) 4 (4.6.2) 

The result of the solution of the frequency equation is 

given in the spectra of Figure 4.1 in terms of K. Values of 

en as a function of Poisson's ratio are given in Appendix 

4.1. The solution of the torsional modes is not given since 

it requires a modification to the method used to excite 

radial and contour extensional (compound) vibrations. For 

this reason it is not of interest in the measurement of 

Poisson's ratio via the method described here.
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4.7 Determination of Poisson's Ratio from Thin Disc Spectra 

It is clear from Figure 4.1 that the contour 

extensional modes, that is the (2,1); (3,1); (4,1)etc., have 

a decreasing frequency with increasing positive Poisson's 

ratio. In contrast the first and second radial modes (0,1) 

and (0,2) show an increasing frequency with increasing 

Poisson's ratio. Also the second root of the first flexural 

mode (1,2) has nearly zero slope below o=0.35 and intersects 

‘the (5,1) flexural mode at approximately o=0.23. The terms 

contour extensional and flexural are used interchangeably 

since the disc contour extensional modes show close resemblance 

to the flexural end resonance modes discussed in Chapter 3. 

Since the spectra of the various modes shown in 

Figure 4,1 have varying dependence on Poisson's ratio, 

comparison of two modes will give a measure of Poisson's ratio. 

i i, Fa is the mode frequency obtained by experiment, then, 
’ 

fam, me fam, Xm, ¥ Xn ym, 
Sg aoe i PSR ae g(o) (47a) 

n,m, nym, ° 

The frequencies of the modes can be measured experimentally 

with high accuracy, typically better than 0.1%. The ratio 

g(o) can be obtained from the theoretical dimensionless 

frequency parameters K in Appendix 4.1. 

It would be possible to use a combination of any two 

modes but it is clear that certain combinations will give



g(a) 

  

  

  
Sensitivity ratios for Poisson's ratio measurement 

FIGURE 4.2
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better sensitivity than others. Where possible it is 

desirable to choose modes with opposite slopes. Such a 

combination is given by the (0,1); (3,1) pair of modes. 

To allow for all possible values of Poisson's ratio it is 

necessary to tabulate g(o) for other combinations. This 

becomes necessary because at or close to the points of 

intersection it is often not possible to decide the exact 

resonant frequency as a result of coupling between the two 

modes. Four combinations of modes g(o) are tabulated in 

Appendix 4.2. 

The sensitivity of the mode comparisons chosen is not 

constant with o and some combinations have better sensitivity 

than others. The function g(o) is plotted in Figure 4.2 for 

the four mode comparisons generally used. They are: 

e “ole caer 
oa K 31 

og tyes oe bt 
2 oe 

Reo 2 aoa 
Sarre K 9,1 

ly Maes I 
ane K anal 

For positive Poisson's ratio, the frequency ratio Sir 

shows greatest sensitivity in Poisson's ratio since it has 

the largest slope in Figure 4.2. At around o=-0.1, Sy stiat
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has the largest slope but the sensitivity is unusable since 

it is seen from Figure 4.1 that the three lowest modes 

intersect at this value and experimentally the modes become 

very difficult to separate, It is shown in Chapter 5 that 

this is the value of o for pyrolytic graphite. For this 

reason the ratio S4 would be used in this region. While it 

is only necessary to find one ratio of frequencies to obtain 

values of o, in practice more than one ratio is used since 

this gives a test of the overall measurement technique.
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4.8 Effect of Finite Disc Thickness 

The accuracy of determination of Poisson's ratio from 

thin disc depends on the accuracy with which the thin disc 

theory represents the practical case where the discs have a 

finite thickness. As stated in previous chapters, there is 

no exact theory for cylindrical solids of arbitrary 

\ 

(2¢) (20 give corrections to dimensions. Moseley and Lucey 

the frequency of vibration for the radial mode vibration. 

These corrections are given in terms of the radial mode 

eigenvalue by equations (4.8.1) and (4.8.2) corresponding to 

Moseley's and Lucey's correction respectively. iY iy Y 

24 
K o 2 an poco 

“orto a Oats theo ee! (4.8.1) 

a 2K De 
= KE aE os 

Ko. = Xo, wale) 6 | (4.8.2) 

Where K is the corrected eigenvalue with KE being oy Opa 

the thin disc eigenvalue. n is the thickness to diameter 

ratio. Taking o=0.3 for a thickness to diameter ratio of 

0.125 equation (4.8.1) predicts a correction to the lowest 

radial mode eigenvalue of 0.2% and equation (4.8.2) predicts 

0.4%. Provided the thickness to diameter ratio is sufficiently 

small (of the order of 1/10) then the corrections are 

negligible. Correction factors for the contour extensional 

(51) modes are not available in the literature but Ambati has
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shown experimentally that the effect of thickness on the 

resonant frequency is always less than that of the radial mode 

vibrations. Tables 4.1 and 4,2 compare calculated and 

experimental values of the disc resonant frequencies for steel 

and aluminium, 

Disc resonance and end resonance experimentally obtained 

frequencies are compardd with theoretical cut-off frequencies 

in Table 4.3. The ratios 2/2, and 24/2, are given... As 

Poisson's ratio decreases, the disc frequencies and cut-off 

frequencies approach the same value, i.e. the ratio 23/2, 

approaches 1 for all modes.
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CHAPTER 5 

MEASUREMENT OF ELASTIC CONSTANTS 

5.1 Introduction 

Methods of measuring the dynamic elastic moduli of 

(30) The materials generally fall into two distinct groups 

two major categories are resonance and time of flight 

techniques. The resonance method requires a high material 

Q and with metals can normally be used up to about 70% or 

80% of their melting point. Resonance measurement of thin 

discs however, have a wide range of application particularly 

in the measurement of the elastic constants of metals and 

ceramics. Specimens are easily manufactured to high 

tolerances and sample sizes of about 1 cm diameter usually 

have the first 8 or 9 resonances 6ccurringat frequencies 

below 200 kHz. Resonances up to this frequency can be readily 

excited using magnetostrictive delay line techniques. 

Because the identification of resonance depends. on the 

phase change phenomenon described later in this chapter, high 

precision is attainable. The reproducibility for a 'Q' 

factor of 100 is better than 0.05%. An approximation inherent 

in the derivation of the frequency parameters given in 

Chapter 4 is that no allowance is made for losses in the 

material and for acoustic coupling from the driving line into 

the resonator. The effect of this is discussed in Section 5.3 

where simple calculations show that provided care is taken
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the effect of the driving line (the major effect) can be 

made negligible. 

Although time of flight methods of measurement are 

discussed in later chapters a comparison with resonant 

techniques could be introduced here. Time of flight methods 

are capable of measuring materials with much lower Q, that 

is in materials with high losses or at temperatures beyond 

which the null indication of resonance cannot be obtained. 

That is to say time of flight methods can extend elastic 

constant measurement much closer to the melting’ point of 

metals. Sensitive measurements of the variation of flight 

time of a pulse can be obtained fairly readily. A system is 

described in Chapters 6 and 7 which will track these 

variations automatically once the instrument is initially 

locked onto the flight time. 

Returning to resonance methods for the remainder of this 

chapter, the magnetostrictive transmission line method of 

exciting vibration is particularly suited to measuring the 

variation of the elastic constants of refractory materials 

with temperature. The transmission line itself can be chosen 

for its refractory properties and only the transducer portion 

needs to be a magnetostrictive material . For example the 

lead-in line into the furnace could be made from the same 

material under test and the low temperature portion of the 

transmission line could be steel with a magnetostrictive portion 

at the end. The overall length of the line has to be 

sufficiently long to accommodate the anticipated maximum



= $7) = 

number of oscillations in a burst at the lowest frequency 

used, about 100 oscillations is generally a suitable figure 

to use but may necessitate a long line at low frequencies. 

The majority of measurements described in this chapter 

were carried out on graphite discs supplied by PERME Westcott. 

Because of their refractory properties graphites are widely 

used in the manufacture of rocket motors. However, 

engineering design data at high temperatures is lacking 

because of the absence of a simple technique for measuring 

the variation of elastic constants at high temperatures. The 

simplicity of the thin disc and delay line combination is ideal 

for this application since it enables large numbers of 

measurements to be taken to form a data base for material 

comparisons. Results obtained for a variety of graphite 

grades are given for temperatures up to 1000°c, are presented. 

Pyrolytic graphite is a highly anisotropic material but is 

almost isotropic in the plane of deposition, that is the 

plane of the disc sample. It was found to have a negative 

Poisson's ratio in the plane of the disc. 

Of major importance in the use of thin disc measurements 

is to establish the relative positions of the resonant modes 

with absolute confidence. Although this is usually simple at 

some values of Poisson's ratio the modes merge and it can be 

difficult to identify them. The methods used to resolve the 

modes are given below. Although only two frequencies are 

needed to obtain both Young's modulus and Poisson's ratio it 

is worthwhile investigating resonances up to about circular



order 7, at least at room temperature. It is apparent from 

Chapter 4 that the ratio K SE is constant for all values 
n,m n,m 

of n and m and this ratio gives a useful check on the correct 

identification of the resonant modes. Several mode comparison 

ratios are given in Appendix A4.2 and consistency between 

independent measurements of Poisson's ratio is a further 

confirmation of their identity. 

Anisotropy can sometimes be introduced into graphites as 

a result of the manufacturing process. Although this is not 

normally noticeable in the disc specimens occasionally the 

anisotropy is sufficient to cause the low frequency modes to 

show two closely spaced resonant frequencies. Also in contrast 

to the isotropic materials tested, the nodal positions are not 

wholly dependent on the position of the driving line. It was 

found that attaching the line to various positions on the 

periphery allowed a position to be found that excited only 

one resonance. Using this position gave consistent values 

of the Kym’ “nym ratio indicating correct mode identification. 

In the absence of solutions to the wave equations for generally 

anisotropic materials this was the procedure adapted at room 

temperature and the high temperature results were taken with 

this drive position.
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5.2 Transmission Line Technique 

A schematic representation of the transmission line and 

resonator layout is shown in Figure 5.1. A block diagram of 

the associated electronic system is given in Figure 5.2. 

Although a disc resonator is shown in Figure.5.1l, the 

transmission line technique can be applied to a resonator of 

any arbitrary geometry. In addition the shape of the echo 

that is seen on the oscilloscope is independent of the exact 

shape of the resonator. In various applications discs, rods, 

plates and tuning forks have been usea (27+ Ber: 320); This 

method was of course used to obtain the end resonant frequencies 

of cylinders described in Chapter 3. 

The source of excitation of the resonator is the burst 

frequency oscillator. A preselected number of cycles are 

gated through to the buffer amplifier at a rate determined by 

the pulse repetition frequency (p.r.f.) oscillator. This 

frequency is chosen so that the signal reverberation on the 

line has decayed sufficiently to ayoid interference with the 

next transmitted burst. If the p.r.f. oscillator frequency is 

too high the crossover (Figure 5.3) will be obscured by 

reverberation from the previous transmission but conveniently 

this can be distinguished from say a lossy resonator picture 

from noise preceding the sharp rising edge of the next burst. 

The transmit/receiye switch can be as simple as two back 

to back diodes in series with a resistor, the oscilloscope 

being connected across the diodes. This limits the peak
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amplitude of the signal to about 1.2V p-p. Using a 

transmitted signal of 30V p-p and a coil tuned to the 

transmitted frequency the two way insertion loss is such 

that the maximum echo signal is about 800 mV p-p. 

The frequency of the burst oscillator is adjusted until 

the resonant frequency is detected by the cross-over 

eriterion, discussed in Section 5.3. An alternative to the 

cross-over method is to measure thé frequency of the 

excitation burst and compare this value with the frequency of 

the decrement part of the echo return. This is the part of the 

echo signal from the free vibration of the resonator that occurs 

after the excitation burst. Since the frequency of the 

34) decrement signal is at the resonant frequency, Fathimani ‘ used 

a closed loop control system to maintain an oscillator at the 

resonator frequency.
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5.3 fhe Echo 

The modulation envelope of the echo is shown in 

Figure 5.3a, and a typical echo oscilloscope photograph in 

Figure 5. 3b. 

Sharpe?) has analysed the case of a line resonator and 

transmission line combination in the Laplace domain. The 

expression for the first reflected echo is given by equation 

(5.3.1) where Vy (s) represents the forcing function. 

2, (s) on Z,(s) tanh (y2) 

Vy (s) Z,() + 2, ) tanh (ya) Vy (s) (5.3.1) 

Equation (5.3.1) shows that the transfer function is the 

usual reflection coefficient from a boundary, which in this 

case has a terminating impedance of Z, (s) tanh (y&) . Using 

a numerical inversion technique a good representation of the 

echo was obtained. It is interesting to compare the echo 

envelope obtained in Reference 35 with the reflection of a 

rectangular pulse on a string from an elastic boundary in 

crags (13/PP33) | The reflected pulse undergoes considerable 

distortion and shows very close similarities with the 

envelope of Figure 5.3a. The exception being that there is no 

increase in amplitude immediately before the decrement part 

of the signal, 

The equation (5.3.1) is not,of course, directly applicable 

to the line-disc resonator combination since the load impedance
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_ The echo 

FIGURE 5.3.b 
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of the resonator will depend on the mode and the geometric 

form of the resonator. The mechanical impedance is defined 

by equation (5.3.2), 

ae Fe (Sesi2) 

and Glazanoy ‘3®) has shown that for the radial mode of 

vibration of a disc the impedance takes the form of 

equation (5.3.3), 

  

J_ (ka) ee o*p 7 G0) 
tae decals, al Ka | (5.3.3) 

where A is the effective area of coupling between the line 

and disc, and k_ = s/C_. 
P Pp 

A similar equation to (5.3.3) could be obtained for the 

contour extensional modes, noting the term in the square 

bracket corresponds to the frequency equations given in 

Chapter 4. 

The transfer function of (5.3.1) yields a harmonic 

spectrum of poles and these poles can be obtained in explicit 

form, However, when’the transmission line is terminated by 

an impedance of the type given by (5.3.3), this will not be 

true. The poles of (5.3.3) could le obtained experimentally 

or by numerical techniques to obtain s. This has not been 

carried out owing to the complexity involved for radial and 

contour extensional modes, and also, the results are unlikely 

to lead to any new information not already obtained 

experimentally. The difference is that changing the
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terminating impedance merely shifts the location of the poles 

in the s plane. 

The effect of line impedance on the resonator frequency 

is of importance since this determines the accuracy with 

which material constants are calculated, The displacement 

equation of a lossy resonator is given by (5.3.4) where 

Q is the total Q of the system and 

2 wo 
dou Oo Qu oes 
aa) a 0 dt + Oe = £(t) (5.3.4) 
ot a 

is composed of the coupling "Q" - Qo and the material 

mon - Qn where, 

ot (Se3—-5) 1 

e
a
e
 

a go
l O
l
e
 

8 

For most materials the line diameter can be chosen to 

make the coupling Q much less than the material Q while 

maintaining a total Q of 100. In this case the resonant 

frequency of the composite system will be given by (5.3.6). 

(5.3.6) 

  

As expected the effect of the line impedance is to reduce the 

resonance frequency of the system, For the resonant frequency 

to be within 0.1% of the undamped natural frequency, then a 

minimum value for the coupling Q can be obtained. Thus, for
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The composite echo build up 

FIGURE 5.4
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the above condition, 

Q, = 11.2 

(36) It is also known that in the decay of free vibrations 

Q is the number of cycles for the amplitude to fall to aru} 

of its initial value. So, from these figures it is clear that 

iff during the echo decrement (free vibration) part of the 

signal, the amplitude has not fallen below 4% (27.3 dB) of its 

value at the beginning of the decrement, within 13 cycles, then 

the observed frequency will be within 0.1% of the unloaded 

resonance. In practice, coupling Qs are normally in the 

range 20-200 which results in a drop from the undamped natural 

frequency of between 0.03% and 0.005%. 

The shape of the return echo can be understood by 

considering the reflection of a pulse modulated signal from 

a distributed resonator, the echo being a composite of the 

reflected echo and re-radiated signal from the resonator. 

In Figure 5.4 a half wave length line resonator with no 

internal energy loss is used as a simple illustration of 

the build up. 

ale Initially the wave reaching the interface is partly 

reflected and partly transmitted in proportions 

determined by the usual reflection and transmission 

coefficients. The displacement of the reflected 

component is 180° out of phase with the incident 

vibration (Figure 5.4.1).
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The displacement wave transmitted through the 

interface is reflected at the free boundary with no 

phase change. The total delay through the resonator 

is always an integer number of wavelengths, Therefore, 

the re-transmitted wave is out of phase with the 

initially reflected portion. (Figure 5.4.2). 

The steps (a) and (b) are now repeated but the wave in 

the resonator now contains a portion due to the first 

wave which is reflected from the interface back into 

the resonator and is in phase with the second wave. 

(Figure 5.4.3). 

This process continues and clearly the displacement 

amplitude of the resonator builds up exponentially. 

The re-radiated part of the echo waveform also builds up 

exponentially, but is in antiphase with the reflected 

part of the transmitted waveform. Thus the composite 

echo decreases exponentially through a null amplitude 

to a steady state value. 

When resonance is fully established and limited by the 

small but finite losses in the system, the amplitude at 

the boundary is twice the incident amplitude, i.e., 

at resonance the interface appears as a free boundary to 

incident vibrations, the amount of energy transmitted 

being equivalent to the losses of the resonator. 

When the incident pulse stops there is an immediate 

increase in amplitude since there is no longer
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a phase cancellation and the echo observed is twice 

the amplitude of the echo just before the end of the 

incident pulse. This part of the echo then decays 

exponentially due to energy lost to the line and 

internally.
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5.4 Optimisation of Echo Signal 

A number of factors influence the signal amplitude and 

signal to noise ratio. Signal amplitude is controlled by the 

transducer section and signal to noise ratio is controlled 

by the metallurgical state of the transmission line. Surface 

imperfection and impedance discontinuities increase 

reverberation noise and no amount of increase in signal power 

can improve the signal to noise ratio. For this reason it is 

necessary to obtain a 'clean' line by careful preparation 

and handling and also to have good acoustic isolation from 

any mechanical supports. 

The transmission lines as supplied by the manufacturers 

come in coiled loops. Two materials were used as transmission 

lines in the experiments described here and they required 

different treatments. Telcoseal (an iron-nickel alloy) was 

initially strained in order to straighten the wire and remove 

kinks. The wire was pulled by hand until further plastic 

yield was not possible. The end of the wire to be inserted 

into the coil was then heated to a red heat along about 50 

to 100 mm of its length. The effect of straining the wire 

reduced spurious echoes from the body of the wire and the 

magnetostrictive coefficient. The latter is restored by 

heating the end. 

Permandur did not exhibit any plastic yield and could 

not be straightened by cold pulling. In this case the 

transmission line was heated to a red heat by passing a
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current of a few amps along its length and allowed to cool 

under tension. An unexpected phenomenon was observed with 

0.5 mm permandur in that noise from the line increased very 

rapidly at 50-55 kHz. A search of the literature yielded 

little clarification of this aspect. It was thought that 

the phenomenon might be due to mode coupling in the body of 

( the transmission line. Meitzler 37) discusses this aspect 

and attributes mode coupling to the fact that at certain 

points of the dispersion curves, the various modes have 

the same phase velocities. This is readily seen by 

superimposing the dispersion curves in Chapter 2. Modes with 

the same phase velocities occur at the frequencies where the 

mode curves cross. However, Meitzler's theory gives a 

lowest frequency of mode coupling for 0.5 mm permandur at 

about 45 MHz where the lowest longitudinal (L(0,1)) and the 

second flexural mode (F(2,1)) intersect. The typical 

operating frequencies of the transmission lines (below 200 kHz) 

ensure that the only propagating mode is the lowest longitudinal 

(38 
mode. Lange ) also observed a phenomenon of mode coupling 

at long wavelengths. He postulates that surface imperfection 

much smaller than the wavelength of the propagating mode can 

act as centres of mode conversion. This seems a likely 

explanation for the phenomenon described above. It is 

thought that the process of heat annealing forms an oxide 

layer on the surface of the transmission line thereby giving 

centres for mode conversion. Permandur is unsuitable for use 

at high temperatures since repeated temperature cycling of 

the wire rapidly degraded the noise performance due to an
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increase in attenuation and defects created by expansion. 

This gives added support to the likely cause being surface 

effects resulting from heat treatment. 

The transducer design influences the maximum amplitude 

of the observed signal. The nominal coil length for maximum 

signal should be a half wavelength at the operating frequency, 

although to allow for fringing effects, the coil length is 

wound 0.42 with between 200 and 300 turns. In practice 

a single coil will be used over the full frequency range of 

the experiments, (between about 50 kHz to 200 kHz) and at 

the higher frequencies a loss of signal amplitude is 

tolerated. The transducer end of the transmission line is 

left as a free boundary for vibration reflection and use is 

‘made of this by adjusting the length protruding from the end 

of the coil to give an increase in signal amplitude. The 

mechanism of energy conversion in the magnetostrictive 

material is related to the strain magnitude. At a free end 

the strain is reflected with a 180° phase shift so the total 

length of transmission line protruding from the centre of the 

coil is 4/4 so that the total phase shift due to the delay 

and reflection eee shift is 360°. This length is adjusted 

throughout the experiment to maximise signal amplitude. 

The positioning of the bias magnet also has an effect on 

signal amplitude. Ideally the bias should be at half the 

magnetic saturation value and its position relative to 

the coil is adjusted to obtain maximum signal amplitude.
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An additional factor affecting signal amplitude is the 

electrical tuning of the coil. This is carried out with a 

capacitor connected in parallel with the coil. However, as 

an aid to mode identification the tuned circuit is made 

fairly wide band by resistive damping to lower the circuit 

Q. A low Q circuit can be useful as an aid to mode 

identification and must always be very much less than the 

resonator Q.
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5.5 Identification of Disc Modes of Vibration 
  

In order to obtain the material constants of a 

particular disc specimen the modes of vibration have to 

be identified with absolute certainty. If some prior 

knowledge of an approximate value of Poisson's ratio for the 

specimen is known this presents no problem. The spectrum of 

modes is given in Chapter 4. If an approximate value of the 

material constants is not known then there are a number of 

techniques that can be used as an aid to mode identification. 

It is an experimental fact that radial modes are not as 

strongly coupled as the contour extensional modes of vibration. 

This effect is apparent from the number of oscillations 

before the cross-over point. As an example, Table 5.1 shows 

the number of oscillations to cross-over (n,) for modes of 

vibration of a rolled steel disc. 

The parameters of the disc are - 

W diameter 35.1 mm 

u thickness 3.3. mm 

1.2 mm telcoseal line diameter 

Identification of contour extensional modes are readily 

made by use of a probe to find the number of circular modes. 

A quicker technique is to radially clamp the disc at the 

nodal points. This does not affect the resonance condition 

and so modes are easily identified.
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Frequency eee aa ron 

kHz cross-over (nx) 

68.96 BZ) 2,1 

80 * Lyk 

100.08 150 0,1 

105.86 70 Sy 

137.67 100 4,1 

167.41 120 5a 

173.28 250 es 

196.12 150 6,1       
  

* No cross-over was obtained for this mode 

Frequencies of rolled steel disc (o=0.28) 

Table 5.1 

A useful technique available for mode identification is 

to emwite the disc at opposite ends of a diameter. This makes 

use of the fact that for modes such as 2,1 and 4,1 the 

opposite ends of a diameter are in phase and for those such 

as 3,1, they are in anti-phase. The method is to place the 

driving coil at the centre of the transmission line. This 

is achieved by having the ends of the transmission line free 

and move the coil until the echoes from both ends exactly 

overlap. The anti-phase position is to adjust for maximum 

cancellation. The disc is then fixed to the transmission 

line. When the coil is at an even phase position only even 

modes are detected and odd modes when the coil position is 

moved by 4/2.
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3,1 Mode of aluminium 

  
5,1 Mode of aluminium 

Stepped nature of antisymmetric disc modes 

FIGURE 5.5
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Figure 5.5 shows a typical oscilloscope trace of the 

contour extensional 3,1 and 5,1 modes. The stepped nature 

of the echo can be made more obvious by lowering the Q of 

the magnetostrictive transducer to widen the bandwidth. In 

the case of the 3,1 mode the total phase delay of the 

transmitted wave is 3\ since six nodes have to be traversed 

before the first transmitted wave is retransmitted into the 

line in anti-phase with the reflected signal. Thus three 

peaks of the reflected part of the signal will have occurred 

before the transmitted part of the first peak is retransmitted. 

Similarly in the case of the 5,1 mode, the forall phase delay is 

5 since 10 nodes have to be crossed. 

Identification of the full mode spectrum of the specimen 

is determined at room temperature while the disc is 

accessible. It is normally desirable to use modes close 

together in frequency for the determination of material 

constants since retuning of the transducer is not required 

to optimise signals; also any frequency dependent effects 

are unlikely to influence the measurements.
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5.6 Choice of Modes for Elastic Constant Measurement 

In certain materials with Poisson's ratio around 0.33, 

problems arise in trying to identify the resonant frequencies 

by the cross-over technique of the 0,1 and 3,1 modes. It is 

clear from the mode spectra given in Chapter 4 that for this 

value of Poisson's ratio, the 0,1 and 3,1 modes intersect. 

The reflected signal from the resonator combines both modes 

which have almost the same frequency but different coupling. 

The resultant signal has a modulated appearance which changes 

rapidly with frequency. 

In this case another combination of modes would be used 

to determine Poisson's ratio such as the 5,1 and 1,2 

combination, or 0,2 and 8,1 combination. Particularly 

confusing was the O;le Det ert interaction at Poisson's 

ratio of -O.1 in the case of pyrolytic graphite. However, 

it was this phenomenon which occurred at the frequency of 

lowest detectable mode that gave a clue to a likely value of 

Poisson's ratio. The only useable combination of modes in 

this case were the 1,2; 4,1 combination.
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ae Mode K £/K 

24.790 2,1. | 155546 | 15/944 

30.898 0,1 | 1.9267 | 16.037 

38.099 34. | 2.3751, 4 26s042 

49.363 4,1, |. 3.0770) | 16.043 

59.876 571, |) 327334 |) 16.038 

69.876 6,1 | 4.3686 | 15.995 

78.832 7,1. | 4.9922 | 15.791 

85.46 0,2 | 5.3515 | 15.969 

89.75 8,1 | 5.6323 | 15.935 

99.227 9,1 | 6.2209 | 15.951 

d = 38.2 mm 

& = 0.116 

Av.£/K = 15.974 (Std. dev. = 0.078) 

c, = 1917 ms7> 

Table 5.2 

Typical thin disc frequencies of graphite
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5.7 Elastic Constants of Graphites 

The mode spectrum for the specimen is first established 

at room temperature. Having identified the modes with 

confidence, Poisson's ratio can be calculated from the tables 

in Appendix A4. Using the calculated value of Poisson's ratio 

the Kn value is obtained, again from Appendix A4 by 
an 

interpolation. A useful check on the accuracy and also that 

the modes are correctly identified is to divide the frequency 

of the mode by the K value obtained by interpolation. The 

ratio of £/K should be constant for all modes. The plate 

velocity cy is easily obtained from equation (5.6.1). 

c = 1d(f£/K) ($26.1) 

If ad is in millimetres and f is in kHz then Cc. is in metres/sec. 

A typical set of room temperature results for graphite are 

given in Table 5.2. 

The graphites measured with the exception of GR5 and 

pyrolytic graphite were manufactured by an extrusion 

process. Two samples of each grade of graphite were measured 

denoted by the letter G or P, meaning with grain or 

perpendicular to grain respectively. The orientation of the 

discs is best seen with reference to Figure 5.6. 

A summary of the room temperature results of 9 samples 

of graphite is given in Table 5.3. Graphite type GR5 does 

not have any grain orientation since it was isostatically
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ere. *aatio Beguency Mode K £/K 

31.402 . 1.550 20.26 

39.124 ,1 | 1.931 | 20.26 
47.944 al 2.367 20.26 

GRIP 0.123 62.010 ’ 3.067 20,22 

(Osh 258) 75.201 sa \suiaae| 20,21 
87.931 11 | 4.356 | 20.19 
27.933 v2 | 2.514 [ 19.45 

36.373 +1 | 1.960 | 18.55 
42.949 ’ 2.318 18.55 

Gric 0.164 55.600 71 | 3.004 | 18.52 
(eee ae) 67.932 yi | 3.648 | 18.62 

78.944 ’ 4.272 18.48 

29.071 71 | 1.608 | 18.27 
34.208 ;1 | 1.882 | 18.17 
44.470 i | 2.447 | 18.17 

GR2P 0.055 57.490 4,1 3.163 18.17 

fesse oe) 69.388 ,. | 3.832 | 18.22 
81.012 rl | 4.496 | 18.02 
27.134 2,1 | 1.579 | 17.18 
33:090 0,1 | 1.907 | 17.35 

41.778 3,1 | 2.408 | 17.35 
GRIG 0:089 53.850 4,1 | 3.216 | 17.35 

(ceeeee] 65.316 5,1 | 3.779 | 17.29 
76.129 6,1 | 4,420 | 17.22 
26.294 2,1 | 1,532 | 17.16 
33.480 0,1 | 1.948 | 17.18 
40.266 3,1 | 2.341 | 17.20 

GR3P 0.144 52.204 4,1 3.035 17.20 

toese- ay) “63.305 6,1 °| 3.677 | 17.22 
74.055 6,1 | 4.324. | 27.22 
31.005 2,1 | 1.519 | 20.42 
39.950 0,1 | 1.987 | 20.42 
47.399 3,1 | 2.322 | 20.15 

oR3G 0.159 61.565 4,1 | 3.024 | 20.36 
(essen arm 75.068 5,1 } 3.658 | 20.52 

86.616 6,2 | 4.283 | 20.22 
24,797 2,1] 1.560 | 15-30 
30.540 0,1 | 1.924 | 15.88 

37.795 3,1 | 2.382 | 15.88 
GRaP 0.112 49.041 4,1 | 3.083 | 15.30 

(e=36lmm) 59.140 5,1 | 3.742 | 15.81 
69.201 6,1 | 4.377 | 15.82 

30.633 2,1 | 1.538 | 19.92 
38.45 0,1 | 1.942 | 19.81 
46.533 3,1 | 2.380 | 19.81 

GRAG 0,137 60.475 4,1 | 3.046 | 19.85 | 
(d=38. 2mm) 73.879 $,1 | 3.697 | 19.90 | 

85.026 6,1 | 4.328 | 19.66 | 

29.793 2,1 | 1.493 | 19.96 
39.327 0,1 | 1.976 | 19.90 
45.457 3,1 2,285 19.90 

GRS 0.188 59.047 4,1 | 2.966 | 19.91 
(d=38, 1mm) 71.820 5,1 | 3.605 | 19.70 

83.824 6,1 4.222 19.85: | 

Table 5.3 

Thin Disc frequencies for 'P' and 'G' orientated graphites
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pressed and not extruded. In all cases the measured 

Poisson's ratio of 'P' cut samples was lower than that of 

'G' cut samples. The measured plate velocity did not show 

the same consistency. 

In some samples the plate velocity was higher in 'P!' 

cut materials and lower in others. The plate velocities are 

summarised in Table 5.4. 

  

  

Graphite Plate 
Sample Velocity 

ms~+ 

GRIP 2428.2 

GR1IG 2223.4 

GR2P 2170.7 

GR2G 2068.1 

GR3P 2057.4 

GR3G 2442.0 

GR4P 1898.8 

GR4G 2379.2 

GR5 237756         
Table 5.4 f



(a) “£=29.494 KHz 

  

  

t 

\ 
(b) ; £=31.058 KHz 

| | 
| 

  

£=31.093 KHz 
fe) 7}   

Effect of anisotropy on the echo 

FIGURE 5.7
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5.8 Effects of Anistropy 

Initially considerable difficulty was experienced in 

identifying the modes of vibration of graphite GR4G. The 

modes above 4,1 were readily identified from the number of 

oscillations in the echo steps but below the 4,1 mode there 

were more resonances than could be accounted for by the disc 

spectrum. This anomaly was not apparent in the graphite GR4P. 

At the lowest detectable modes , resonance occurred 

initially at 29.494 kHz and 31.058 kHz. These two resonances 

showed a modulation of the echo envelope typical of two disc 

resonances, The oscilloscope traces are shown in Figures 

5.7a and 5.7b. 

Further investigation revealed that this behaviour 

depended on the position of the line drive around the 

periphery of the disc. A position was found on the disc where 

the lowest mode showed no modulation, due to a second close 

resonance and the oscilloscope trace is shown in Figure 5.7c. 

The most likely reason for this effect is a small amount of 

macroscopic anisotropy in the manufacturing process of this 

particular graphite. The problem of mode identification was 

eventually resolved by use of the two position excitation 

technique described above to resolve odd and even modes using 

an O.3mm permandur line at two positions at 90° apart. The 

results of this experiment are given in Table 5.5 for each 

position. Use is made of the fact that £/K is constant to 

identify the modes. In the 90° position the two even modes at 

84.985 kHz and 86.230 kHz give f£/K values of 19.6 and 19.95
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0° Position 0=0.1353 90° Position 0=0.1385 
odd 6 odd o fiz | Ooo | Mode £/K | fez | OF 2 | mode £/K 

30.707 e 2,1 | 19.946 | 29.413 e 2,1 | 19.139 

38.674 e 0,1 | 19.932 | 38.708 e 0,1 | 19.928 

46.857 ° 3,1 | 19.926 | 46.769 ° 3,1 | 19.921 

60.704 e 4,1 | 19.914 | 60.727 e 4,1 | 19.951 

73.843 ° 5,1 | 19.956 | 73.756 ° 5,1 | 19.962 
84.985 e 6,12] 19.650 

85.208 c CS | BERET s oie) e 6,12] 19.938 

97.957 ° 7,1 | 19.788 | 97.810 ° 7,1 | 19.785 

110.026 e 8,1 | 19.780 | 109.836 e 8,1 | 19.772                 
Table 5.5 

Effect of driving line position on observed frequencies 

of GR4 graphite. 
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respectively. The average value of f/K is about 19.9 

implying that 86.230 kHz is the 6,1 mode resonance. The 

effect of the anisotropy is to increase the scatter in the 

£/K value and is particularly noticeable in the 2,1 mode in 

the 90° position. However, the effect on Poisson's Ratio is 

fairly small but does of course increase the uncertainty of 

the measurement.



ao = 

  

Frequency 
kHz 

K Mode £/K 

  

52.778 is 

53.306 i. 

54.068 1. 

79.349 2. 

101.408 3. 

107.649 3. 

122.257 4. 

142.257 a 

160.741 Dis 

161.830 5. 

179-819 5.     

7239 | 271: 30.615 

7530 | 1,1 30. 408 

7661 | 0,1 30.614 

6030 | 3,1 30.483 

4373 04,4. 30.386 

5424 | 1,2 30.388 

O23smesyu 30.388 

6890 | 6,1 30.300 

3122 | 0,2 30.260 

3444 | 7,1 30.280       9938 8,1 30.000 
  

(4,1), (1,2) 

(0,2), (7,1) 

(0,1), (2,1) 

C. = 3484 ms p ms 

Thin disc frequen 

comparison o = -0.099 

comparison o = -0.102 

comparison o = -0.094 

a 

Table 5.6 

cies of pyrolytic graphite
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5.9 Pyrolytic Graphite 

Pyrolytic graphite is manufactured by a chemical vapour 

deposition (C.V.D.) process onto a former made of some 

refractory material at high temperatures, (about 2000°C) . 

The pyrolytic graphite is very highly anisotropic with the 

basal planes parallel to the former and the planes stacked one 

on top of another. The disc used in the measurements performed 

was cut from a flat sheet of pyrolytic graphite deposited 

on a tungsten former. A discussion of the manufacture of 

pyrolytic graphite and a review of its properties is given 

in reference 39. 

The anisotropy of pyrolytic graphite does not have any 

influence on the present technique of measurement. The use 

of in-plane disc modes measures the in-plane value of 

Poisson's ratio. The disc of pyrolytic graphite of course 

appears isotropic in-plane. The measurement of modes of 

vibration do not in this case depend on the position at which 

the transmission line is coupled to the disc. The Poisson's 

ratio was measured by comparing the 1,2; 4,1 modes and as a 

check on accuracy, with the 2,1; 0,1 and 0,2; 7,1 modes. The 

room temperature frequency of vibrations are given in Table 

5.6. The ratios (Ky 17Ko,1) 0,1 and (Ko o7K7 1)/%1,7 are 

not included in Appendix A4.1 since they are not generally 

of sufficient sensitivity over the more conventional range 

of Poisson's ratio. However, a supplementary table over the 

range of Poisson's ratio -0.07 to -0.12 is given in Table 5.7.
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The. average value of Poisson's ratio obtained from the 

frequencies of Table 5.6 is -0.098. A negative value of 

Poisson's ratio for the basal plane Poisson's ratio of -0.15 

is also given in reference 39. A negative value of Poisson's 

ratio implies an increase in lateral dimensions with tension. 

Smith and Leeds state that this is a consequence of the very 

large compression perpendicular to the basal planes. The c 

axis strain resulting from in-plane stress given in reference 

42 corresponds to a o value of 0.90. This of course exceeds 

the normal range of Poisson's ratio for isotropic materials. 

  

  

  

          
  

Poisson's Lato Bopet 771 
Ratio Ren Ra 

-0.07 0.06982 -0.04463 0.00130 

-0.08 0.06681 -0.03560 -0.00135 

-0.09 0.06393 -0.02800 -0.00390 

=O7 110. 0.06119 -0.01851 -0.00627 

-0.11 0.05859 -0.00963 -0.00855 

-0.12 0.05613 -0.00067 -0.01070 

Table 5.7 

It was not possible in this case to obtain a second 

Poisson's ratio using the disc technique. Samples of pyrolytic 

graphite sufficiently thick to cut discs perpendicular to the 

basal planes were not available. The value of plate velocity 

for pyrolytic graphite was considerably in excess of the values 

of conventional graphites given in Table 5.4. For the pyrolytic 

x 
graphite sample investigated the plate velocity cy was 3484 ms_
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5.10 Variation of Graphite Elastic Constants with Temperature 

Graphites, because of their low density and refractory 

properties,are an important material in such applications 

as the throats of rocket engines. For this reason the 

temperature coefficients of elastic constants are of 

importance to designers. The transmission line technique is 

particularly applicable to the measurement of temperature 

coefficients. The transmission line can be chosen for its 

refractory properties and a section of magnetostrictive 

material can be brazed or butt-welded to the transducer end. 

By matching the characteristic impedances of the two materials 

spurious reflections can be avoided. This is often achieved 

from stock sizes of materials by etching with acid until the 

required dimensions are obtained. 

The interface between the transmission line and the 

resonator in the hot zone is required to maintain good acoustic 

integrity over the temperature range being used. In the case 

of the graphite discs a small hole about 1-2 mm deep and 

slightly larger than the transmission line was made and the 

two joined with an alumina based cement "Autostic". This 

cement is suitable for use up to 1600°C. 

The furnace used in the temperature experiments was a 

quartz tube capable of accepting discs up to about 40 mm with 

a temperature range of about 1000°c. The atmosphere around 

the disc is maintained inert by a small overpressure of 

nitrogen or argon.
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In all cases except pyrolytic graphite the 0,1 and 3,1 

resonances are measured over the full temperature range. In 

the case of pyrolytic graphite the 1,2 and 4,1 resonances are 

measured. Readings of the two modes were taken alternately 

at intervals of two minutes together with the temperature 

from a chromel alumel thermocouple. The thermocouple junction 

was placed in close proximity to the centre of the disc. The 

readings of temperature (mV from chromel alumel thermocouple) 

and frequency were recorded automatically via a Solatron data 

transfer unit on a teleprinter. A typical temperature run to 

1000°C took about five hours to complete. The frequency 

variation over the temperature range is given in Figures 5.8, 

for a typical sample GR3P. Although the frequencies of the two 

modes are measured alternately, the increase in temperature can 

be assumed to be linear over a time of about ten minutes, and 

the frequencies are interpolated to give their values at the 

same temperature to calculate Poisson's ratio. The results of 

this calculation are shown in Figures 5.9. No information of 

the variation of density with temperature is available, so 

Figures 5.10 show Young's modulus/density for the temperature 

0-1000°¢ although room temperature densities for these samples 

3 5 
is typically 1.8.10 Kgm ~, and it is not expected that this 

will change very much over the temperature range. 

Figures 5.9 show the variation of Poisson's ratio for all 

graphites including pyrolytic graphtie to be very small up to 

a temperature of 1000°c. The Young's modulus curves (Figures 

5.10) of conventional graphites show an initial decrease in
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Poisson's ratio to definite minima. Depending on the graphite 

type this minima occurs at about 100°c - 200°C, This behaviour 

has been noted by Mason and Knibbs 7°) | They account for this 

behaviour by postulating that the crystallites expand initially 

to fill the yoids in the polycrystalline graphite. During this 

time the Young's modulus decreases, Once the voids are filled, 

the stiffness of the material tends to increase. It would be 

expected that at some higher temperature (higher than 1000°c) 

Young's modulus must then fall again. Figure 5.10.6 shows 

Young's modulus variation with temperature for pyrolitic 

graphite. The modulus for pyrolitic graphite is between two 

and four times the room temperature values for the other 

conventional graphites, The density of pyrolytic graphite is 

slightly higher than conventional graphites, 2.1 x 10° kgm? 

compared to about 1.5 x 103 Kom >. The temperature coefficient 

for the pyrolytic graphite is again small, up to a temperature 

of 1000°c. It should also be noted that in this case there is 

no minimum in the Young's modulus for pyrolytic graphite and 

shows a steady fall with temperature. 

The conspicuous elasticity differences between commercial 

and pyrolytic graphites can now be considered. Commercial 

graphite consists of grains of pyrolytic graphite of various 

sizes and are random in their orientation. The grains in turn 

usually consist of single crystals possibly, butnot necessarily, 

randomly oriented. It must be emphasised that the measurements 

on the pyrolytic graphite are in the plane of the hexagonally 

structured atoms, strongly held together by covalent bonds. 

In the orthogonal direction the sheets of atoms are well
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separated and weakly bound together by a metallic like linkage 

of free electrons. The elasticity in this direction will be 

very low and the anomalous increase in elasticity with 

temperature of all commercial graphites must arise in some way 

from this anisotropy. 

The results on pyrolytic graphite are typical of a single 

covalent crystal. The elasticity is high and falls only 

slightly with temperature for the comparatively limited range 

measured. In the transverse direction the metallic bond would 

be expected to produce a large negative elasticity coefficient 

and a high Poisson's ratio for this orientation. 

Recent results on mica, which has a structure similar to 

graphite in which hexagonal atomic planes are widely separated, 

the inter-plane binding in this case however being covalent, 

show similar small changes in in-plane properties. 

The room temperature properties of commercial graphite 

are consistent with these features, at least qualitatively. 

The randomness of orientation means that there is an averaging 

between the high and low elasticities of the crystals and of 

the Poisson's mice. The wide scatter of results can be 

attributed to the variations in orientation due to the initial 

forms of carbon or carbon compounds used in their manufacture 

and variations in heat treatment. The production of graphite 

requires holding the material at a temperature of the order of 

2500°c for a number of days. The very large furnaces used take 

a long time to cool down but no process analogous to annealing
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of metals can be expected. The large anisotropy of graphite 

will result in the crystals within the grains,and to some 

extent the grains themselves,being under stress. The 

contraction during cooling could result in the presence of 

voids in the grains and their intensities. 

The paradox that the elasticity of commercial graphite 

having fallen to aminimum at one or two hundred degrees and 

increases over the full range of temperatures measured must 

be attributedtothe effect of changes in voids and stress. The 

features are common to graphites formed from a ee of 

source materials including graphite fabric, graphite composites, 

and 'densitised' graphite which is multiple graphitised material 

where a hydrocarbon liquid has been soaked into the material 

between each stage.. Recent measurements on a very fine 

grained "Poco" graphite,produced as a reference material by 

the National Bureaux of Standards, reveal the same phenomenon. 

At the present state of knowledge this paradox must remain 

unresolved. If the crystals are under stress at low 

temperatures the elasticity is expected to be high and this 

will fall as the stress is relieved. The reverse appears to 

occur. Knowledge of the effect of temperature and stress on 

pyrolytic graphite in the transverse direction would be a 

major contribution to the resolution of this paradox. As far 

as is known only silica, the elasticity of which increases 

to 1400°c, shows the same effect. The structural differences, 

silica being devoid of even microcrystalline structure, makes 

it unlikely that they have common sources.
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CHAPTER 6 

TIME OF FLIGHT MEASUREMENT OF ELASTIC CONSTANTS 

6.1 Introduction 

Time of flight methodsof measuring elastic constants 

offer an alternative to resonance techniques and find 

applications in areas of measurement where resonance methods 

have limitations. For example, in the resonance method a 

material Q factor of 20 requires a coupling of the same order 

giving a net Q of 10. The transducer is selective to an extent 

amounting to a 'Q' of about 3. An observation will thus be 

biased significantly by the transducer tuning. In the time 

of flight method the corresponding signal attenuation for a 

distance of 10 will be of the order of 14 dB. This gives a 

good signal to noise ratio and there is no deterioration in 

measurement accuracy. As has already been covered in previous 

chapters the loss in polycrystalline metals makes resonance 

methods ineffective at about 2/3 of the melting point. Single 

crystals and certain non-metals such a silicon nitride and 

graphite have low oss to their temperature limits. A variety 

of methods of measurements using piezo-electric and 

magnetostrictive sources have been described in the 

literature °*1"42"3)) this present work deals only with pulses 

derived from magnetostrictive transducers and is specifically 

designed to operate with thin transmission lines. 

Bell (ICA 1959) proposed a notched line technique for
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monitoring temperature in the centre of nuclear fuel rods. 

Single pulse methods of measuring temperature are fairly well 

established although the difficulties imposed by working in a 

nuclear environment still present considerable problems ‘43) , 

Instruments have been designed to measure time of flight (44) 

with a tuning accuracy of about +100 ms relying on estimating 

the 3 dB points of the return echo pulses. In ultrasonic 

thermometry applications, Fathimani (34) described a probe 

design and associated instrumentation for tracking temperature 

changes of frequency of resonant tuning forks. 

This present chapter gives a technique based on the 

transmission of two pulses that enable small changes in the 

elastic modulus of a material to be detected. Although the 

method has general applications it is particularly suited, 

after probe calibration, to ultrasonic temperature measuring 

applications. The material chosen to demonstrate the method 

was a sample of 2% thoriated tungsten, a material often used 

as probes in nuclear fuel rods.
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Return echoes 
FIGURE 6.1.b
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6.2 Pulse Overlap Velocity Measurement 

The reflection and transmission coefficients for 

displacement at an impedance discontinuity are given by 

equations (6.2.1) and (6.2.2) respectively. 

ao 1e22 
RS a (652.1) 

4,+2, 

22 1 7 =o (6.2.2) 
both, 

The impedance mismatch is arranged in this case for 2, 

to be less than Zi. The physical arrangement is shown in 

Figure 6.1(a),and Figure 6.1(b) shows the polarity of the 

reflected echoes. The time between the echoes 1 and 2 is 

the flight time in the sensor length d. If the velocity in 

the sensor material is c then the flight time t is given 

by equation (6.2.3). 

Cree ee. (6.2.3) 

The peak of the pulse is not necessarily the centroid of 

the energy and papadakiet®) uses the 3 dB points to find the 

centroid. All methods will be subject to some error if the 

spectral content and hence the shape of the pulse changes, say, 

due to a reactive impedance at a junction. 

The pulse overlap method consists of transmitting pairs 

of pulses. The time between launching these two pulses is 

adjusted so that the reflection from the impedance mismatch a
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The first pair of echoes are from the junction 
and the second pair are the end echoes. 

Period= 48.55us (less than the 2 way flight time). 

FIGURE 6.3.a. 

  

The first echo is the junction echo, the second 
junction echo and first end echo are overlapped. 

Period = 79.892us (equal to 2 way flight time). 
FIGURE 6.3. b.
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of the second transmitted pulse is made to coincide exactly 

with the pulse reflected from the free end of the sensor due 

to the first transmitted pulse. This is illustrated in 

Figure 6.2 where the echo timing relationships are shown 

schematically. If the two transmitted pulses are gated from 

an oscillator, then at overlap the period of the oscillator 

is the flight time in the sensor d. Figure 6.3(a) shows the 

typical echoes produced from a transmission of two pulses 

whose separation is less than the flight time in the sensor. 

Figure 6.3(b) shows the overlap condition where the period of 

the oscillator is adjusted until the amplitude of the combined 

pulse is at a maximum.
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6.3 The Composite Echo 

Equations (6.2.1) and (6.2.2) give the reflection and 

transmission coefficients. Putting z = 2/2, the reflected 

signal from the junction is: 

elas 

ae ie (6.3.1)   

and the transmitted signal is: 

2: 

12 ~ (itz) 
(6.3.2) a 

The signal transmitted back from the sensor section d into 

the transmission line c of Figure 6.1 is: 

wv? 2z 
Toi = C2) (6.3.3) 

The composite echo is then the sum of the signal reflected 

from the junction and the signal that has travelled the 

additional path in the sensor. The composite echo of the 

overlapped pulses is then: 

C= + ToT a1 (6.3.4) 

The ratio of reflected to transmitted pulses is more easily 

measured in practice and is given by 

2 
Pee 

BD laa aoe (6.3.5)
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Figure 6.4 shows this ratio as a function of z. Figure 

6.3(a) was obtained using a sensor of 1 mm 2% thoriated 

tungsten butt welded to a 1.5 mm line of the same material. 

These figures correspond to an impedance ratio of about 0.44. 

The measured ratio of pulse heights is 0.43 compared to a 

calculated ratio of 0.46. The variation of the ratio 

R/T,T, is shown in Figure 6.4 as a function of z over the 

range 0.1 to 1.0. Clearly the case of z = 1.0 represents the 

absence of an impedance mismatch and there is no reflection.
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6.4 Factors Affecting Choice of %,/%, Ratio _ 

The impedance ratio 2/2) can be controlled by selecting 

the ratio of diameters of the lead-in line to sensor line. 

To optimise the signal to noise ratio the composite echo 

signal should be made as large as possible. While the ratio 

of reflected to transmitted signal is infinitely variable, 

this is not true of the amplitude of the composite echo 

signal. Figure 6.5 shows the variation of composite signal 

amplitude relative to the incident signal over the range of 

zof Otol. A family of curves is given where the attenuation 

figure shown is the percentage of additional attenuation in 

the sensor line. It is preferable to maximise the combined 

signal at its high temperature and hence high attenuation 

than maximise it at room temperature. For example, the 

maximum composite echo amplitude with no attenuation is 1.25 

and occurs for an impedance ratio of 0.35. At 20% attenuation 

at this z, the signal falls by about 124%. However, if the 

signal is maximised at the 20% attenuation, an amplitude of 

1.11 corresponding to a z of 0.20 it will have fallen by only 

about 8%. 

(45) 
Arave and Buchenauer give attenuation for tungsten - 

2% thoria, up to 2800°C. If 8 is the attenuation in Neper/unit 

length, then the attenuation in dB is given by 

Attenuation (dB/unit length) = 8.6868 (6.4.1)
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For a sensor length of 150 mm the expected 

attenuations are shown in Table 6.1. 

  

  

  

ATTENTUATION 
TEMPERATURE } 

dB % 

1600 <i os 

2000 16 17 

2400 5.9 50 

2800 1053 70           

Calculated on the basis of data given in 

Reference 45 for a 150 mm W-2% Thoria sensor 

Table 6.1 

The available furnace for testing the probe was only 

capable of achieving a temperature of 1800°c. For this reason 

the sensor was optimised for an expected attentuation of 

“about 10%. From the curves in Figure 6.5 the maximum for 

10% attenuation occurs at about z = 0.3. Since the lead 

in line and the sensor are made from the same material the 

ratio of the diameters is 

nee Ors = Or 55 

The sensor was machined from a solid length of tungsten 

1.5m long and 1.5 mm diameter, this gives a sensor diameter 

of 0.82 mn.



. - 150 - 

f(t) 

  

t/2 Br/2 
  

          
Tdealised echo waveform 

FIGURE 6.6.a 

F(w) 

  

2n/t 1 / 

  

  
Spectrum of echo waveform 

F 
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6.5 Young's Modulus Measurement by Pulse Transmission 
  

The theory of pulses in transmission lines has been 

Geto e For an idealised discussed by several authors 

rectangular pulse input the received echo waveform as shown 

in Figure 6.6(a) is produced. Figure 6.6(b) shows the 

Fourier spectrum of a pulse of this shape. In practice the 

pulse shape differs from this rectangular shape as a result 

of finite speeds of rising and falling edges and also as a 

result of fringing effects in the transducer eeu), Most 

of the energy in the pulse can then be considered to occur 

at frequencies less than 27/T. Since the pulse width is 

approximately 4s this corresponds to a frequency of 250 kHz. 

The value of sensor diameter given above and this frequency 

gives a value of normalised frequency parameter for tungsten 

(as defined in Chapter 2) of approximately 0.2. Inspection of 

Figure 2.1(a) shows that the first longitudinal mode (L(0,1) 

is essentially linear in this region and hence the group and 

phase velocity take the same value. This means that the 

frequency components of the pulse spectrum travel with the 

same velocity and there is no dispersion thus preserving the 

pulse shape independent of delay time. Under these conditions 

the pulse propagates with velocity (Appendix 6,1). 

és = es 5 ce = cy es (E/p) G6.5,.1) 

Accurate absolute measurement of Young's modulus for a 

material depends on accurate knowledge of the dimensions of
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the sensor. Changes in Young's modulus can be inferred from 

flight time information without this knowledge. The method 

of estimating Young's modulus change is from equation (6.5.2). 

20002 
E, = (2) e (6.5.2) 

° 
° 

where 2 is the room temperature sensor length and ica is the 

delay at room temperature. 

The ratio of Young's modulus at temperature 6, Ey to 

the room temperature value Ey is given by 

E cae 

Be = (Ge) (1408) (6.5.3) 
fo} 8 

The factor a in (6.5.3) is the thermal coefficient of linear 

expansion and can generally be considered small and is not 

taken into account in the following. 

An instrument was designed to track small changes in time 

of flight with temperature. This instrument, based on the 

pulse overlap method, is described fully in Chapter 7.
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6.6 Temperature Coefficient of Young's Modulus 

A sensor as described in Section 6.4 was machined from 

tungsten - 2% thoria. It was installed in a Metals Research 

PCALO furnace capable of a maximum temperature of 1800°c. 

Temperature was monitored using a tungsten/tungsten rhenium 

thermocouple. 

The operating procedure of the flight time tracking 

instrument is as follows. The echo pulses were overlapped 

by manually tuning the echo pulse oscillator and observing 

the composite echo on an oscilloscope. The instrument was 

then switched to automatic track and no further manual 

tuning was required over the temperature range of the furnace, 

The echo was continually monitored on the oscilloscope to 

check that tracking lock was maintained. The period of the 

oscillator with the instrument in lock is the flight time in 

the sensor. Period and thermocouple e.m.f. were recorded 

automatically at two minute intervals on a teletype using a 

Solatron Data Transfer Unit. Figure 6.7 shows the variation 

of Young's modulus normalised to the room temperature value 

over the temperature range 0-1800°c. The total variation of 

Young's modulus is about 5%. The first temperature cycle is 

for the sample in "as received" metallurgical condition. The 

second temperature cycle shows some variation resulting from 

the annealing of the sensor, The Young's modulus of the 

annealed sensor is slightly higher than the un-annealed sensor, 

a feature common to other metals. Dislocations and
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imperfections which tend to reduce Young's modulus are 

removed during annealing resulting in increased material 

strength. There is an indication of a change of slope of the 

second heating cycle at about 1700°c, although insufficient 

data points are available to confirm this. However, it is 

known that at the recyrstallisation temperature (about half the 

melting point) mobile grain boundaries result in easier 

deformation. 

The room temperature velocity value for one sample was 

measured as 4659 ee Appendix A6.2 describes a standing 

wave method of measuring the velocity of the same probe and 

shows very good agreement.
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6.7 The Sensor as a Temperature Transducer   

The first and second temperature cycles are shown in 

Figures 6.8 and 6.9 respectively. There is a definite knee 

in the heating curve of the first cycle that is not apparent 

in the second cycle. This is most likely due to removal of 

dislocations by annealing. It is interesting to note that 

a second specimen also shows this knee at the same 

temperature (Figure 6.10). 

The considerable difference between the heating and 

cooling curves of Figure 6.9 is almost entirely due to the 

different rates of heating in the furnace rather than 

hysteresis in the specimen, Figures.6.11 and 6.12 show the 

first and second cooling curves of two different specimens 

plotted together. Hysteresis is not as pronounced in this 

case indicating that the differences in Figure 6.9 are almost 

certainly due to the differential thermal time constants of 

the tungsten/tungsten rhenium thermocouple and the sensor. 

The implication of the above results is that before such 

a sensor could be used as a temperature transducer, several 

heating and cooling cycles (five or six) are necessary before 

calibration, in order to stabilise the transducer. Also, the 

transducer should be calibrated at several spot values both 

during heating and cooling, allowing sufficient time for the 

transducer to reach thermal equilibrium at each point.
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CHAPTER 7 

INSTRUMENTATION FOR TIME OF FLIGHT TRACKING 

7.1 Introduction 

The measurement of variation of flight of time of an 

ultrasonic pulse over a wide temperature is a tedious process 

if carried out manually. A typical measurement cycle in 

Chapter 6 takes over six hours. 

In this chapter an automatic system is described which, 

after initially locked onto the pulse, will track the flight 

time variation over a wide range with good accuracy. The 

measurements discussed in Chapter 6 were obtained using this 

instrument. 

The instrument was initially designed as a pulse 

ultrasonic thermometer for nuclear fuel rod centre line 

temperature measurement, but clearly it is not restricted 

solely to the measurement of temperature. Since, primarily 

it is the variation of velocity that is being measured, the 

additional effect of parameters such as magnetic field or 

neutron flux could be determined. 

The technique of using double pulse overlap has already 

been explained in Chapter 6. The two pulses transmitted 

every pulse repetition interval (P.R.1I.), are derived from 

a voltage controlled oscillator, the period of which, at 

overlap is the two way flight time in the sensor. This
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y.C.O. is continuously adjustable over a finite range. The 

stability of the Vy.C.0. is a possible limitation of the 

accuracy in both manual and automatic mode. In the former 

it arises from the time interval between setting the composite 

echo amplitude and observing the period. In the latter there 

is a random fluctuation about the mean period due to what is 

essentially a control sampling system.
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7.2 Modified Pulse Overlap Technique 

To obtain a control signal to adjust the V.C.O. 

automatically, a modification to the double pulse overlap 

method is introduced. On alternate cycles of the P.R.I. 

oscillator the time interval between two pulses derived from 

the V.C.O. is lengthened and then shortened by the same small 

amount. This perturbation is symmetrical about the period of 

the v.C.0O. Figures 7.1(a) and (b) show the echo overlap 

situation if there was no perturbation of the second pulse 

and the frequency of the V.C.0. adjusted so that the echo 

peaks exactly coincided. In Figure 7.1(c) the second pulse 

is in advance of the exact overlap condition by a small 

amount At. This causes the peak of the junction echo resulting 

from the second pulse to be somewhere on the rising edge of 

the end echo from the first pulse. Similarly, by delaying 

the second pulse by an amount At as in Figure 7.1(d), the 

second pulse junction echo is on the falling edge of the end 

echo of the first pulse. 

Assuming that the V.C.O. period is slightly shorter 

(<At) than the sensor flight time, then the composite of 

(a) and (a) of Figure 7.1 will have a peak amplitude larger 

than the composite of (c) and (a). The reverse will be true 

if the V.C.0. period is slightly greater than the flight time 

in the sensor. Clearly the difference between these two 

conditions can then be used to control the V.C.O, When the 

v.C.O, period is identical to the sensor flight times, the 

amplitude of the composite echoes of the advanced and delayed
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1or AMPLITUDE 

  A Delayed pulse 

B Advanced pulse 

  

SL 52 53 us 54 55 

Composite pulse height 

FIGURE 7.2(a) 

DIFFERENCE 
AMPLITUDE 

56 

  

51 52 5 54 55 
us 

  
Difference Amplitude 

FIGURE 7.2 (b) 

Pulse amplitude relationships used for 

56 

tracking control.



    
  

a) open loop 
127.5298 

Lb) open loop 
T=72.357US 

c¢) closed loop 
T=71.893uS   

  

  The composite echoes 

FIGURE 7.3
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pulses will be identical and hence applying zero voltage to 

the control I/P of the V.C.0. Figure 7.2 shows the pulse 

amplitudes of the advanced and delayed composite echoes in 

a steel sensor with a nominal flight time about 50us from a 

sensor length of 125 mm, Figure 7.2(b) is the difference 

between the two composite pulses. 

The oscilloscope photographs in Figure 7.3 show the 

typical composite echoes. Figures 7.3(a) and 7.3 (b). are 

the advanced and delayed composite echoes without tracking. 

In Figure 7.3(a) the y.C.O, is ata slightly higher period 

than the flight time while Figure 7.3(b) shows the condition 

when the y.C.0. is at a longer period. Figure 7.3(c) shows 

the two composite echoes with the tracking loop closed and 

the V.C.0. period locked to the flight time of the 

ultrasonic pulse in the sensor.
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7.3 The Electronic System 

The block diagram of the system is shown in Figure 7.4. 

There are essentially three sections. The master V.C.0O. 

supplies the pulses via some decision logic and pulse 

amplifiers to the transducer. This V.C.O. has a range of 

500 kHz to about 1 MHz. A divider chain reduces this frequency 

to a value suitable for the particular sensor in use. The rate 

at which the double pulses are supplied is controlled by a 

second oscillator of much lower frequency, variable between 

10 Hz and 100 Hz. This second oscillator, the P.R.I. oscillator 

supplies a control to the decision logic which determines 

whether the advanced or delayed pulses are launched and also 

synchronises the receive circuitry to guide the echo returns 

to the correct sample hold circuits. The outputs from the 

sample hold circuits are subtracted and integrated before 

being fed back to the master V.C.O. 

7.3.1 Pulse Selection Circuitry 

The output from the V.C.O. and divider is a square wave 

of equal mark space ratio. This is the waveform x in 

Figure 7.5. On the rising and falling edges of this waveform, 

very short pulses are derived, typically 50 ns which are then 

lengthened to between 1 and 2 us. This waveform forms the 

clock to Gy in Figure 7.5,the propagation delay in the remaining 

logic circuitry and the width of the pulse is the total 

symmetrical delay about the V.CO. frequency. The clock C, is
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then used to synchronise Xx to give the waveform X which is 

identical to X, but delayed by the wildth of the clock pulse. 

The waveforms Xe X and Cc. are the three main inputs 

to the pulse selectors. In addition there is an input C from 

the P.R.I. oscillator which controls whether the two pulses 

2 or Zo are enabled. This occurs on alternate cycles of 

the P.R.I. oscillator. The two sets of pulse groups are 

transmitted via the same line to an amplifier which drives 

the transducer. The mechanism by which the relevant pulses are 

selected is summarised in the state map of Figure 7.6, where 

q denotes the circuit states. The hold state qs is also used 

to enable the receiver after the pulses have been transmitted 

to avoid breakthrough to the receiver, 

7.3.2 The P.R.I. Oscillator 

The P.R.I. oscillator is also a TTL voltage controlled 

oscillator with a frequency range between 10 Hz to 100 Hz. 

The basic function of this oscillator is to control the rate 

at which the pulses are launched into the transmission line. 

The maximum peeecine rate is determined by the length of 

the lead-in line. Reverberations are allowed to decay 

sufficiently to have minimum interference with subsequent 

transmissions. The frequency at which the P.R.I. oscillator 

operates has an effect on overall accuracy, the greater the 

sampling rate the better the control. As is shown later this 

effect is an instability in the tracking loop resulting from
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the delay time of the pulses in the transmission line before 

the controlling error voltage is integrated and applied to 

the V.C.0. 

The P.R.I. oscillator also supplies a control signal to 

the V.C.0. oscillator which selects delayed or advanced pulses. 

In addition a clear pulse is supplied to the pulse selection 

circuitry and also, the oscilloscope trigger is derived from 

the P.R.I. oscillator. A facility is included to enable 

either the early, late or both pulses to be viewed on the 

oscilloscope independently. 

7.3.3 The Receiver 

The function of the receiver is to amplify the echo pulses 

to a convenient level and gate the peak level of the pulses to 

the appropriate sample hold circuits. The difference between 

the two sample hold channel voltages (error signal) is then 

integrated and fed to the V.C.0O. control voltage input. 

Precautions have to be taken in the receiver circuitry 

to ensure that only the required pulse amplitudes are 

measured. This is achieved by the use of a comparator with 

the reference input taken from the peak detector. After 

detection of a pulse and allowing sufficient time for the 

sample hold circuits to acquire the new peak value, the 

peak detector is allowed to decay approximately 3 dB from its 

peak.value. Subsequent peaks are then gated to the sample 

hold circuits if they exceed this value. Having detected
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a peak,the peak detector is then inhibited until the 

transmission of the next set of pulses. 

Allowing the peak detector to decay by 3 dB imposes 

a restriction on the impedance mismatch between the 

transmission line and the sensor. This means that the 

amplitude of the first junction reflection must not exceed 

-3 dB of the composite pulse amplitude. This was not found 

to be a restriction in the application described in Chapter 6. 

However,if this is unduly restrictive in any application,it 

can be overcome fairly simply by ensuring that the first pulse 

is always detected and gating the peak detector output to the 

sample hold circuits on detection of the second pulse. 

The complete circuitry for the time of flight tracking 

instrument is given in Appendix 7.
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7.4 Performance 

The accuracy with which flight time variations can be 

measured with the instrument depends on the P.R.I. oscillator 

period and the time constant of the final integrator. The 

effect of these two parameters appears as instrument noise 

in the period measurements of the V,C.0. Figure 7.7 shows the 

typical noise component of the V.C.0O. when the control loop is 

open. A small drift is apparent due to temperature variations 

in the V.C.O. This long term drift is of no importance in 

closed loop since the V.C.0O. period is controlled by the 

flight of the time in the sensor, 

In closed loop, the noise component is a function of both 

the integrator time constant and the P.R.I. period. Figures 

7.8 and 7.9 show the typical noise for a nominal P.R.1I. period 

of 15 ms with the integrator time constants of 0.1s and iss 

The dependence of the noise on these two parameters is a 

result of the delay time in the transmission line. This is 

because the integrator runs continuously~ and the V.C.O. period 

is changing during the time of travel of the pulses in the 

transmission line. The period of the V.C.O. is different at 

the instant the control signal is updated to when the pulses 

were transmitted. The minimum permissible time that can 

occur is the flight time in the lead-in line, although the 

P.R.I. oscillator period is usually several times this 

value, the requirement to ayoid reverberation effects. So for 

an error at the V.C.0. input of e volts, the correction after 

one P.R.I. interval of t seconds will be et;/t where t is the
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Horizontal scale 1mS./div. 

Vertical scale 5V/div. 

Noise build up in sensor 

FIGURE 7.10 
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integrator time constant. Generally this will cause the V.C.O. 

to overshoot the required value and the overshoot is inversely 

proportional to the integerator time constant and proportional 

to the P.R.I. period. The reverberation noise is shown in 

Figure 7.10 and the optimum choice of P.R.I. is the smallest 

period where this does not contribute significantly to 

subsequent transmissions. This adjustment is carried out 

visually on the oscilloscope. Table 7.1 shows typical rms 

values of data noise obtained from the V.C.O. with the sensor 

held at a fixed temperature in the furnace. 

In normal operation the instrument is designed to track 

a changing flight time as a function of temperature. Figures 

7.11 and 7.12 show the integrator output response to a step 

change of 600 my. This represents a lock in range of about 

2 us which corresponds to several hundred degrees centigrade 

in the case of the tungsten sensor described in Chapter 6. 

  

  

  

INTEGRATOR TIME CONSTANT 

P.R.I. PERIOD O1ls i; 

Open Loop 0.5 ns 0.5 ns 

10.7 ms 3.2 ns 1.2 ns 

15.3 ms 5.4 ns 1.3) 05 

20.9 ms 4.7 ns i.8' ns         
  

R.M.S. V.C.O. Period Noise 

TABLE 7.1
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Integrator step response 

FIGURE 7.11 

  

Horiz=100mS/div. 
Vert=200mV/div. 
1/P step 550mV 

a)P.R.1.=16.9mS 
T=0.1s 

b)P.R.I.=29.05mS 
T=0.1s 

~ ¢)P.R.1.=31.6mS 
T=0.1s



\ 
Horiz.=500mS/div. 
\Vert.=200mV/div. 
|I/P step=550mV 

| 

ta) P.R.I.=10mS 
| T=ls 

  

  

7b) P.R.I.=20mS 

Tels 

  
c) P.R.I.=30mS 

T=ls 

|     
Integrator step response 

FIGURE 7.12
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With an integrator time constant of O.1ls the rise 

time to 90% of the final value is 400 ms. This implies that 

temperature changes of about 1000°C/sec can be tracked but 

there were no means available to check this capability in 

practice. The effect of a 1 second time constant is clearly 

visible in Figure 7.12. The rise time is clearly longer but 

the oscillation about the mean value is greatly reduced over 

the O.ls time constant.
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CHAPTER 8 

CONCLUSIONS 

Two sensitive methods of measuring the elasticity of 

materials have been dealt with. The first method consists of 

a comparison of two known modes to give a value of Poisson's 

ratio and Young's modulus. A number of modal frequency ratios 

are given in Appendix A4.2 which allows some redundancy in the 

data and enhances confidence in the result. The second method 

is applicable to measurement of temperature changes of Young's 

modulus by a time of flight technique. The principle of this 

method is well known but a modification based on junction and 

end echo overlap enable the method to be automated, An 

instrument has been designed to accomplish this and is shown 

to have good flight time variation tracking accuracy. The 

pulse overlap method is particularly suited to high temperature 

measurement in hostile environments. The probe material can 

be chosen to suit the temperature range and environment of the 

application. 

The disc resonance method has been applied to the 

measurement of the temperature coefficient of Poisson's ratio 

of a number of grades of graphite. It has been shown that 

mild anisotropy introduced by the manufacturing process can 

cause spurious modes of resonance. However, with careful 

technique it is possible to resolve the modes required to 

utilise the tables given in Appendix A4.2 and obtain consistent 

results. It is worth noting that while repeatable results
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can be obtained for any one particular disc from a sample, it 

was later found that considerable variation of Poisson's 

ratio can occur between discs from nominally the same 

material. It is not yet possible to extend this method of 

elastic constant measurement to generally anisotropic 

materials. However materials that appear isotropic in the 

plane of the disc can be dealt with. Pyrolytic graphite as 

a result of the vacuum deposition manufacturing technique 

has this property and its in plane Poisson's ratio and 

Young's modulus together with their temperature coefficients 

over 1000°C temperature range have been successfully measured. 

In order to obtain the measurements it was necessary to extend 

previously published solutions to the disc frequency equations 

to include negative values of Poisson's ratio. It is also 

shown that the temperature variation of Young's modulus of 

pyrolytic graphite does not have the same form as isotropic 

graphite. The results would seem to confirm that the initial 

fall in Young's modulus of isotropic graphites is due to c 

axis expansion to fill the voids in the structure, In the 

case of pyrolytic graphite c asix expansion will not influence 

in plane measurements. Sufficient data has been presented to 

enable this method of elastic constant measurement to be used 

systematically for a large variety of materials with 

confidence, 

An attractive method of measuring elastic constants would 

be direct measurement on an extruded bar. End resonances 

would have application here but require greater theoretical 

knowledge than exists at present. A previously unpublished



- 187 - 

spectrum of end resonance frequencies has been obtained for 

the longitudinal mode end resonances and the data obtained 

has shown good agreement with experiment. To make end 

resonances a viable method of elastic constant measurement 

theoretical values of frequency are required for higher mode 

end resonances. These modes have not received much attenuation 

in the literature, the most likely reason being that they only 

exist at the driving end of the bar (in contrast to the 

longitudinal mode end resonance). A simphe method has been 

given for obtaining these end resonances, experimentally. The 

theoretical approach successfully used for longitudinal mode 

end resonances, modified to account for the absence of a 

propagating mode did not give conclusive confirmation OL the 

experimental results. The method showed a sensitivity to boundary 

value approximation and needs further investigation. 

Nevertheless, the method presented here may well show results 

if the boundary value approximation is chosen carefully. This 

may necessitate some form of iteration over the points at 

which the boundary value is set to zero in such a manner as to 

minimise the mean or r.m.s. residual stress at the end face.
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APPENDIX A4.1 

SOLUTIONS TO THIN DISC FREQUENCY EQUATION   

The data given in these tables are the eigenvalues (K) 

of the thin disc frequency equation normalised to the plate 

velocity Ce Conversion to the eigenvalue (2) referred to 

the shear velocity Cc. is achieved by multiplying each K 

value by a factor 72/ (1-3) .
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SIGMA 0,1 9,2 diy k 52) 258 Beek 4,1 

0.00 1.84118 5.33144 | 1.74965 3.53782 | 1.65192 | 2.50683 3.23202 

0.01 1.84886 5.33334 1.74819 | 3.53764 | 1.64396 | 2.49623 3.21990 
0.02 1.85647 5.33533 | 1.24652\ | 3.53750 1.63595 | 2.48547 3.20752 
0.03 1.86403 | 5.33727 1.74464 | 3.53740 | 1.62788 | 2.47458 3.19491 

0.04 1.87153 5.33921 1.74256 | 3.53735 | 1.61976 | 2.46354 2.18206 
0.05 1.87898 | 5.34115 1.74027 | 3.53733 | 1.61158 | 2.45236 3.16897 

0.06 1.88637 5.34309 1.73777 3.53734 | 1.60334 | 2.44104 3.15565 

0.07 1.89371 | 5.34503 1.73507 | 3.53738 | 1.59505 | 2.42958 3.14211 

0.08 1.90099 5.34697 | 1.73217 | 3.53745 | 1.58670 | 2.41800 3.12835 

0.09 1.90822 | 5.34891 1.72906 | 3.53754 1.57830 | 2.40627 3.11437 

0.10 1.91959 5.35084 | 1.72575 | 3.53764 | 1.56984 | 2.39442 3.10018 | 

0.11 1.92252 | 5.35278 | 1.72223 | 3.53776 | 1.56132 | 2.38243 3.08577 | 

0.12 1.92959 5.35471 1.72852 | 93553768 | 1.55274 | 2.37032 3.07116 | 

0.13 1.93661 5.35665 1.71460 | 3.53801 1.54417 | 2.35808 3.05634 | 

0.14 1.94359 5.35858 | 1.71048 | 3.53813 1.53541 | 2.34571 3.04131 | 

0.15 1.95051 5.36051 1.70617 | 3.53423 1.52666 | 2.33321 3.02608 | 

0.16 1.95739 | 5.36244 1.70165 | 3.53832 | 1.51784 | 2.32058 3.01065 

0.17 1.96421 | 5.36437 1.69693 | 3.53838 1.50897 | 2.30785 2.99502 

0.18 “| 1.97099 5.36630 | 1.69201 | 3.53839 1.50003 | 2.29495 2.97920 

0.19 1.97773 | 5.36823 1.68690 | 3.53835 1.49103 | 2.28194 2.96317 

0.20 | 1.98441 | 5.37015 1.68158 | 3.53825 1.48197 | 2.26881 2.94695 

0.21 1.99105 5637280 1.67507 | 3.53807 | 1.47284 | 2.25555 2.93054 

0.22 | 1.99765 | 5.37401 1.67036 | 3.53779 1.46365 | 2.24216 2.91393 

0.23) |le2.00420,-| 5.37593 1.66445 | 3.53740 1.45439 | 2.22865 2.89712 

0.24 | Z01071 | 5.37785 1.65835 | 3.53687 | 1.44507 | 2.21500 2.8012 

0.25 | 2.01717 | 5.37977 | 1.65024 | 3.53618 | 1.43568 | 2.20123 2.86292 

0.26 | 2.02359 5.38159 1.64554 | 3.53530 1.42621 | 2.18733 2.84553 

0.27 Whee. 02907 5.38361 1.63884 | 3.53420 1.41668 | 2.17530 2.92795 

0.28 | 2.03630 | 5.38553 1.63195 | 3.53283 1.40780 | 2.15913 2.81016 

0.29 | 2.04260 | 5.38745 1.62485 | 3.53115 1.39740 | 2.14483 2.79218 

0.30 | 2.04885 | 5.38936 1.61756 | 3.52912 1.38765 | 2.13040 2.77400 

0.31. 2.65506 5.39128 1.61007 | 3.52666 1.37783 | 2.11583 2.75563 

0.32 | 2.06123 | 5.39319 1.60237 | 3.52371 1.36793 | 2.10112 2573705. 

0.33 | 2.06736 5.39511 1.59448 | 3.52018 | 1.35795 | 2.08628 3.71827 

0.34 | 2.07346 5.39702 | 1.58639 | 3.51599 1.34789 | 2.07129 2.69928" 

0.35. | 2.07951 5.39893 1.57809 | 3.51103 1.33774 | 2.05616 2.68009 

0.36 | 2.08552 5.40084 1.56959 | 3.50518 | 1.3252 | 2.04089 2.66069 

0.37 | 2.09150 | 5.40274 1.56089 | 3.49831 1.31721 | 2.02547 2.64108 

0.38 | 2.09743 | 5.40465 1.55199 | 3.49029 1.30681 | 2.00990 2.62126 

0.39 | 2.10333 5.40656 1.54288 | 3.48099 1.29633 | 1.99417 2.60122 

0.40 | 2.10920 5.40846 1.53356 | 3.47029 1.28576 | 1.97829 2.58096 

Ocdd lees tioG2 5.41036 1.52403 | 3.45806 1.27509 | 1.96226 2.56048 

0.42 | 2.12081 5.41227 1.51430 3.44422 1.26432 | 1.94606 2.53977 

0743 | 2.12657 5.41417 1.50435 3.42873 1.25346 | 1.92970 2.51884 

0.44 | 2.13229 5.41607 1.49419 3.41156 1.24251 | 1.91318 2.49767 

0.45 | 2.13797 5.41796 1.48318 | 3.39274 1.23144 | 1.89648 2.47626 

0.46 | 2.14362 5.41986 1.47321 3.37231 1.22028 | 1.87961 2.45461 

0.47 | 2.14923 5.42176 1.46239 3.35037 1.209¢0 | 1.89256 2.43271 

0.48 | 2.15481 5.42365 1.45135 3.32699 1.19762 | 1.84533 2.41056 

0.49 | 2.16036 5.42554 1.44009 3.30229 1.18612 | 1.82791 2.338315 

0.50 | 2.16587 5.42743 1.42859 3.27635 1.17451 | 1.81030 2.36548   
 



io EERO NCS 

  

0,2 
  

                
    

SIGMA 0,1 a Lig ZL 350 431 

0.00 1.84118 | 5.33144 1.74965 | 3.53782 | 1.¢5192 | 2.50685 | 3.23202 

-0.01 1.83345 | 5.32950 1.75090 | 3.53804 1.65982 | 2.51728 | 3.24389 
-0.C2 1.82566 | 5.32755 1.75194 | 3.53832 | 1.66767 | 2.52758 | 3.25580 
-0.03 1.81780 | 5.32561 1.75277 | 3.53864 | 1.67546 | 2.53772 | 3.26685 
-0 04 1.80989 | 5.32366 1.75339 | 3.53902 | 1.68320 2.54770 | 3.27792 
-0.05 1.80191 | 5.32171 1.75379 | 3.53945 1.69088 | 2.55751 | 3.23371 
-0.06 1.79386 | 5.31977 1.75398 | 3.53994 | 1.69351 2.56716 | 3.29922 
-0.07 1.78576 | 5.31782 | 1.75396 | 3.54048 | 1.70607 2.57663 | 3.20943 
~0.08 | - 1.77758 | 5.31587 1.75372 | 3.54108 | 1.71359 | 2.53591 | 3.31935 
-0.09 1.76934 | 5.31392 1.75329 3.54174 | 1.72104 | 2.59502 | 3.32392 
-0.10 1.76104 | 5.31197 1.75260 | 3.54246 | 1.72844 | 2.60393 | 3.33819 
~0.11 1.75266 | 5.31002 1.75171 | 3.54324 | 1.73577 | 2.61264 | 3.23713 
=0112 1.74422 | 5.30806 1.75061 | 3.54408 | 1.74365 | 2.62114 | 3.33573 
-0.13 1.73570 | 5.30611 1.74928 | 3.54498 ; 1.75027 2.62944 
~0.14 1.72711 | 5.30416 1.74773 | 3.54595 1.75742 | 2.63751 
~0.15 1.71845 | 5.30220 1.74597 | 3.54698 | 1.76452 | 2.64533 . 
-0.16 1.70971 | 5.30025 1.74398 | 3.54807 | 1.77154 | 2.65296 | 3.28645 

-0.17 1.70090 | 5.29829 1.74176 3.54923 | 1.77851 | 2.66032 | 3.39316 
~0.18 1 69201 | 5.29654 1.73933 | 3.55046 | 1.78540 | 2.66742 | 3.39946 
~0.19 1.68305 | 5.29438 | 1.73666 3.55175 | 1179225 2.67425 | 3.40632 

-0.20 1.67400 | 5.29243 1.73378 | 3.55310 1.79898 | 2.68089 | 3.41074 
~0.21 1.66487 | 5.29047 1.73066 | 3.55453 | 1.80568 | 2.68706 3.4157 
~0.22 1.65566 | 5.28851 1.72732 | 3.55610 1.81227 | 2.69300 | 3.42019 
-0.23 1.64637 | 5.28656 1.72375 | 3.55757; 1.81879 2.69866 | 3.42419 
-0.24 1.63699 | 5.28460 1.71994 | 3.55919 1.82524 | 2.70392 | 3.42768 

-0.25 1.62752 | 5.28264 1.71591 | 3.56087 1.83159 2.70587 3.43054 
-0.26 1.61797 | 5.28068 | 1.71164 3.56262 | 1.83786 | 2.71344 | 3.43307 
-0.27 1.60832 | 5.27872 1.70714 | 3.56444 | 1.84404 | 2.71763 | 3.43494 

-0,28 1.59859 | 5.27676 1.70240 | 3.56632 | 1.85011 | 2.72142 3.43624 

-0.29 1.58876 | 5.27480 1.69743 3.56827 1.85608 | 2.72479 3.43695 

-0.30 1.57883 | 5.27284 1.69222 | 3.57029 1.86195 | 2.72771 | 3.43704 

-0.31 1.56880 | 5.27088 1.68677 | 3.57236 | 1.86769 2.73018 | 3.43651 

-0.32 1.55868 | 5.26892 1.68108 | 3.57450 | 1.87331 2.73218 | 3.43535 

+0.33 1.54845 | 5.26696 1.67514 | 3.57671 | 1.87880 2.73363 3.43343 
~0.34 1.53812 | 5.26499 1.66896 3.57898 1.88415 | 2.73458 3.43096 
-0.35 1.52769 | 5.26303 1.66254, | 3.58131 1.88935 | 2.73498 | 3.42775 
~0,36 1.51714 | 5.26107 1.65587 3.58371 1.89438 | 2.73481 3.42579 

-0.37 1.50649 | 5.25911 1.64844 | 3.58616 1.89924 2.73404 3.41911 
~0.38 1.49572 | 5.25714 1.64177 3.58868 | 1.90391 2.73466 3.41369 
-0.39 1.48483 | 5.25518 1.63434 | 3.59126 1.90858 | 2.73063 3.40750 

~0.40 1.47383 | 5.25322 1.62666 | 3.59389 1.91262 2.72793 3.40052 

-0.41 1.46721 | 5.25126 1.61872 3.59659 1.91661 2.72455 3.39276 
~0.42 1.45146 | 5.24929 1.61051 3.59935 1.92036 2.72046 3.58417 

| -0.43 1.44008 | 5.24733 1.60205 3.60216 1.92377 2.71566 3.37476 
0.44 1.42858 | 5.24535 1.59331 3.60503 1.92638 | 2.71006 3.36452 

0.45 1.41694 | 5.24340 1.58431 3.60796 1.92964 2.70671 3335343 
-0.46 1.40516 | 5.24144 1.57503 3.61094 1.93201 2.69657 3.34147 
~0.47 1.39324 | 5.23947 1.56548 | 3.61398 1.93394 | 2.68863 3.3236 
-0.48 1.38118 | 5.23751 1.55565 3.61707 1.93941 2.67987 a, 
-0.49 1.36897 | 5.23554 | 1.54554 | 3.62022 1.93635 2.67027 oe 
-0.50 1.35660 | 5.23358 | 1.53514 3.62341 1.93671 2.65832 3. 

| 
| 
| 

| 

 



Odio 

  

  

  

SIGMA Sh Orn Tg 8,1 ir LO, * 

0.00 3.90945 | 4.56565 | 5.21067 | 5.84907 | 6.48317 | 7.11431 
0.01 3.89595 | 4.55073 | 5.19428 | 5.83116 | 6.46372 7.09527 
0.02 3.88212 | 4.53540 | 5.17741 | 5.81271 | 6.44364 | 7.07155 
0.03 3.86795 | 4.51966 | 5.16006 | 5.79370 | 6.42295 7.04915 
0.04 3.85346 | 4.50353 | 5.14224 | 5.77416 | 6.40166 7.02609 
0.05 3.83866 | 4.48700 5.12396 | 5.75409 | 6.37977 7.00236 
0.06 3.82355 4.47009 | 5.10523 | 5.73350 | 6.35731 | 4&.97800 
0.07 3.80813 | 4.45281 | 5.08605 | 5.71241 | 6.33427 | 6.95300 
0.08 3.79241 | 4.43515 | 5.06643 | 5.69081 | 6.31066 | 6.92373 
0.09 3.77640 | 4.41713 | 5.04639 | 5.66872 | 6.28650 | 6.90113 
0.10 3.76010 4.39875 | 5.02592 | 5.64614 | 6.26180 6.87428 
0.11 3.74351 | 4.38002 | 5.00503 | 5.62308 | 6.23655 | 6.84683 
0.12 3.72664 | 4.36094 | 4.98373 | 5.59954 | 6.21076 | 6.81873 
0.13 3.70949 | 4.34151 | 4.96202 | 5.57554 | 6712445 | 6.79015 
0.14 3.69207 | 4.32174 | 4.93990 5.55107 | 6.15762 | 6.76095 
0.15 3.67437 | 4.30153 | 4.91739 | 5.52614 | 6.13027 | 6.73117 
©.16 3.65640 | 4.28118 | 4.89448 | 5.50076 | 6.10242 | 6.70082 
0.17 3.63817 | 4.26041 | 4.87118 | 5.47493 | 6.07405 | 6.66991 
0.18 3.61967 | 4.23931 | 4.84749 5.44866 | 6.04515 | 6.63845 
0.19 3.60090 | 4.21788 | 4.82342 | 5.42194 | 6.01582 | 6.60645 
0.20 |° 3.58188 | 4.19613 | 4.79896 | 5.39479 | 5.98596 6.57386 
0.21 3.56259 | 4.17406 | 4.77413 | 5.36719 | 5.95561 | 6.54075 
0.22 3.54304 | 4.15166 | 4.74891 | 5.33917 | 5.92477 | 6.50709 
0.23 3.52324 | 4.12895 | 4.72332 | 5.31071 | 5.89344 | 6.47289 
0.24 3.50318 | 4.10592 | 4.69736 | 5.28182-| 5.86163 | 6.43816 
0.25 3.43286 | 4.08257 | 4.67102 | 5.25250 | 5.82933 | 6.40289 
0.26 3.46228 | 4.05091 | 4.64430 | 5.22275 | 5.79655 | 6.36708 
0.27 3.44144 | 4.03493 | 4.61722 | 5.19257 | 5.76330 6.33074 
0.28 3.42035 | 4.01063 | 4.58976 5.16197 | 5.72955 6.29387 
0.29 3.39900 3.98601 | 4.56192 | 5.13094 | 5.69533 6.25646 
0.30 3.37783 3.96108 | 4.53372 | 5.09948 | 5.66063 6.21852 
0.31 3.35551 | 3.93583 | 4.50514 | 5.06759 5.62544 | 6.18004 
0.32 3.33338 | 3.91026 | 4.47618 | 5.03526 | 5.58977 6.14102 
0.33 3.31098 | 3.88437 | 4.44684 | 5.00251 | 5.55361 6.10146 
0.34 3.28832 | 3.85815 | 4.41712 | 4.96932 | 5.51696 6.06136 
0,35 3.26539 3.83161 | 4.38703 | 4.93569 | 5.47982 6.02072 
0.36 3.24219 3.80474 | 4.35654 | 4.90163 | 5.44219 5.97955 
0.37 3.21872 | 3.77753 | 4.32567 | 4.86712 | 5.40405 5.93779 
0.38 3.19497 | 3.75000 | 4.29441 | 4.83216 | 5.36542 | 5.89549 
0:39 3.17095 3.72213 | 4.26275 | 4.79675 | 5.32628 | 5.85262 
0.40 3.14664 3.69391 | 4.23069 4.76088 | 5.28662 | 5.80920 
0.41 3.12205 3.66535 | 4.19823 4.72456 5.24645 5.76519 
0.42 3.09717 3.63644 | 4.16536 | 4.68776 5.20576 5.72061 
0.43 3.07200 3.60718 | 4.13208 | 4.65050 5.16454 | .5.67544 
0.44 3.04653 3.57756 | 4.09837 | 4.61275 She Dae, 5.62968 
0.45 3.02076 3.54757 | 4.06424 | 4.57452 5.08047 5.58332 
0.46 2.99468 | 3.51721 | 4.02968 | 4.53580 5.03761 5.53634 
0.47 2.96828 3.48647 | 3.99467 | 4.49657 | 4.99418 5.48074 
0.48 2.94156 3.45534 | 3.95922 | 4/25683 | 4.95019 5.44051 
0.49 2.91452 3.42382 | 3.92331 4.41657 | 4.90561 5.39163 
0.50 2.88715 3.39191 3.88693 | 4.37578 | 4.86044 5.34210             

  

 



Loa 

  

  

              

SIGMA Syl 6,1 71 8,1 Sia 10,1 

0.00 3.90945 | 4.56565 5.21067 | 5.84907 | 6.48317 | 7.11431 
-0.01 3.92261 | 4.58014 5.22656 | 5.86641 | 6.50199 | 7.13464 
-0.02; | 3.93542 | 4.59421 5.24195 | 5.88317 | 6.52916 | 7.15425 
-0.03 3.94787 | 4.60783 5.25682 | 5.89934 | 6.53768 | 7.17314 
-0.04 3.95998 | 4.62101 5.27116 | 5.91491 | 6.55452 | 7.19128 
~0.05 3.97166 | 4.63372 5.28497 | 5.92987 | 6.57067 | 7.20866 
-0.06 3.98299 | 4.64597 5.29822 | 5.94420 | 6.58613 7.22528 
-0.07 3.99392 | 4.65773 5.31092 | 5.95789 | 6.60087 | 7.24110 
-0.08 | 4.00444 | 4.56900 5.32304 | 5.97093 | 6.61488 | 7.25612 
-0.09 4.01455 | 4.67976 5.33457 | 5.98330 | 6.62814 | 7.27032 
~0.10 4.02423 | 4.69001 5.34549 | 5.99499 | 6.64065 | 7.28369 
~O.11 4.03347 | 4.69793 5.35581 | 5.00598 | 6.65238 | 7.29619 
-0.12 4.04228 | 4.70890 5.36549 | 6.01626 | 6.66331 7.30783 
-0.13 4.03039 | 4.71752 5.37453 | 6.C2518 | 6.67344 | 7.31857 
-0.14 4.05845 4.72556 5.38291 6.03862 6.68274 7.32841 
~0.15 4.06582 | 4.73302 5.39062 | 6.04267 | 6.69119 7.33732 
~0.16 4.07268 | 4.73988 5.39753 | 6.04993 6.69878 | 7,43527 
-0.17 4.07903 4.74615 5.40394 6.05641 6.70549 7.35227 
-0.18 | 4.08434 | 4.75175 5.40952 | 6.06702 | 6.71130 | 7.35327 
-0.19 4.09011 | 4.75672 5.41437 | 6.06690 | 6.71819 7.36326 
-0.20 4.09482 | 4.76102 5.41846 | 6.07088 | 6.72013 | 7.36723 
-0,21 4.09896 4.76465 5.42177 6.07399 6.72312 7.37015 
-0.22 4.10250 | 4.76759 5.42429 | 6.07622 | 6.72514 | 7.37200 
-0.23 4.10543 | 4.76981 5.42601 | 6.07755 | 6.72615 7.37275 
-0.24 4.10773 | 4.77130 5.42689 | 6.07795 6.72815 7.37240 
-0.25 4.10940 | 4.77205 5.42694 | 6.07741 | 6.72510 7.37091 
-0.26 4.11041 | 4.77204 5.42612 | 6.07591 | 6.72300 | 7.36826 
-0.27 4.11074 | 4.77125 5.42442 | 6.07343 | 6.71983 7.36444 

| -0.28 4.11038 | 4.76966 5.42182 | 6.06995 6.71555 7.35942 
-0.29 4.10931 | 4.76725 5.41830 | 6.06546 6.71016 7.35319 
-0.30 4.10752 | 4.76402 5.41836 6.05993 | 6.70363 7.34571 
-0.31 4.10498 | 4.75994 5.40846 | 6.05335 6.69594 | 7.33697 
-0.32 4.10168 | 4.75499 5.40209 | 6.04569 6.68707 7.32695 
~0.33 4.09761 | 4.74915 5.39474 | 6.03694 | 6.67701 7.31563 
-0.34 4.09275 | 4.74244 5.38638 | 6.02709 | 6.66573 7.30298 
-0.35 4.08708 | 4.73480 5.37701 6.01610 6.65322 | 7.28899 
-0.36 4.08058 | 4.72623 5236660 | 6.00397 | 6.63945 7.27364 
-0.37 4.07324 | 4.71672 5.35513 | 5.99068 | 6.62441 7.25690 
-0.38 4.06506 4.70624 5.34260 5.97621 6.60808 7.23876 
-0.39 4.05600 4.69480 5.32898 5.96055 6.59044 7.21920 
-0.40 4.04606 | 4.68236 5.31427 | 5.94367 6.57148 | 7.19819 
-0.41 4.03522 4.66892 5.29843 5.92556 6.55317 7.17572 
-0.42 4.02347 | 4.65445 5.28147 | 5.90621 6.52949 7.15177 
-0.43 4.01080 | 4.63896 5.26336 5.88559 6.50643 | 7.12632 
~0.44 3.99719 | 4.62243 5.24409 5.86370 6.48198 | .7.09935 
0.45 3.93263 | 4.60483 5.22365 5.84051 6.45611 7.07684 
-0.46 3.96711 | 4.58616 5.20201 5.81601 6.42881 7.04077 
-0.47 3.95062 | 4.56641 5.17917 5.79018 | 6.40005 7.00913 
-0.48 3.93315 4.54556 5.15512 5.76301 6.36932 7.97588 
0.49 3.91467 | 4.52359 5.12983 5.73448 | 6.33821 7.94012 
-0.50 3.89520 | 4.50051 5.10329 5.70458 6.30489 7.90452 

  

 



  

ios) ot 

  

- APPENDIX A4.2_ Sl 

| RATIOS FOR POISSON'S RATIO DETERMINATION 
1 ip ae oils +e     

 



= 194 = 

  

  

  

  

ue Ty 2 so Gy2= Seal ca 
SIGMA ee Boy “9,1 Fag] 

° -0.26553 -0.09506 -0.17765 0.09462 
0.01 -0.25934 -0.09197 -0.17487 0.09868 
0.02 0.25307 -0.08877 -0.17200 0.10288 
0.03 0.24662 -0.08546 -0.16903 0.10720 
0.04 0.24031 -0.08206 -0.16596 | Gites 
0.05 -0.23381 -0.07850 -0.16280 | 0.11624 
0.06 -0.22723 -0.07485 ~0.15954 ; 0.12095 
0.07 -0.22056 -0.07110 -0.15617 0.12580 
0.08 -0.21382 ~0.06723 ~0.15271 | 0.13077 
0.09 -0.20698 0.06325 -0.14914 | -0.13588 
0.10 0.20006 -0.05916 -0.14548 0.14111 
0.12 -0.19304 -0.05496 -0.14171 0.14648 
0.12 -0.18692 -0.05065 -0.13783 0.15197 
0.13 -0.17873 0.04623 -0.13385 0.15760 
0.14 -0.17110 -0.04169 -0.12976 + 0.16336 
0.15 -0.16202 -0.03705 -0.12557 | 0.16925 
0.16 -0.15651 0.03229 -0.12126 (G.7527 
0.17 -0.14889 0.02743 -0.11684 0.18142 
0.18 0.14116 -0.02246 0.11230 0.18770 
0.19 -0.13331 -0.01737 -0.10765 0.19421 
0.20 0.12535 -0.01218 ~0.10288 0.20065 
0.21 ~0.11727 -0.00688 -0.09798 0.20731 
0.22 -0.10905 -0.00148 -0,09296 0.21410 
0.23 -0.10071 0.00402 -0.08781 0.22101 
0.24 -0.09223 0.00962 -0.08253 0.22803 
0.25 -0.08362 0.01531 -0.07712 0.23517 
0.26 ~0.0748 2.02109 -0.07157 0.24240 
0.27 -0.06595 0.02695 ~0.06588 | 0.24974 
0.28 -0.05689 0.03289 0.06004 | 0.25716 
0.29 -0.04766 0.03888 -0.05406 i 0.26466 
0.30 -0.03828 0.04493 -0.04792 0.27221 
0.31 ~0.02872 0.05101 -0.04163 0.27980 
0.32 -0.01899 0.05710 -0.03517 0.28741 
0.33 ~0.00907 0.06318 -0.02854 0.29501 
0.34 0.00105 0.06924 -0.02174 0.30257 
0.35 0.01136 0.07523 -0.01476 0.31004 
0.36 0.02187 0.08111 -0.00760 0.31740 
0.37 0.03260 0.08686 0.00024 0.32458 
0.38 0.04355 0.09243 0.00731 0.33153 
0.39 0.05474 0.09778 0.01507 0.33821 
0.40 0.06617 0.10286 0.02305         0.34457 

  

  

 



  

  

  

  

          
  

RO et io) Sen comeans aT 12 aed 
SIGMA Boe Roba Rod Raa 

-0.00 -0.26552 -0.09568 -0.17764 0.09600 
-0.01 -0.27165 -0.09804 -0.18033 0.09068 
-0.02 -0.27770 -0.10090 -0.18291 0.08687 
-0.03 -0.28369 -0.10366 -0.18540 0.08320 
-0.04 -0.28960 -0.10630 -0.18779 0.07965 
-0.05 -0.29544 -0.10882 -0.19008 0.07624 
-0.06 -0.30123 -0.11124 0.19228 0.07296 
-0.07 -0.30694 -0.11353 -0.19438 0.06982 
-0.08 -0.31259 -0.11571 -0.19638 0.06681 
-0.09 |- -0.31818 -0.11777 -0.19828 0.06393 
-0.10 -0.32370 -0.11972 -0.20008 0.06119 
-0.11 -0.32916 -0.12154 -0.20179 0.05859 
-0.12 -0.33456 -0.12324 -0.20339 0.05613 
-0.13 -0.33990 -0.12482 -0.20489 0.05381| 
-0.14 -0.34517 -0.12628 -0.20629 0.05164] 
-0.15 -0.35039 -0.12761 -0.20758 0.04961! 
-0.16 -0.35555 -0.12888 -0.20877 0.04773] 
-0.17 -0.36064 -0.12988 -0.20986 0.04600; 
-0.18 -0.36568 -0.13082 -0.21083 0.04442 
-0.19 -0.37065 -0.13162 -0.21170 0.04300 
-0.20 -0.37556 0.13229 -0.21245 0.04174 
-0.21 -0.38041 -0.13282 -0.21309 0.04064 
-0.22 -0.38520 -0.13321 -0.21362 0.03971 
-0.22 -0.28992 -0.13345 -0.21403 0.03895 
-0.24 -0.39459 -0.13354 -0.21432 0.03837 
-0.25 -0.39919 -0.13348 -0.21449 0.03796 
-0.26 -0.40372 -0.13327 -0.21454 0103774 
-0.27 -0.40819 -0.13290 -0.21446 0.03770 
-0.28 -0.41259 -0.13236 -0.21425 0.03786 
-0.29 -0.41692 -0.13166 -0.21391 0.03821 
-0.30 -0.42119 -0.13079 -0.21344 0.03877 
-0.31 -0.42539 -0.12975 -0.21282 0.03953 
-0.32 -0.42951 -0.12853 -0.21207 0.04051 
-0.33 -0.43356 -0.12712 -0.21118 0.04172 
-0.34 -0.43753 -0.12553 -0.21014 0.04314 
-0.35 -0.44143 -0.12375 -0.20895 0.04451 
-0.36 -0.44525 -0.12176 -0.20760 0.04671 
-0.37 -0.44899 -0.11958 -0.20610 0.04886 
-0.38 -0.45265 -0.11719 -0.20444 0.05126 
~0.39 -0.45623 -0.11458 -0.20261 0.05393 
-0.40 -0.45973° ~0.11176 -0.20060 0.05656   
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APPENDIX A6.1 

THE PHASE AND GROUP VELOCITY IN THE LINEAR REGION 
  

OF THE -L(0,1)* DISPERSION CURVE 

The frequency equation for axially symmetric vibrations 

is: 

20785 , (8) I, (B)- (07-247) 7Ig (GIT, B)-4¥ GBI, (GIT Q(B) =0 

(A.6.1) 

If the Bessel functions are expanded in their series 

form and for small arguments only the first terms of the 

series are taken the zero and first order Bessel functions 

are: 

Jo (2) 1 (A.6.2) 

and 

J, (2) = ze (A. 6.3) 

Equation (A.6.1) then becomes: 

Gedo (any 847 47-671 0 (e6e4s) 

By definition 

=o nes (A.6.5) 

then 

07 tk? (97-11 + 77(3-4k7)} = 0 (A.6.6)



es eer 

With the bracketed term equal to zero gives 
N zy 

Bose oer sks (Ac6<7 
me, ui eye 

Since only the linear portion of the curve is being 

considered at low ¥ values, group and phase velocities are 

equal. 

Since, 

2 u 
k* = yon (A.6.8) 

2 
g = At (A.6.9) 
Y A+y 

and returning to un-normalised variables, 

We Ske Oe 
ic eC, =a sf = (A.6.10) 

SD eee ge moe fe 

Hence, 

c a/ = (A.6.11)
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APPENDIX A6.2 

VELOCITY OF SOUND IN THORIATED TUNGSTEN 
  

An independent check of the sound velocity in 2% 

thoriated tungsten was carried out on one of the sensors 

used in Chapter 6. The measured sensor length was 167.5 mm 

with a two way flight time of 71.893us. The rod velocity 

is therefore 

2 x 167.5.107° 1 =F = 4659.7 ms_ 
71.893; 10 

The method uses standing waves between the junction at the end 

of the specimen. The sensor is excited with a long burst of 

oscillations such that the junction and end echoes overlap. 

When the overlap signal amplitude is at a minimum then the 

wave in the sensor must have travelled an odd number of half 

wave lengths. i.e. so that the junction and end echoes are 

180P out of phase. 

The results obtained for the 167 mm probe were 

  

£(kHz) | 118.16 132.08 145.87 160.25 173.64 

n 85 9% 105 11s 12% 

ff 13.901 13,903 13.892 135935 13,891 

  

  

  

  

£ (kHz) 187.69 201.65 215.45 229.78 243.58 
  

                  n 134 144 155 164 175 

£/n 13,903 13.907 13.900 13.926 13919: 

Mean = 13.907 kHz 

Standard deviation o = 0.014 

4659.1 ms + " Velocity v



#7199 c= 

It will be seen that that the two measurements 

are in close agreement. The time of flight corresponds 

to a frequency of 13.909 kHz which is almost identical 

with the value obtained. by the alternative method, If 

some systematic error were associated with the junction 

this would probably show up as a phase error. The 

constancy of the values of f/n indicate that any such 

error is less than the sensitivity of the observations.



= 200 - 

’ APPENDIX A7 

  TIME, oF FLIGHT PULSE ‘TRACKING CIRCUITRY + 
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