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This thesis presents the results of numerical modelling of the propagation of dispersion
managed solitons. The theory of optical pulse propagation in single mode optical fibre is
introduced specifically looking at the use of optical solitons for fibre communications. The
numerical technique used to solve the nonlinear Schrodinger equation is also introduced.
The recent developments in the use of dispersion managed solitons are reviewed before
the numerical results are presented

The work in this thesis covers two main areas; (i) the use of a saturable absorber
to control the propagation of dispersion managed solitons and (ii) the upgrade of the
ustalled standard fibre network to higher data rates through the use of solitons and
dispersion management.

Gaturable absorbers can be used to suppress the build up of noise and dispersive
cadiation in soliton transmission lines. The use of saturable absorbers in conjunction
with dispersion management has been investigated both as a single pulse and for the
transmission of a 10Gbit/s data pattern. It is found that this system supports a new
regime of stable soliton pulses with significantly increased powers.

The upgrade of the installed standard fibre network to higher date rates through the
wse of fibre amplifiers and dispersion management is of increasing interest. In this thesis
the propagation of data at both 10Gbit/s and 40Gbit/s is studied. Propagation over
transoceanic distances is shown to be possible for 10Ghit/s transmission and for more
than 2000km at 40Gbit/s. The contribution of dispersion managed solitons in the future
of optical communications is discussed in the thesis conclusions.
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Chapter 1

Introduction

The demand placed on cominunication systems around the world is constantly increas-
ing. Most of the data from phones, faxes and computers is transmitted on single mode
optical fibre. The available bandwidth and low loss of optical fibres make them far more
Abfractive than the alternatives (such as coaxial cable) for cost effective high capacity
data transmission. The data rate required for a telephone conversation is 64khbit/s [1]
therefore a single optical fibre operating at a data rate of 10Ghit/s is able to carry more
tlian one hundred and fifty thousand telephone calls. However, communications systems
are now used to transmit television and radio signals as well as computer data through

the internet which greatly increases the required capacity.

1.1 Optical fibres

Optical fibre nsed for long distance data transmission is made from fused silica. The
most commmon type of fibre 1s step index fibre, a cross section of a step index fibre is
shown in figure 1.1, The core of the fibre has a slightly higher refractive index than
the cladding. The transmitted light can therefore be contained in the core through tofal
ternal reflection. The fibre can be described using two parameters, A, the relative cope
ladding index difference and V the normalised frequency [2]. These fwo parameters ape

given by;
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1
Vo= koa(n} — n%

where 1, and ny are the refractive indices of the core and cladding respectively, k, is the

wavenumber and a is the core radius. A typical value for A is ~ 3 1073,

Core Cladding
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Pigure 1.1 Cross section of a step index fibre. The core radius is a, the core has a slightly higher
refractive index than the cladding.

Ouly single mode fibres will be considered in this thesis. For a fibre to operate with
a single mode it must be designed such that V < 2.405. For operation at 1.55um the
core radius is ~ 4m and the cladding radius is ~ 60pm [2]. The basic characteristics
of optical fibre; i.e. loss, chromatic dispersion and nonlinearity will be considered in the

next chapter.

1.2 Digital optical data transmission

[ this thesis data is taken to be transmitted through an optical fibre as a digital signal.
This means that the transmitted signal is a series of 1’s and 0's. A1 is represented
Ly a pulse of light and a 0 is represented by the absence of a pulse. At the detector a
decision level is set, if the energy in a bit slot is greater than the decision level then a 1
is registered if the level is less than the decision level it is taken as a 0. In this way the
data pattern can be degraded by dispersion, nounlinearity and noise as it propagates along
tlhe fibre without causing errors in the received signal. There are two main formats nsed
to trausmit optical signals: return-to-zero (R7Z) or non-return-to-zera (NRZ). When af
NRZ format is nsed the pulse width is the same length as the hit peviad apd so il theps
are two consecntive 1's they are formed by a single pulse, NRZ pulses are APPITORI A ey

rectangular in 1“1“’ In R7 transmission the ]mlw widtlh is less than the D He B i'é. Al




tlhe signal level always returns to zero between two consecutive 1’s. Although NRZ f;gitl@@é .
use the available bandwidth more efficiently and are used n m;aily current s,ystems g;@@ater
fransmission distaices are possible using RZ pulses [3, 4]. NRZ pulses are not Com\:pé;tib;le
with all optical processing which is likely to be used in future high capacity systems.
The volume of data transmitted in a single optical fibre can be increased using time
division multiplexing (TDM) and wavelength division multiplexing (WDM). In time divi-
sion multiplexing two or more data signals are added together by interleaving the pulses

i the data patterns [5]. In WDM systems high capacities can be achieved by transmitting

data at several different wavelengths [6, 7, 8, 9].

1.3 Thesis overview

A peview of the theory of optical fibre transmission in single mode optical fibre is pre-
sented in chapter 2 of this thesis. This is required to understand the effects which limit
the transmission of data in optical fibres. This chapter also introduces the idea of soliton
pulses for optical commuunications and contains a description of the mumerical technigues
nsed to carry out the simulations presented in the rest of the thesis. Chapter 3 intro-
dices the more recent development of dispersion management for soliton transmission and
oives a brief explanation for the formation of dispersion managed soliton. This chapter
also includes a review of the properties of dispersion managed solitons and lists some
experimental results for propagation experiments using dispersion managed solitons.

The work presented in this thesis can be splif into two groups. Firstly a weak saturable
absorber is used as a control element in a dispersion managed trausmission line, these
rosnlts are discussed in chapters 4 and 5. In chapter 4 single pulse transmission for a
system with dispersion anageient and a weak saturable absorber is discussed. This
systeinn 1s found to support stable pulse propagation for a wide range of pulse energies,
T chapter 5 the effects of loss, third order dispersion and noise are included to study the
propagation of a 10Ghit/s data pattern in the system using dispersion management and
4 weals saturable absorber. Error free distances of more than 200Mm are found to he
possible.

Secondly the problems of upgrading the installed standard fibre to 10Ghit/# and
J0Ghit /s ave discussed in chapters 6 and 7 respectively. Tn chapter 6 the effects of altering
the dispersion map used to pransmit a 10Gbhit/s data pattern aver fransoceanic disbanees

are iuvestigated. In chapter 7 a novel, symumetric dispersion map is nsed o propagabe
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data at 40Gbit/s over more than 2000km of standard fibre. In the final chapter the results
presented in the thesis are summarised and the future of dispersion managed solitons for

optical fibre communications is discussed.




Chapter 2

Solitons and Optical Fibres

2.1 Introduction

I order to make a quantitative study of the propagation of pulses in optical fibrve if

is necessary to derive equations which accurately describe this process. The nonlineay

Schrodinger equation (NLSE) describes the propagation of nonlinear pulses in single maode
optical fibres. This chapter will first give the ontline of a derivation of the NLSE which will
not be rigourous but will include the important points. The main properties of the optical
fibre such as dispersion, self-phase modulation and loss will then be considered before the
concept of solitons is introduced. The problems involved with soliton transmission are
then considered along with the solutions that have bheen used. The split-step Fourier

method of solving the NLSE will also be described.

2.2 Derivation of the NLSE
T order to derive the NLSE the starting point is the wave propagation equation [10];

1O 0P, 0P

sz - = = Mo Lo 2
¢t Ot ; ot? T ot?

where ¢ is the velocity of light, ji, s the vacuum permeability, | is the electric field B(r, 1)
and Ppoand Py arve the linear and nonlinear induced polarisations which are related fn
the electrie field through the dielectric tensors VI and W) respectively.

The electric field is given as;

B(rt) =i [E(v, Deap(—iwal) + . (4:4)




where E(r,t) is the slowly varying part of the electric field, & is the polarisation vector of
the light and c.c. stands for complex conjugate. Similar equations for the slowly varying
parts of the linear and nonlinear polarisation can be found.

Tt is necessary to malke some approximations to proceed in the derivation of the NLSE,

firstly the nonlinear polarisation is treated as a perturbation to the linear polarisation.
This is a good approximation since optical fibres are only weakly nonlinear, the nonlinear
refractive index (1, = 2.5 x 107%em?/W [11]) is small when compared to the refractive
index of silica (n=1.45). Secondly it is assumed that the light is linearly polarised and its
state of polarisation does not change with propagation this means that a scalar approach
can be used rather than a vector one [12]. The effects of birefringence will be considered
later in sections 2.3.5, 2.3.6 and 2.6.3. The quasi-monochromatic approximation in which

the bandwidth of the field, Aw, is assumed to be much less than the carrier frequency

w0, is also made, this is a good approximation for pulses with widths greater than 0.1ps
[13]. Finally the nonlinearity is assumed to be instantaneous, which again is a good
approximation as long as very short pulses are not being considered [14].

Tlie Fourier transform of the electric field 1s defined as:

Blr,w—w,) = / E(r,t)exp[i(w — wo)t] dt (2.3)

which satisfies the equation
V2E + e(w)k’E =0 (2.4)

where k, = w/c and €(w) = 1 + v 4+ eny, 1s the dielectric constant with the nonlinear

part of the dielectric constant given by eng = %X'(B)lE(r,t){Q

The dielectric constant can be used to define the refractive index n(w)

fw) = n(w) + na| EJ? (2.5)
where 12, = = Re(y®)) is assumed to not change with frequency.

8n

It is now convenient to use a separation of variables to assume a solution of the form;

E(r,;u —w,) = Flz, g):l(,w — we)exp(ifoz) (2.6)

where A(z, w—w,)Isa slowly varving function of 7, 3, 1s the wave number and F'(x, y)1s the

ey
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modal distribution of the fundamental mode in‘a single mode optical fibre. Substituting

2.6 into equation 2.4 gives an equation in A(z,w)and one in F(z,y).

g'F  O°F o '
Fr v [e(w)kl - pF =0 (2.7)
N S PR o o
20— + (52 -82)A=0 (2.8)
The second derivative f;:} in equation 2.8 1s ignored since A is assumed to be slowly vary-

ing. this 1s known as the slowly varying envelope approximation. Re-arranging equation

2.8 and then using an approximation for 3% — g2 gives;

(Z; - 9; <"32 - 53) A (2.9)
%i = i [B(w) + A8 — Pol A (2.10)

A3 can be found from the modal distribution F(x.y) and An the perturbation 1n the

refractive index due to nonlinearity and loss [15]. An is given by;

100

/_X , == 115 ) 2 ; 2 ‘
n = nq|E +2ko (2.11)
4 can be expanded in a Taylor series;
2 . 1 2 /1 1 3 ¢
4 =3, + (w—wo)h + —7—(W* — W) P2+ a(w’ — W) s+ (2.12)
Pe) an/‘g (7 13)
Oy = |73 |w= Wo 2.4
! a(.u'“

Subystituting for 3 and A4 and taking the inverse Fourier transform, noting that w — wo

is replaced by the operator i3, IVes;

0A DA 4 0*A o .
9 L gy g o= A 24 2.14
oo T T e T2 1Al (2.14)
where the nonlinear coefficient 1s given by;
1ol )
N=— (2.15)
¢Aeyy

Gubstituting for AJF adds the effects of loss and nonlinearity explicitly into the equation.
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A, sy is the effective area which is found from the modal /cli’stribut-i,on [16].

It is useful to change to a frame of reference moving with the pulse.

z |
T=t-HhZ=t—— (2.16)

Ug
where v, 1s the group velocity of the pulse.

0A 7 1
j— = —zaA + 352

o > — 4?4 (2.17)

This equation is known as the generalised nonlinear Schrodinger equation (GNLSE)
and gives a very good description of the propagation of pulses through single-mode optical
fibre. The first term on the right hand side describes the effect of loss, the middle term

deals with dispersion and the final term is the Kerr nonlinearity. This equation can

he expanded to include higher order dispersion simply by including more terms from
the Taylor expansion of /3. The higher order dispersion hecomes more important when
the pulse’s frequency is near to the dispersion zero (i.c the point where 3,=0.0) and in
wavelength division multiplexed (WDM) systems.

In order to understand the different propagation regines that the GNLSE describes
it i useful to introduce two length scales [17]. These length scales give a measure of the
distance over which the dispersion and nonlinearity have a significant effect on the pulse.
The fivst length scale is the dispersion length (Lp), this length indicates the length over

which a Gaussian pulse width 1s increased by a factor of V2 due to dispersion and 1s givern

by
Lp= ——”— (‘2.18)

T, is the 1/e pulse width and is related to the more commonly used full width at half
maximum (FWHM) by Trwnm = BT,. B=1.665 for a Gaussian pulse and 1.763 for a
sech pulse.

The other important length scale 1s the nonlinear length (Lyz) which is length over

which the bandwidth doubles and is given by:

1
Ly = ey

where P, is the pulse’s peak power.



If these lengths are of a similar size to the length BVGI‘ Wiiiéh the pulses are propagated
then the effect that they relate to becomes important. This lead to 4 different regimes
which can be described. The first regime is when [ < Lp, Ly in this regime neither
dispersive effects or nonlinear effects are important. 1t relates to low power pulses with
a large pulse width transmitted over short distances and is of little interest for long
distance communications. The other regimes are considered In the following sections.
Firstly the case where dispersion dominates (L > Lp,L <« Lnr), then the case where
noulinearity dominates (L > Lar. L « Lp)and finally the case where both are important
(L > Lp.Lnp)- The last regime is of particular interest as it describes the conditions

where it is possible for solitons to exist and will be considered in section 2.4.2.

2.3 Optical fibre properties

2.3.1 Introduction

In this section some of the properties of optical fibres and their effects on a propagating
pulse are considered. It is useful to look at these properties in 1solation before their
combined effects are examined. The first property of interest is group velocity dispersion
(GVD). Next self-phase modulation (SPM) caused by the nonlinear Kerr effect will be
discussed. Then the main loss mechanisms of optical fibre will be considered. Next 18
o section on birefringence which will show that real single mode fibres actually support
two modes, one for each polarisation. The final section exaniines cross-phase modulation

which is also a result of ihe nonlinear Kerr effect.

2.3.2 Group velocity dispersion

Firstly the regime where group velocity dispersion (GVD) is dominant is examined [18].
As stated earlier this regime occurs when L > Lp,L < Lnp. The GVD causes the
different frequencies that make up the optical pulse to propagate with slightly different
velocities. In the normal dispersion region (3, > 0) longer wavelengths travel more quickly
whereas in the anomalous region (B3 < 0) shorter wavelengths travel more quickly. Since
the different frequency COmpoNeLts of the pulse are travelling at different velocities the
pulse width increases.

In order to look at this mathematically we can use a simplified version of the GNLSE

[19]. Firstly since nonlinear effects are not important we cai set v = 0. The pulse can

29



tlien be transformed to remove loss and give the normalised pulse envelope U(Z, T ), which

is given by;

z
A(ZT) = \/E,ea;:p( s )U(Z T) (2.20)

This then leaves a simplified equation to describe this regime;

U 1, 0

— = <fhrs 2.21
Yoz T 27 or (2:21)

The normalised equation can be solved using the Fourier method. U(Z,w) is the Fourler

transform of U(Z,T) and is defined by;

1 o
U(Z.T) =5 / wexpliwT)dT (2.22)
which satisfies the ordinary differential equation
dlz 1. 5
— —ZBwtU 2.2
iz = 3t (2.23)
This equation can be integrated to give;
Sy Sy I /) 2 A €
U(Z,w)=U(0,w)exp 5/j2w Z) (2.24)
[7(0.w) is the Fourler transform of the field at Z=0, 1.c
oo
[7(0,w) = / 00, T)eap(iwT )dT (2.25)

Equation 2.24 shows that the spectrum of the pulses is unchanged as it propagates
through the fibre. The phase of the different spectral components does change and this
leads to changes in pulse width and pulse shape.

A general solution to this equation is found by substituting equation 2.24 mnto equation

Fapyeyen

il

17, 1
U(2,T) = = / U(O.w)c'f.rpi(>)')w Z—wT) JT (2.26)

The effects of dispersion on a Caussian pulse are important i the study of dispersion

managed solitons and so that case will be considered here. Taking the input pulse U(0, T)
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as;

T* .
U0,T) = exp 377 (2.27)
after propagating over a distance Z in fibre with GVD of f, the pulse is given by;
i ; T'Z }/'2 T2
U(Z,T) = z cop | (2.28)

T2 — ifZ 2T = ifa2)

Equation 2.28 shows that ihe Gaussian pulse retains its shape during propagation however

the pulse width increases with Z. The pulse width is given by;

Z 2
Ty =Toy| 1+ (——) (2.29)
Lp

Since the increase in pulse width is inversely proportional to Lp shorter pulses are
broadened more quickly than broader ones. This is due to shorter pulses having a wider
spectrum and since the different spectral components travel with different velocities there
is a wider range of velocities. The amount of broadening also increases if fibre with a

gh the sign of the dispersion does not affect the amount

oreater dispersion s used althou
of pulse broadening for this input pulse. Dispersive pulse broadening can he seen in the
sinulation results given in figure 2.1. This figure shows a Gaussian pulse with a FWHM
of 20ps and a peak power of 0.01W broadening over 40km of fibre with dispersion of
—10.0ps* [km.

In addition to broadening the pulse the dispersion also induces a chirp on it. A pulse
i« said to be chirped when the instantanecous frequency changes across the pulse. The
difference i the mnstantaneous frequency is given by the time derivative of the phase,
~:7)(1~ For the Gaussian pulse which was considered earlier the phase can be found from

the imaginary part of equation 2.28;

z
- O+t () 2.30
| vzt L (2.30)

D

The difference in the mstantaneous frequency (dw) 1s therefore given by;

_Qf - 959""‘(/32)(2/L13)T
aT ~ = 1+ (Z/Lp)T]

This equation shows that the frequency change across the pulse is linear. 1t also shows

C
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Figwre 2.1 A 20ps Gaussian pulse broadening to 58ps over 40km of fibre with dispersion of
—10.0ps?/km. The initial pulse is unchirped and has a peak power of 0.01W.
that although the size of the chirp is not affected by the sign of 3,. it affects the sign
of the chirp. This means that for normal dispersion fibre the wavelength decreases from
the leading edge to the trailing edge; for anomalous dispersion the opposite 1s frue. The
input and final instantancous frequency from the dispersion broadened Gaussian pulse
are shown in figure 2.2

Qo far only the case where the input pulse 1s an unchirped Gaussian has been consid-
cred. The other pulse shape that is of particular interest here is the hyperbolic secant
(sech) as this is the shape of a soliton. Sech pulses behave in the same way as a Gaus-
sian in a purely dispersive system with the pulse retaining its shape but broadening and
hecoming chirped as can be seen in figures 2.3 and 2.4. Figure 2.3 shows an mput sech
pulse with a FW HM of 20.0ps and peak power of 0.01W propagating through 40km of
fibre with dispersion of —10.0ps?/km, figure 2.4 shows the initial and final instantaneous
frequency variation across the pulse. Other pulse shapes such as super Gaussians, which
have steeper edges. broaden more rapidly and undergo distortions in their pulse shape.

The final case that must be considered is when the nput pulse already has a linear
chirp. If the chirp on the pulse 1s the same sign as the dispersion induced chirp then
the pulse broadens as before although at a greater rate than an unchirped pulse with the

sane pulse width. If the chirp and the dispersion have the opposite sign then the pulse
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Figure 2 9: The effect of dispersion on the instantaneous {requency of a Gaussian pulse. The horizontal
line is for the unchirped nput pulse which has a FWHM of 20.0ps and a peak power of 0.01W. The
chirped pulse has propagated through 40.0km of fibre with dispersion of —10.0ps?/km.
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Figure 2.3: A 20ps sech pulse with peak power of 0.01'W broadening over 40km of fibre. with dispersion
of 10.0ps*/km.
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Figure 2 4+ The effect of dispersion on the instantaneous frequency of a sech pulse the horizontal line
is {or the unchirped input pulse which has a FWHM of 20.0ps and peak power of 0.01W. The chirped
pulse has propagated through 40.0km of fibre with dispersion of ~10.0ps?/km.

first compresses and then expands. When the chirp on the initial pulse and the dispersion
induced chirp have opposite s1gns the frequencies at the leading edge of the pulse are
propagating with a Jower group velocity than the frequencies on the trailing edge of the
pulse. This canses the pulse width and the chirp on the pulse to decrease until it reaches
the point where it 1s unchirped. The pulse then gains a chirp of the opposite sign to 1ts
input chirp and the pulse broadewn in the way described previously.

Ouly the lower order terms Lave been considered here. If higher order terms had been
included from the Taylor expansion of 7 in equation 2.12 then pulse evolution would be
more complicated [20]. These higher order terms become important when working close
to A, (the wavelength where 3, = 0) and when using wavelength division multiplexing
(WDM), the higher order terms tend to lead to pulse assymetry and the generation of
oscillations on the tails of the pulses. The effect of third order dispersion on an mput
Gaussian pulse (FW HM=20.0ps, peak power=0.01W}) is shown in figure 2.5. In this sim-
wation the GVD was set to 2€ro. and the 3rd order dispersion was taken to be 1.0ps” [km.
This is a value far higher than s found in optical fibre and 18 used here in order to increase
the effect for illustration purposes. Third order dispersion in single mode optical fibre 1s
generally ~ 0. 1ps®/km.

The dispersion is also expressed as the group delay dispersion, D, which is in the units
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Figure 9.5 The effect of third order dispersion which causes the pulse to develop oscillations on the
trailing edge. The input pulse was a Gaussian with peak power of 0.01W and FWHM of 20.0ps. This
output is taken after the pulse has propagated over 10000km of fibre with zero GVD and third order
dispersion of 1.0ps®/[km

ps/(um km) rather than J, which is in the wnits ps? ki, The two parameters are related

throngh [21]:

27ce
— =] ¢
D = '————)\2 122 (

[N
(o)
(8]
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It is umportant to note that the sign of these two parameters is different. [, is positive
for normal dispersion and negative for anomalous dispersion whereas D is positive for
anomalous dispersion and negative for normal dispersion. Both parameters will be used

i this thesis.

2.3.3 Self-phase modulation

The next regime that will be considered is where the Kerr nonlinearity dominates, 1.e.
L > Lyp. L K Lp [22]. This s the case when broad pulses with high peak powers

are being considered, or if the wavelength of the pulses is close to \,. The effects of
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nonlinearity can be investigated by setting B2 = 0 in equation 2.17 which gives;

dU 1 . _
_ - TI1T ..
7 L\z,g(lp Z)|L 1t (2.33)

where o represents the fibre loss which is important when considering the Kerr nonlinearity
since as the pulse 1s attenuated the size of the nonlinear refractive index is also reduced.

Ly = 1/~7P; 18 the nonlinear length. Equation 2.33 can be integrated to give;

Uz, 1) = U(O,T)e:{:p(iqb;\r,;(Z,_T)') (2.34)

where U(0,T) is the pulse at 7 — 0.0 and &y is the nonlinear phase shift and 1s given

by

‘ , Ze
oni(2.T) = U0 T)PFH (2.35)
Lne
1
where Zej; = —(1— exp(aZ)) (2.36)
a

Z.sg s the offective length scale of the nonlinearity in a lossy systeni. This length scale
is shorter than Z and gives the distance over which the same phase shift would occur 1n
a loss-less system. Equation 2 33 shows that the effect of the nonlinear Kerr effect 1s to
oive the pulse an intensity dependent phase «Lift. This causes a chirp across the pulse.
Sclf-phase modulation also gives the pulse a frequency chirp which can be seen in the

stantaneous frequency across the pulse as given by the time derivative of the phase;

Zeys
LN L

o 0,1’J a . E
i) = = ok = = (10 (0.TT)

—
[N
w
=~J

If the Gaussian input given 1 equation 2.27 1s used in this equation the frequency ditfer-

ence 1s given by

. o Zegg 2T T* ,
0 — —_— _— -7 .
Sw(T) = T thlp o7 (2.38)

This equation shows that the frequency chirp increases with propagation distance, as
new frequencies are created at the leading and trailing cdges of the pulse. The frequency
decreases towards the leading edge of the pulse and increases towards the trailing edge.
In this case, unlike that of pure GVD. the frequencies at the edge of the pulse are not

part of the initial pulses spectruin and have been created by the nonlinearity. This can be
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Figure 2.6: The spectrum of a 20ps Gaussian pulse with peak power of 0.1W as it undergoes self-phase
modulation in 40km of fibre in the absence of dispersion..
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Figure 9 7+ The instantaneous frequency across a 20ps Gaussian pulse with a peak power of 0.1W. The
Lhorizontal line is the input pulse and the other line shows the pulse after propagating over 40km of fibre
with no dispersion and demonstrates the chirp induced by SPM.
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seen in figure 2.6 which shows the spectrum of a 20ps Gaﬁssian pulse with a peak power
of 0.1W as it propagates through 40km of fibre with no dispersion or loss. It is clear
that the frequency broadens substantially during propagation. The reason for the peaks
in the spectrum can be seen from figure 2.7 which shows the instantaneous frequency
across this pulse at the end of its propagation. This shows that there are two points ou
the pulse that have the same instantaneous frecuency, these two points can be considered
s two waves with the same frequency but different phases. These two waves interfere
cither constructively or destructively depending on their relative phase and lead to the

oscillations in the spectrum of the pulse.
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Fioure 2.8+ The spectrum of a 20ps super-Caussian pulse with a peak power of 0.1W as it undergoes
self-phase modulation. 1t can be seen that, unlike ihe Gaussian pulse, here most of the energy remains

within the central region

The size of the frequency chirp depends on how steep the leading and trailing edges
of the pulses are. Pulses such as a super-Gaussian which have steep leading and trailing
edges and relatively little change in the pulses intensity over the central region have a
larger frequency chirp as can be seen in figure 2.8 however most of the energy stays in
the central part of the spectruin whicl is shown in figure 2.9. The parameters for this
simulation were the same as those for the Gaussian pulse, the only difference was the pulse

shape. This means that it is useful to use square pulses if it is necessary to minimise the

offects of SPM.

31



-
N

ncy/THz
O
N
R

o
<

0.1
0.0}

-

|
-

b s sdass s s

iregu

)
JBEEN
~

-
©

N

i

—0.2¢

s
T T T T T T SEEEENSERRERERN]
|

©

- ot

@) '7” (\} . 5 P BN APPSR B SRS

5 -30-20-10 0 10 20 30

|

Time/ps

Figure 2.0 The instantaneous spectrum of a 10ps super-Gaussian pulse with a peak power of 0.1W
alter it has propagated over a 40km of fibre. The SPM induced chirp can clearly be seen although there
is no chirp over the central part of the pulse.

2.3.4 Fibre loss

One of the main reasons for e success of optical fibres in long distance commuuications

is their low loss(23]. The fibre loss, « is given by;

]- l Poul
o = ——Iin
L Pin

(2.39)

Where L is the length of the fibre and Pou and P, are the output and input powers
respectively. The fibre loss is more commonly quoted iu units of AB/km 1n this case the

loss, agp. 1s given by;

10 Pou.t.
QqB — ———L—l()g Pin (240)
o and agp are related by:
agp = 10alogoe (2.41)



The loss of an optical fibre 1s typically 0.2dB Jkm. The loss profile of silica can be seen
in figure 2.10. The three main mechanisms that contribute to the loss are marked on this
diagram, they are Rayleigh scattering, infra red electronic absorption and absorption by
the O H~ impurity. The first two are intrinsic i.e a fundamental property of the material

while the last one is extrinsic as 1t is the result of an impurity (24].
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Figure 2.10: The loss profile for silica fibre.

Rayleigh scattering 1s caused by random fluctuations i1 the density of the fibre either
through variations in the chemical composition of the silica or through the random orien-
tation of the molecular units that male up the silica. The strength of Rayleigh scattering
varies as A7 and so it 1s strongest at short wavelengths. The other intrinsic loss is caused
by electronic absorption due to a lattice absorption band, this s marked on the diagram
s material absorption. This absorption peaks at 9 but it is a very broad band and so
extends down to about 1.6pm. The final major loss mechanism 1s due to the absorption
of the OH™ iou. This absorption occurs at 2.7pm but there are also peaks at l.4um,
0.95m and 0.725pm due to resonances.

This loss profile leaves 3 windows available for optical transmission. The first window
oecurs at 850nm where the loss is ~ 10dB, this window was originally used as there
were readily available sources and detectors which operated at this wavelength. The

second window occurs at 1.3pm in this window not only is the loss low but 1t 1s also
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the wavelength of zero dispersion for standard or step iiidéx fibre. This has led to large
amounts of standard fibre being installed in the ground. The final window has the lowest
loss of ~ 0.2dB and occurs at 1.55um this window has become mncreasingly popular due
to the invention of Erbium doped fibre amplifiers [25, 26], and dispersion shifted fibre.
With the use of dispersion management it is also possible to use this window in standard

fibre (see chapters 6 and 7).

2.3.5 Birefringence

One of the assumptions that was made during the derivation of the GNLSE in section
2.2 was that the field could be treated as a scalar. In real fibres the field has to be
treated as a vector. This is because the fibre is birefringent, that is the two polarisations
have different refractive indices [27, 28, 29]. This case can be described by two coupled

noulinear Schrodinger equations as given by [30];
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An ideal optical fibre, with a perfectly circular core is not birefringent, however in
reality all fibres are at least slightly birefringent. This is caused by the ellipticity of the
core which mcans there are two axes with slightly different propagation constants. The
ellipticity of the core varies widely along the length of the fibre on a length scale 10-
100m and is very susceptible to changing conditions. The birefringence causes the two
polarisations to go in and out of phase as the light propagates and so the polarisation
state rotates as the light travels down the fibre. The polarisation follows an elliptical
patli, althougl if it is launched along one of the axes there is no rotation.

The quickly varying birefringence can scramble the polarisation of non-soliton pulses
leaving them with unpredictable polarisation states after they have propagated over short
distances [27. 29]. If it 1s necessary to maintain the polarisation state of an optical
signal polarisation maintaining fibre can be used. This fibre is designed to have large
birefringence by increasing the ellipticity of the core. This means that fAuctuations in the
shape are only small perturbations to the designed shape and do not significantly change
the birefringence [31]. The special case of solitons in birefringent fibre will be considered

m section 2.6.3.




2.3.6  Cross phase modulation and nonlinear polarisation rota-
tion

Cross phase modulation (XPM) is said to occur when the phase of one wave is altered
by the intensity of a second wave. This can occur between waves of the same or different
frequencies and polarisations. Cross phase modulation is a result of the nonlinear refrac-
tive index which was discussed in relation to SPM in section 2.3.3. For waves of the same
polarisation the effect of an optical signal on the phase of a copropagating wave is twice
the effect on its own. This is not the case for waves of different polarisations which will
be looked at in more detail later in this section. The effects of XPM on solitons will be
discussed in the section on soliton interactions (section 2.6.6).

As mentioned in the previous section, the birefringence of optical fibres can affect the
polarisation state of an optical signal, however the polarisation is also affected by the
mtensity of the light in each of the polarisation axes which leads to both NPM and SPM.
These two effects add a nonlinear birefringence which causes higher intensities to undergo
greater polarisation rotation than lower intensities. Although the Kerr effect causes both
SPM and XPM the two effects have different magnitudes. The effect of one polarisation’s
inteusity on the phase of the orthogonal polarisation is 2/3 the size of the effect on its
owi. The two coupled nonlinear Schrodinger equations that describe this process are

given below,
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Nonlinear polarisation rotation (NPR) can be used as a form of saturable absorber by
placing a polariser at the end of the length of fibre at an angle so that higher intensities,
which have rotated, are transmitted whereas low intensities are attenuated. Such a system
tends to produce soliton pulses since solitons rotate as a whole and so the low mtensity
wings are not attenuated more than the peak. The response of an NPR saturable absorber
can be found as below [32, 33, 34, 35, 36]:

Assume the input field E, is linearly polarised with an angle of 4, the two input fields

will then be given by;




E, = |Eo|cost : (2.46)

E, = |E,|sin (2.47)

After propagating through fibre of length z with refractive indices n, and n, on the

axes and a nonlinear refractive index of ny the fields will be:
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If the field then passes through a polariser at angle #; such that #, = § + 7 then the

total field after the polariser is given by;

E = |Eq|sinfcosfe'? — |Eq|sinbcosbe'? (2.52)
lnearly polarised at an angle of 4;. Note that for 4, = 8 + Z, costy = —sinfd and

sty = cosh.

Translating this field back to the @ and y axes gives;

E. = |E,] (.9177,29('()50(2'@“’ — ‘si’/’z.z(}c-(').s()(%""'!’y) (2.53)
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The output power of the polariser is proportional to the sum of these two fields squared.
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In terms of power this gives:
P = P, sin® 9' sin?2f (2.61)
This formula shows that if the light is launched along one of the fibres axes, i.e § = =

then there is no output from the polariser as there is only one field and so XPM cannot
take place. If the light is input at 6 = T then 100% switching should be possible however
i this case the two fields are equal and so there is no rotation. This is effectively because
the switching power is infinite for this input angle. An example switching curve is given

w figure 2.11.

2.4 Solitons

2.4.1 Introduction

The existence of spatial optical solitons which are not considered i this thesis was first
suggested by Zakharov and Shabat in 1972 [37], the use of temporal solitons for optical
fibre communications was first suggested by Hasegawa and Tapert in 1973 [38]. It then
took several years before suitable sources and low loss fibres were available to carry out
experiments. The first experimental observation of solitons in optical fibres was carried

out by Mollenauer et al in 1980 [39].

Optical solitons exist when there is a balance between nonlinear effects and dispersive
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Figure 2.11: Switching curve for an NPR. saturable absorber. The launch angle was 0.6rad with the
polariser at 2.17rad.
effects. In terms of the length scales discussed in section 2.2 this is the regime where
L= Lpand L > Lyy. The dispersion must also be of the correct sign if solitons are to be
created. In normal dispersion fibre stable continuous wave (CW) propagation is possible
but pulses are unstable and broaden more quickly than they would due to dispersion alone
because the induced chirps from these two effect are of the same sign. High frequencies
arc created on the trailing edge of the pulse and low frequencies are created on the leading
odge of the pulse. High frequencies have a lower velocity in normal dispersion fibre so the
nonlincarity and dispersion combine to cause a large amount of pulse spreading.

I anomalous dispersion CW is no longer stable due to an effect called modulation
instability [40]. This means that any deviation from a perfect CW signal leads to pulses
hemg formed. Optical pulses called solitons can exist without broadening when there is

anomalous dispersion.

2.4.2 Soliton solution of the nonlinear Schrodinger equation

In order to examine solitons it is necessary to look at the nonlinear Schrédinger equation
[41]. For simplicity the lossless case will be considered. The effects of loss on optical

solitons will be examined 1 section 2.6.2.
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This equation can now be normalised with the sign of fy taken as -1 since only the

anontalous regime will be considered. For the normalisation we take [42];

A z T
i = .\ \/F.: = *L—D-;T = T—., (263)

where I, is the peak power of the pulse. Lj is the dispersion length. 7, is the input pulse

width and N 1s defined as:

VP72
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If the equation is being used to describe propagation in normal dispersion fibre the
sccond term becones negative,

The NLSE can be solved using the inverse scattering method which was devised by
Gardencr et al [43] and was originally used to solve the NLSE by Zakharov and Shabat
[37]. This method will not be discussed here however the result is given below.

u(z,7) = 20scch (207) cap (210’23) (2.66)

The cigenvalue o gives the soliton amplitude and 1s also related to the pulse width and

phase. Normalising such that 20 = 1 gives the normal form of the fundamental soliton.
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u(z,7) = sech(7)exp(iz/2) (2.

Therefore if a hyperbolic secant pulse with width and peak power such that N=1. i.e.

Il
P, = ""% ., (2.68)
VTS

is launched into a lossless optical fibre with no higher order dispersion and only Kerr
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nonlinearity it will propagate undistorted for an infinite length without altering its shape,
peak power or width. An example of a first order soliton can be seen in figure 2.12The
pulse width and peak power of a first order soliton are linked so a pulse with a higher

peal power must have a shorter pulse width to form a first order soliton [44].
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Figure 2.12: A 20.0ps first order soliton in lossless standard fibre (D=16.75ps/(nm km)) propagating
over 40 soliton periods

Solitons have a characteristic length scale associated with them. It will be seen later
that for higher order solitons this length scale represents the distance over which the
soliton returns to its original pulse shape. Although first order solitons do not change
shape the soliton period is significant when any perturbations are included in the system

[45]. The soliton period is given by;

2777 2B, 09)

Over this length scale the phase of the soliton changes by 7/2 this length is used
largely due to its significance with higher order solitons. It is often more appropriate to
use the length over which the phase changes by 27 which 1s 8 times the soliton period.

Oue of the factors that make solitons usetul in practical terms is their stability, i.e.
even if the pulse shape is incorrect or if the balance between peak power and pulse width

is not precisely met then a soliton will emerge after travelling over a few soliton periods
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by shedding excess energy as dispersive radiation. As will be noted in later chapters this

effect also means that solitons will return to their original pulse shape if subjected to
perturbations. It also means that if two solitons collide they retain their shape after the

collision which makes them ideal for wavelength division multiplexing [46].

2.4.3 Higher Order Solitons

Although only first order solitons are used in fibre optic transmission it is mteresting to
cousider higher order solitons [44]. Higher order solitons have an initial pulse shape of

the form;:

w(0,7) = Nsech(r) (2.70)

where the number N gives the order of the soliton. For the same pulse width a higher
order soliton has a peak power that is N? times that of a first order soliton. Higher
order solitons do not retain their initial shape for the entire transmission distance. They
undergo a complicated evolution which becomes more complicated as the order of the
soliton mereases. The soliton returns to its initial pulse shape everv soliton period. The
reason for this evolution is that the nonlinear length is shorter than the dispersion length
awd so the pulses become chirped. The chirping causes the pulse to split into two or more
sinaller pulses which then interact and collapse to form a single pulse again. An example
of the evolution of a third order and a fifth order soliton over one soliton period are shown

1 figures 2.13 and 2.14.

2.5 Numerical solution of the GNLSE

The results presented in this thesis rely on numerical simulations of the GNLSE. These
sinulations were carried out using a number of routines written in FORTRAN-77. By
far the most important of these is the one used to calculate the effects of propagating
awu optical signal down a fibre. This was carried out using the split-step Fourier method
which is the fastest technique for equivalent accuracy [47].

The split-step method works by solving the linear and nonlinear parts of the equation
separately over a length 0= and 1t 1s this splitting of the equation which gives the technique

its name. The GNLSE is then considered to have two parts as given below.
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Figure 2.13: A 20.0ps third order soliton in lossless standard fibre (D=16.75ps/(nm km)) evolving over

I soliton period
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Figure 2.14: A 20.0ps fifth order soliton in lossless standard fibre (D=16.75ps/(nm km)) evolving over
< N . . .. o .
I soliton period. It should be noted that the pulse returns to its initial shape at the end of the period.
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zé—)%:L(u)—i—N(u) (2.71)

If only the simplest case is considered, i.e. no loss or higher order dispersion then the

two parts of the equation are given by;

. 3, 92
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Further terms such as loss and higher order dispersion can be added to the linear
term. Both of these equations can be integrated quite easily. The linear part is integrated

by first taking its Fourier transform. This is done because under the Fourier transform

S = —iw once this transformation has been used the linear part of the equation has the
solution;
36 zw?
~ ; - o7 ~ Oy FAN
u(w,z +0z) = w(w, 2)exp | 1—— (2.74)
Omnce this calculation has been done the inverse Fourier transform is talken.
The nonlinear part of the equation can be integrated to give;
oo C1,,12 7
w(t,z+0z) = u(t, z)exp ('1,7,\/“),,]1/,[ ) (2.75)

The main reason for the relative speed of this technique is the efficiency with which
computers can calculate Fourler transforms using the fast Fourier Transform (FFT). The
majority of calculations in this thesis were carried out using the split-radix FFT rather
than the more traditional radix-2 method [48]. This method is faster than the radix-2
niethod as it maximises the number of trivial multiplications [49, 50, 51, 52].

The accuracy of the split-step Fourier method is improved by carrying out each stage
of length &z in the following manner. Firstly a half linear step of length §z/2 is carried
out. followed by a full nonlinear step. Finally another half linear step is done to complete
the calculation. This increases the accuracy of the calculation to (O§z%). When several .

steps are calculated one after the other the consecutive half steps can be combined to
o LG e B ¢ 1B B e 9 LA i

malke full steps.




A further improvement to the accuracy of this model can be attained through the use
of an extrapolation scheme [53]. In order to calculate a length of 64z four forward steps -
of length dz are calculated first. Then one backwards step of length 2§z is calculated
followed by a further four forward steps of length §z. By using this method the errors of
size 0327 cancel each other leaving an error of 0§25, Although this technique increases

the munber of calculations it is compensated for as larger step sizes can be used.

The accuracy of the results does not only depend on the integrity of the algorithm.
The size of the steps used and the temporal/spectral resolution are also important. In
ters of the temporal/spectral resolution it is important to keep the pulse so that it
occupies the same proportion of both the spectral and temporal windows. It is also best
to keep the grid spacing in these windows as small as possible. The integrity of the results
can be checked in several ways. Firstly it is possible to run known results such as an N=2

soliton over one soliton period. It is also best to try decreasing the step size (i.e increasing

the accuracy) to ensure that this does not cause any noticeable change in the results. In
the cases where the numerical simulations relate to an experiment then the results can
be compared to the experimental findings. It is not possible to get an exact match with
experiinental results since the experimental parameters are not always precisely known
aud 1t is not practical or possible to include everything that occurs in an experiment.
Indeed the purpose of carrying out numerical simulations is to keep the system as simple
as possible to gain greater understanding. For this reason such things as loss or third
order dispersion are only included when their effects are of specific interest or thought to
Lave a large contribution to the result.

In the simulations where data is used the calculations are usually carried out using 4

separate simulations with the results combined. Four files with 24 bits are used rather
than a single file with 96 bits to increase efficiency and to make sure that resolution of
the results is not sacrificed. As the temporal window “wraps round” the pulses at the
edge of the temporal window still experience interactions on both sides due to the pulse
at the opposite edge of the window.

Other elements such as filters. saturable absorbers, polarisers and amplifiers are also
used. The equations used to describe some of these elements are given later in the thesis.

The amplifier used simply increases the size of the pulse by the correct amount and adds

noise if required. It is sometimes necessary to simulate the amplifier working in saturation
in order to stabilise the pulse energy. This is done simply by comparing the pulse energy

. vino a linear decrease of the gain (in dB) as the pulse energy
to the input value and giving a linear decrease of the gain ( ) as the pulse energy




wereases. The amplifier noise is added in the spectral domain with uniform phase and
amplitude distribution. The amount of noise is determined by the initial conditions and

a standard random number generator is used.

2.6 Solitons in optical communications

2.6.1 Introduction

So far solitons have only been considered in ideal conditions. Tn real optical fibre and
when more than one soliton is considered there are several additional problems. Due to
the stability of the soliton they do not tend to break up under perturbations and can
recover their shape afterwards.

The first problem to be considered is the effect of loss and gain. This leads to the
mtroduction of the idea of an average or guiding centre soliton. The introduction of
galw into the system also leads to noise being added at the amplifier. Noise causes two
major problems, the first is a timing jitter known as Gordon-Haus jitter and the second
15 the signal to noise ratio at the receiver. There are several solutions to these problems
imcluding filtering and the use of a saturable absorber.

There can also be undesirable effects caused by soliton interactions. If the solitons are
i the same channel then the two pulses can collapse to form a single pulse. If the solitons
arc in different channels then they pass through each other and retain their original shape
Lhowever they can be left with a timing jitter. Other effect such as Raman scattering,

Brillouin scattering and the effects of electrostriction will also be considered.

2.6.2 Loss and the average soliton

Since solitons are formed when there is a balance between the nonlinear self-phase modu-
lation and group velocity dispersion the effect of loss could be quite considerable [54]. As
the pulse is attenuated the peak power drops and so the amount of self-phase modulation
is reduced. This clearly means that it 1s impossible to retain a balance between GVD and
SPM throughout the length of the fibre unless the GVD also experiences an exponential
decay [55, 56, 57] or there is amplification along the entire length of the fibre [58]. The
pulse power can be periodicly restored through the use of Erbium doped fibre amplifiers
and it has been shown that as long as the peak power of the pulse averaged over the length

of fibre is equal to the first order soliton power then stable propagation is possible. The




idea that it is the average power which is important is called the average [59] or guiding

centre soliton model [60, 61].
As the length of the amplifier in these systems 1s so small compared to the length of
attenuating fibre it can be considered to give lumped amplification. In order to examine

what happens in lossy fibre the starting point is the GNLSE with loss.

Ou N 1 9%u T fuf? _ .
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where v 1s the normalised loss given by;
a _—
v = 5[1) (2.:/)

Equation 2.76 describes the propagation of the pulse through the attenuating fibre. In
order to describe the effect of the lumped amplification the field before the amplifier will

be taken as uy and the field after the amplifier as uy these two field are then related by;
Uy = “’1({"[’]}(73(1) (278)

where z, 1s the distance between amplifiers.
If the transtormation u(z,7) = A(2)R(z, 7) 1s used in equation 2.76 to account for the

loss the equation becomes;
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where
A(z) = A(0)eTFmmea) (2.80)

A(z) is used in this equation to represent the periodically varying nonlinear constant.
The idea behind the average soliton is that if the amplifier period is short compared to
the soliton period then it 1s the average of this value which is important. Therefore for a

fundamental soliton the average of A*(z) should be set equal to 1

1 [ ._
< Az) >=— A*(z)dz =1 (2.81)




this gives;
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The iuput power for an average, N=1 soliton is therefore a factor of A?(0) greater than
the value found for the lossless case. For the average soliton condition to apply the
distance between amplifiers L, must be given by L, < 8Z, [59]. In general average
soliton transmission is possible if L, < 8Z,/10.

Figure 2.15 gives a graph of pulse peak power against distance for an average soliton.
Figures 2.16 and 2.18 show the propagation of a soliton. Figure 2.16 shows the case where
the amplifier distance is much less than the soliton period whereas figure 2.18 shows the
case where they are about the same size. In figure 2.16 a pulse of width 20ps is being
propagated down fibre with dispersion of 0.5ps/(nm km) and loss of 0.2dB/km. This
gives a soliton period of 268.8km which is far longer than the amplifier span length of
50km. The correct pulse power for this loss and amplifier span is N=1.6. It is clear
fromn this figure that there is very little instability in this system. In figure 2.18 the fibre
dispersion has been increased to 17ps/(nm km) (standard fibre) which reduces the soliton
period to 20km so that this is no longer an average soliton. There are clear amplitude
and pulse width fluctuation i this pulse and the pulse is shedding dispersive radiation.
The pulses break down because there 1s resonant coupling between the soliton and the
backeround radiation which is phase matched by the periodic nature of the amplifier train
(62, 63, 64]. As energy is lost to the side bands the pulse breaks up [65]). The growth of
these sidebands can clearly be seen in figure 2.19 which is a plot of the pulse’s spectrum
this can be contrasted with figure 2.17 which shows the same plot for the case where the
average soliton criteria are fulfilled.

It is, therefore, possible to propagate solitons in a real system where periodic loss and
gain have to be taken into account [66]. The correct input power must be used and the
amplifier span must be shorter than the soliton period. The idea that the perturbation
caused by loss and gain must take place over a shorter distance than the soliton period
can be extended to other perturbations such as changes in the fibre dispersion, either

througl design or fluctuations i the fibre [43].
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Fieure 2.15: A?(:) against distance for an average soliton in fibre with loss of 0.2dB/km and a 40km
amplifier span.

Figure 2.16: A 20ps soliton pulse that fulfils the average soliton criteria.
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Figure 2.17: Spectrum of the above pulse that fulfils the average soliton criteria. The spectrum does
not change substantially during propagation.

Fieure 2.18: A 20ps soliton pulse that does not fulfil the average soliton criteria. Amplitude and width
St o DY W b .“ ) . ) S TP
Auctuations can be seen along with the shedding of radiation.




Figure 2.19: Spectrum of the pulse that does not fulfil the average soliton criteria. The growth of
spectral sidebands can clearly be seen.

2.6.3 Polarisation effects

The slight birefringence in real optical fibre, as discussed in section 2.35, can result in the
two polarisation modes of an optical signal splitting which leads to errors [27, 29]. The
state of polarisation varies rapidly along a length of fibre which can lead to an optical
signal developing a complicated polarisation state after propagating over a short distance.
This is known as polarisation mode dispersion (PMD) and due to its effect it 1s necessary
to test the components of a linear optical transmission line carefully to minimise the
amount of PMD [67, 68].

Cross phase modulation due fo the nonlinear Kerr effect can limit the effect of PMD
i1 both non-return to zero [69] and soliton systems [12, 70]. The two polarisation modes
of the soliton shift each other’s frequency by enough to bring the velocities of the two
polarisations to the same value. This can only happen if the GVD is large compared to

the PMD to eive sufficient nonlinearity. The size of the required dispersion is given by;
AB/RM* <0.3D'? (2.83)

where AA is the differential delay between the two polarisations, D 1s the dispersion and
- WA /' ) 1] " J - P

. . C Tt ot erattered from the slow axes to the fast axes. Therefore
i is the rate at which light is scattered from the slow a ast axes 1 1




using soliton pulses gives a benefit when PMD is considered.

The other polarisation effect that is important is that the interactions (see section
2.6.6) are reduced between solitons in orthogonal polarisations [71, 72]. This means that
higher data rates can be used if alternate solitons have orthogonal polarisations which
gives a relatively simple method of doubling the data rate of a transmission line. This
concept 1s known as polarisation multiplexing and has been successfully used in several

experiments {73, 5, 74, 75].

2.6.4 Signal-to-noise ratio.

Once amplifiers have been included in a soliton svstem other problems must also be
cousidered. Not only do the amplifiers add gain to the system they also introduce noise
through spontaneous emission. The noise is then amplified with the signal at the next
amplifier and 1s also added to through more spontaneous emission. This noise is called
amplified spontaneous emission (ASE). This means that after several amplifier spans there
is a significant noise level which can introduce errors. There are other sources of noise such
as shot noise and thermal noise from the detector but these are far less significant when
considering long distance propagation with long amplifier spacing and therefore high gain
at the amplifiers [76].

The signal-to-noise ratio 1s used to give the relative sizes of the signal and the noise
it 1s generally given by the mean square current due to the signal over the mean square
current of the noise, both at the receiver.
<>

SNR = —
<>

where 7, and 7, are the detector currents due to the signal and the noise.
If it is assumed that the photodiode is placed immediately after an amplifier then the
signal current is given by;
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where P, is the power output from the amplifier, i is Planck’s constant, ¢ 1s the charge

on an electron and v is the frequency of the signal.

Since, for long amplifier spacings (1.¢ high gain), the noise caused by beating between

the sional and the ASE is the most significant aspect in the SNR only it will be considered
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here. This noise is particularly damaging

as 1t occurs in the same frequency range as the

signal current. The noise from this source at one amplifier is given by;
< )
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here F, is the ASE noise power which is given by;
Fo = (G = 1)phvAv (2.87)

where G is the gain of the amplifier, 1 is the inversion factor for the amplifier (¢ = 1 for
an ideal amplifier) and Av is the bandwidth of the amplifier.

The signal to noise ratio given by equations 2.85 and 2.86 after n amplifiers is:

oo Lee/)” P (2.88)
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SNR = (2.89)
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Equation 2.89 can be used to see what effect the different parameters have on the
SNR. Obviously if the signal power is increased the SNR is increased. In a soliton system
where the signal power 1s fixed by the dispersion and the pulse width the best way to
maximise P, is to take the output straight after the amplifier. The SNR, therefore, puts a
limit on how low the dispersion of a soliton transmission line can be. The most interesting
paraneters to look at are the gain and the number of amplifiers. For a fixed system length
these two parameters are closely linked since if you reduce the number of amplifiers it
would at first glance appear to increase the SNR however since the distance between
amplifiers would be increased there would have to be an increase in the gain and since
the change in gain is expouential with distance the overall effect 1s fo reduce the SNR.
Reducing the bandwidth can also mcrease the SNR, however, if the bandwidth is too

siall then the information in the signal can be lost. The receiver bandwidth cannot be

less than half the data rate.

2.6.5 Gordon-Haus Jitter

The ASE produced by the amplifier has a more direct effect on the soliton due to the

way the soliton adjusts to perturbations. The soliton parameters tend to adjust in order

fo retain the balance between dispersion and nonlinearity. This means that the ASE is




absorbed 1nto the soliton and causes

small changes in the soliton parameters. The most
serious of these changes is the one to the pulse’s central frequency which leads to a timing
jitter which is known as Gordon-Haus jitter [77, 78].

Gordon-Haus jitter is caused when energy from the ASE is included in the soliton’s
spectrum. This causes a slight, random change in the pulses spectrum. The change in
cenfral frequency is then translated to a change in pulse velocity due to the GVD. This
change i velocity results in a change in arrival time at the receiver after propagation.
Since each individual pulse is affected by a different noise spectrum and is affected at every
awplifier they no longer arrive in equally spaced time slots and this change in arrival time
15 Gordon-Haus timing jitter. When the size of the timing jitter is significant compared
to the time difference between the pulses it can result in errors as pulses arrive in the
wrong time slot. In order to find the limit this sets on the total propagation distance it
is necessary to find the variance of the timing jitter caused by a number of amplifiers.

If the variance in the frequency from one amplifier is taken to be < dw? > then the

variance after N amplifiers is given given by;

< Awk >=< dw?l >+ < dwi >+ < dws > A4 < dwh > (2.90)

if all the < dw? > are the same this gives;

< Aw >=N < §w’ > (2.91)

After one amplifier and propagation over one amplifier span L, with dispersion 3, the

timing jitter is given by;

ND
O
IND

iy = La'/:’}26"‘)1 (

The variance in the timing jitter is therefore given by;

< 82 >= L2, < bwi > (2.93)




The timing jitter after two amplifiers is then given by:

ty = Lof32(20w; + dwy) (2.94)

The variance at this point is:

<Ot >=LIB34 < 0wt > 4 < dwl >) (2.
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The variance in the timing after N amplifiers can be given by;

N ’
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=1
] 73
<Aty >=LIg— < dwt > (2.97)

The varlance 1n the frequency is given by;
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< dwt>= 2 (2.98
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Where ny 1s the nonlinear refractive index, Ny, 1s the spontaneous emission noise factor
of the amplifier, i is Planck’s constant, ¢ 1s the velocity of light, & is the gain of the
amplifier and A2 is the soliton amplitude found from the average soliton model and defined
m cquation 2.82.

Therefore the variance after N amplifiers is given by;

omny Ny, |falhic(G — 1)L?
Gt N Aoy Ly A2

Ve (2.99)
where L = NL, is the total system length. The rauws. jitter is found by taking the
square root of this equation. This shows that the jitter increases with distance and can
therefore cause problems with long distaince systems. The r.n.s. jitter is proportional to
L3/? The dependence of the jitter on amplifier span length is interesting to consider. At
first glance it may appear that increasing L, would decrease the jitter however as with
the signal to noise ratio chianging this parameter also affects the gain, G and the average
soliton parameter \5 which means that increasing the amplifier span in fact increases the

fitter. The best way to reduce the jitter is to reduce the dispersion. however due to the




dependence of soliton power on the dispersion there is a limit on how

low this parameter

caw be set. If the dispersion is too low there are also problems with higher order dispersion

awd polarisation mode dispersion.
In order to give an indicati : mite Clor . ’ .
give an mdication of the limits Gordon-Haus Jitter sets on the total possible
propagation distance it is first necessary to define the amount of jitter that would give
au unacceptably low bit error rate (BER). Assuming Gaussian statistics a BER of 10~°

requires [77];
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where 2¢,, 1s the width of the timing window of the detector.

Using this it is now possible to find the maximum propagation distance which is given

v
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where Dy = —27¢fa/A? has been used to simplify the expression.

So far this equation does not include an explicit indication of the data rate R. R
can be mcluded in the equation but it is necessary to make some assumptions about
the size of the timing window of the detector compared to the time between pulses and
the mark to space ratio of the pulses (i.e. the width of the pulse compared to the time
hetween pulses). In order to do this two new parameters are required ry = RT 'y, which
represents the mark to space ratio and is generally taken to be between 0.1 and 0.2. The
otlier parameter represents the relative size of the timing window «,, = Rt,. We can now

et an equation that gives the maximum propagation distance for a given data rate.

15158 [ runl Ay, LoA? 17°
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This equation can easily be changed to give the maximum data rate for a given prop-
» . VTN Alid ontrol (2.7) it will be seen that Gordon-Hau:
agation distance. In the section on soliton control (2.7) 1 G Haus

jitter can be limited by proper use of filters, dispersion compensation, phase conjugation

and other techniques.




2.6.6 Soliton Interactions

Omne of the other limits on the length of

a soliton based communications line is a result

of soliton-soliton interactions. Solitons interact due to cross phase modulation through

the nonlinear Kerr effect [79, 80, 81, 82, 83]. Soliton interactions can take place between
solitons of the same wavelength and solitons of different wavelengths. The case of solitons
i the same wavelength channel will be considered in sonte detail in this section as all the
results in this thesis relate to single channel systems. The processes involved in WDM
mteraction will be described briefly at the end of the section.

Soliton interactions occur due to nonlinearity acting on the overlapping tails of ad-
Jacent solitons. Taking the simplest case of two pulses with equal amplitude and phase
the process follows this course. As the tails of the solitons overlap there is constructive
mterference which leads to the refractive index of the fibre increasing at this point. The
higher refractive index causes the leading pulse be shifted to a lower frequency and so
slow down. The trailing pulse is shifted to a higher frequency and so speeds up. As this
happens 1t causes the overlap to increase which leads to a greater nonlinear refractive
mdex which ncreases the rate at which the pulses are attracted to each other. Finally
the pulses collapse to form one pulse, however as the pulses are now travelling at different
velocities they separate out again with the pulse that was previously trailing now leading.
Tle nonlinear Kerr effect causes the pulses to return to their original frequencies as they
separate and eventually to collapse again. The pulses continue fo interact in this way
periodically.

Soliton interactions have been studied using numerical simulations, inverse scattering
and soliton perturbation theory [79, 81, 84]. The latter two methods have led to a better
understanding on the effects of using pulses with different amplitudes and phase. Two

solitons launched into an optical fibre can be described using;
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where Tp = 1/R is the initial separation which is defined by the data rate R, » is the

relative amplitude and ¢ is the relative phase of the two input pulses.
. _ , A e ss. hioher order dispersion and nonlinearity
If the simple case where r =1, 6 = 0 and loss, higher order dispersion and nonlinearity
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are neolected is considered and we take the case where the initial separation is large

compared to the pulse width (which would be the case m practice) then the period over
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which the solitons collapse and separate is giv

en by;

o
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The point where the pulses collapse occurs at half this distance this means that systems
must be less than Z,/2. The soliton collapse length is strongly affected by the mark to
space ratio. The collapse length can be increased by either reducing the data rate which
leads to the pulses starting off further apart or by reducing the pulse width which means
that the intensity of the overlapping tails is reduced. The collapse distance can also be
increased by having a longer soliton period. This can be done by reducing the average
dispersion although the SNR means that there is a limit to how small this can be made.
The soliton period can also be increased by increasing the pulse width however due to the

exponential dependence of the collapse length on pulse width any increase in the soliton

period by this method would lead to a net decrease in collapse lengtl.

An example of a soliton collapsing under these conditions is given in figure 2.20. In this
hgure the two 20ps first order solitons are launched separated by a distance of 80ps. The
fibre has dispersion of 5ps/(nm km), this means that the pulses collapse after propagating

568km and have a periodic interaction with a period of 1136km.
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In the case where the two solitons are out of phase with each other, i.ef = 7, the
solitons do not attract each other hut repel [84]. This is because instead of the tails of
the solitons adding constructively they add destructively causing the refractive index to
be lower between the solitons and so the pulses are repelled. This does not give any
advanutage over the case where the pulses attract each other since the solitons continue
to 1move apart 1rrespective of how far they are separated and so move out of their time
slots which leads to errors. This can be seen in figure 2.21 the parameters used in this
sunulation are the same as those used previously however here the two solitons have a 7
phase difference causing them to repel each other. If the solitons have a phase difference
of § = /2 they do not experience any interaction, however this situation is unstable and
any perturbation causes the solitons to reach one of the extremes already discussed. It
may appear that the interactions would be limited if the pulses were in a data stream
with pulses on either side of them this is not true. Since there are spaces for ’zeroes’ on

the data stream the interactions can still cause large numbers of errors.

. . - . o ase and equal @ itude as they interact with each other leading
Fioure 2.21: Two pulses sposite phase and equal amplitude as 3
lgure 2.21: Two pulses of opj i g

Lo separation.

) . teractions by using solitons with different amplitudes
It is possible to limit the interactions by using solitons with ani)

[83. 85]. The difference in the amplitude of the pulses leads to the phase of the two
pulses evolving at different rates and so there is only a limited periodic interaction as the
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ch other is met “reducing interactions is
pulses alternatively attract and repel each other. This method of reducing é



shown i figure 2.22 s be .
shown 1n figure 2.22 and has been used successfully in propagation experiments [85, 86].

Fieure 2.22 agai ¢ C 5S¢ ar
¢ gain uses the same parameters as before, although this time the pulses once

again have equal phase and there is a 10% difference between the initial pulse amplitudes.

Figure 2.22: Two pulses with equal phase but a 10% difference in amplitude show much reduced
interactions.

Soliton interactions between the different channels of a WDM system are also caused
by the nonlinear Kerr effect however due to the pulses in different channels having different
GVD they do not undergo periodic interactions. In a WDM interaction as the faster pulse
1noves tov’vards the trailing edge of the slower pulse the tails of the pulses overlap. Theun,
as in the single channel case the pulses are attracted to each other and so the trailing pulse
speeds up and the leading pulse slows down. Once the pulses collapse they separate again
as they are still moving with different velocities. As the pulses separate the nonlinearity
canses them to return to their original velocity. Since the solitons emerge more or less
unaffected by the collision this does not cause any problems however so far this discussion

has not included loss. If loss is included then the pulses do not suffer the same nonlinear

shift in the second half of the collision as they did in the first and so are left with a

net frequency shift by the collision. As the pulses in the different channels suffer many

collisions with pulses in both slower and faster channels and since the number of collisions

is essentially random as it depends on the data in the other channels the overall effect on
o S HT 1l Y . " s LLC

the data is to introduce a timing jitter on the pulses.



2.6.7 Electrostriction

Electrostriction is the cause of hoth a self frequency shift of the solitons and an interaction

which can cause timing jitter [87]. Electrostriction causes the soliton to excite acoustic
waves, as these waves travel to the cladding and are reflected back towards the core
they cause density changes which alter the refractive index. The self frequency shift
canses a constant change in the frequency of all the pulses and so does not result in a
thning jitter. It causes a larger shift for long pulses and so is not a problem for high
bit rate communications. The interaction can cause timing jitter since it depends on
the data pattern. The acoustic interactions are long range which means that in high
bit rate systems the interactions are not between adjacent pulses. It takes the acoustic
wave ~ 20ns to be reflected back into the core in a fibre with a diameter of 125um. The
mteraction 1s proportional to the square of the propagation distance although filtering can
reduce this to a linear dependence. It is also proportional to the square of the dispersion

and so once again it is advantageous to use low dispersion to reduce this probleni.

2.6.8 Higher order nonlinear effects

There are other nonlinear processes which have an effect on solitons propagating in op-
tical fibre. The other effects that will be considered are stimulated Raman scattering,
stimulated Brillouin scattering and four wave mixing.

Stimulated Raman scattering can be used to amplify solitons [54] and before being
superseded by the Erbium doped fibre amplifier was the main method used to do this.
It can also cause problems if very short pulses are used by causing a shift in the pulses
wavelength towards longer wavelengths. This process is known as soliton self frequency

shift [88, 89].

Raman scattering is best described by considering photons interacting with the medium
they are travelling through. What occurs is that the incident photon is scattered by a

molecule in the fibre to a lower frequency photon while the molecule goes into a higher

vibrational state. The amount of downshift in the lights frequency depends on the mate-

rial being used, in silica it is 13.2 THz. In general this down shift in frequency happens
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at a very low rate however when there s a small signal already at the lower frequency the
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I af equency 1s i st exponential with distance.
oain at the lower frequency is almost exponentia

Raman Scattering can therefore be used to amplify an optical signal by copropagating
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o 1 the data at a frequency that is 13.2Thz above the signal frequency
a CW signal along with the data at a frequency g




[54]. This technique has |

been used successtully in soliton transmission schemes however

the high pump powers required are not available from semi-conductor lasers and this
makes an EDFA cheaper and easier to implement.

Soliton self frequency shift is also caused by Raman scattering but only affects pulses
of less than Ips. This is because these short pulses have a bandwidth which is close to the
peak of the Raman gain. The high frequencies in the pulse act as a pump which amplifies
the lower frequencies leading to the central frequency of the pulse moving towards longer
wavelengths. Since this does not affect the bandwidth of the pulses the shift continues
throughout the length of the fibre. The size of these changes in frequency can be very
large with shifts in frequency that are the same size as the pulses bandwidth possible after
a few hundred kim of fibre.

When soliton self frequency shift is combined with ASE noise from amplifiers 1t can
cause a tining jitter which is comparable in size to Gordon-Haus jitter [90]. This jitter
cowes about due to the ASE causing random: changes in the pulse width which changes
the size of the self-frequency shift and leads to a timing jitter through the group velocity
dispersion. Pulses short enough to cause these effects are not required for single channel
data rates of less than 100Gbit/s.

A related effect is stimulated Brillouin scattering [91]. It is also caused by an inter-
action between the light wave and phonons in the fibre. Whereas Raman scattering is
cansed by an interaction with optical phonons Brillouin scattering involves interaction
with acoustic phonons. This means that although the interaction causes light to be scat-
tered to a lower frequency the Stokes shifted wave is only 10GHz lower in frequency than
the signal wavelength. Only pulses with narrow bandwidths are significantly affected by
SBS. Pulses with widths of > 10ns are degraded by SBS however these pulse are far too
hroad to be used in high bit rate communications systems. The powers required to cause
SBS are far lower than those required for SRS. This effect does not cause a large shift
in the propagating waves frequency however, hecause the Stokes wave propagates i the

opposite direction to the incident wave, SBS causes a loss of the signal by generating a

counter propagating Stokes shifted wave. Like SRS it can be used to amplify a signal and
: T SO R

due to the narrow bandwidth involves it can be used to selectively amplify a well defined
narrow frequency band.

) - he considered is four wave mixine[92]. Four wave mixing
The final nonlinear process to be considered is four wave mixing[92]. Four wa g
(FWM) is caused by the \3 nonlinearity that is also involved in self- and cross- phase

modulation. Four wave mixing Occurs when two waves of frequency w; and w, nteract
At . b -




through a nonlinear mate

rial to produce two new waves at frequencies ws and w, such

that;

Wi w2 = wy - wy (2.105)

. L
Equation 2.105 means that the energy 1s conserved in the process however it is also
important that the momentum is conserved which means that phase matching is also

nuportant. The phase matching condition is given by:

]\f’;‘j + k’_l; — ;i"-] — ]CQ = 0 (2106)

Tlis type of four wave mixing can cause problems in wavelength division multiplexed
svstems where two of the wavelength channels can interact [93]. Tt is still possible to
get FWM 1n single channel communications through degenerate four wave mixing. The

conditions for energy and momentum conservation for this are given by;
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Wy Wy = ws + Wy (:

]{?3 + ix?,; - 2]6] =0 (2108)

In this case the input frequencies are both at the same frequency and produces two
new frequencies one up shifted and the other down shifted. These two are referred to as
the Stoles and anti-Stokes bands in an analogy with SRS. This process is only properly
phase matched at the dispersion zero where constant dispersion soliton propagation 1s
not possible although it can affect RZ systems which use this frequency. There can be
sionificant gain at the Stokes and anti-Stokes bands even when phase matching 1s not
complete. This means that at low dispersions there can still be significant four wave

nmixing although this can be Limited by filtering.



2.7 Soliton Control

2.7.1 Introduction

In order to combat effects such as Gordon-Haus jitter
b

soliton interactions and the build

up of ASE noise it is necessary to add components such as filters and saturable absorbers
mto a transmission line. These added components can be regarded as controlling the
soliton transmission. The first and most fundamental method of soliton control is the
nse of bandpass filters. Filters can be used to suppress the build up of ASE outside the
passband and can reduce the effects of Gordon Haus jitter. They can also be effective
in limiting soliton self frequency shift and soliton interactions. Further suppression of
the Gordon-Haus effect can be gained by sliding the frequency of the filters along the

transmission line. Other soliton control techniques that will be discussed include the use

of saturable absorber, phase and amplitude modulators and phase conjugation.

2.7.2 Filtering

The main beneficial effect of filters in a soliton transmission line is that they substantially
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several other beneficial effects including stabilising the amplitude of the solifons and
reducing interactions and well as suppressing the build up of ASE noise and dispersive
racdiation outside the passband.

As stated in section 2.6.5 the inclusion of noise from the amplifier into a soliton causes
random changes in its central frequency which in turn leads to a tuning jitter. The effect
of the filter is to force the central frequency of the pulse back towards the pass band of the
filter. This can also cause a clipping of the wings of the soliton which can be compensated
for by having excess gain at the central frequency, the wings can then be restored through
self phase modulation.

If the filter is too nmarrow then the amount of excess gain that has to be used to
compensate for the clipping of the spectrum is increased. This leads to greater ASE
noise which reduces the signal to noise ratio and so can result in a drop in the error free

: " e effec 1ters on Gordon-Haus jitter has been studied and
propagation distance. The effect of filters on aus |

shown to increase the total propagation distance. With filters the variance of the timing

jitter is reduced by a factor f [95];
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where Z is the total propagation distance and § is the excess gain to overcome the

loss of the filter and is given by;
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where €2, is the bandwidth of the filter, z, is the soliton period and =z, is the amplifier

span length. The function f is given by;
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It 1s clear from this that for large @, which relates to large Z that the function f varies as
=% which essentially means that it varies with Z72. When this dependence is considered
in the context of equation 2.108 it means that the dependence of jitter with distance is
not longer Z* but is now linear with Z. This represents a substantial reduction in the
accumulated jitter over a long distance communications system.

Filters can also increase the collapse length of two adjacent solitons [98, 84, 99]. They
do this because the pulses get chirped as they pass through the filter. This leads to the
tails of adjacent pulses no longer interfering constructively and so there is less self-phase
modulation between the pulses. As a result of the reduced self-phase modulation the
pulses do not acquire the same changes to their central frequency and so the collision

distance is increased. The size of the increase depends on the bandwidth of the filter and

the filter profile.

A refinement of the use of filters is to use sliding guiding filters (100, 101, 102]. This

: : e idine the central frequency of the filter along the transmission line
involves gradually sliding the central frequency of the filter along :

advantage over fixed filters that narrower bandwidth filters can be

[103]. This has the

wsed without encountering the problems of increased ASE noise through the extra excess

' ' > ss fr 1e filters. This is because although the soliton is able
gain required due to the loss from the filters. Thi 2 2 g :

to follow the central frequency of the filters and so do not experience significant extra loss

due the the Sliding‘ of the filters the system as a whole 1s opaque to noise and so 1t 1s kep
lue the the s g the filters, 3 t %
filter pa.ssba.nd can also eive further

to a minimum [104]. Sliding the frequency of the



suppression of soliton interactions [105] Sever

al successful experiments have been carried

out using sliding guiding filters in both single channel and WDM systems [106].

The shape of the filters used can also have a beneficial effect both in terms of reducing
Gordon-Haus jitter and soliton interactions [107]. Filters with a flat pass band and steeper
adges such as higher order Butterworth filters [108, 109] and super Gaussian filters [110]
can have narrower pass bands without requiring as much excess gain as Fabry-Perot
filters. There is a down side to using higher order Butterworth filters in that the higher
the order of the filter the more third order dispersion it introduces into the system. There
is therefore a trade off between suppressing interactions and Gordon-Haus jitter and the

mtroduction of third order dispersion.

2.7.3 Amplitude Modulation

Amplitude modulators can also be used to suppress Gordon-Haus jitter. An amplitude
moculator is a semiconductor device which is driven by an electrical signal so that its
transmission varies with time, the variation in transmission occurs at the data rate of
the signal. The amplitude modulator 1s set so that its peak transmission occurs at the
time when the pulse should be present if it has remained in the correct time slot. If the
soliton has moved out of its time slot then the pulse is 'pushed’ back towards the correct
slot. This occurs because the part of the soliton that 1s at the peak of the transmission
experiences less loss than other parts of the pulse. Therefore in much the same way as
a filter pushes the pulse back towards the correct frequency an amplitude modulation
pushes the pulse back to the correct time. Amplitude modulators do not correct the
change in the pulses frequency so the pulses continue to move with different velocities.
Like filtering this reduces the dependence of jitter on distance to a linear response rather
than a cubic one. Amplitude modulators can also help to suppress interactions since as
the pulses interact they move closer together and therefore out of their correct time slots.
The amplitude modulator will push them back towards their correct time slot in this case
as well which means that the interactions are effectively suppressed.

of using amplitude modulators 1s that they are an active

The main disadvantage
component and require a recovered clock signal to drive them. This adds complication

and expense to the systeni. It also means that the system 1s no longer bit rate transparent

as it is required to work af the rate of the modulators. If the pulse has moved too far from
its correct position 1t could be pushed into the incorrect time slot rather than the one

from which it originated since this method simply guides the pulses into the nearest time



slot, this problem does not arise

as long as the modulators are used frequently enough.

Amplitude modulators in conjunct; th £y Y -
1 ators n comjunction with frequency guiding narrow band filters have

yeen used successf N exheriie . ) ) R T
been used successfully in experiments [111, 112, 5] and numerical simulations [113] with

high data rates over, what are effectively, unlimited distances.

2.7.4 Phase Modulation

The next method of soliton control is to use phase modulators. These can either be used
at every amplifier or less frequently. Like amplitude modulators, phase modulators are
a form of active control and are therefore more expensive and complicated to implement
than passive techniques. Phase modulators can suppress any form of timing change,
whether 1§ 1s caused by Gordon-Haus jitter or interactions [114].

Phase modulators work by giving the pulse a chirp if it moves out of its correct time
slot. Since solitons naturally have constant phase across the entire pulse the change in
the mstantaneous frequency is averaged across the entire pulse to give a change in the
central frequency. This frequency change can be set to over compensate for the original
frequency change that caused the pulse to move from its correct time slot and so allow 1t
to wall back towards the centre of the time slot. In this way phase modulators do not
simply correct the frequency or the position changes but correct both. Unlike amplitude
nmodulators and filters they do not significantly increase the loss of the system and so do
not require excess gain and the extra ASE associated with it.

Although it is possible to use phase modulators at every amplifier this is not neces-
sarv. They can be used less frequently and simply sef to give a larger frequency chirp to
compensate for the larger timing and frequency changes. As with the amplitude modu-
lator the phase modulators must be placed frequently enough so that the nearest time
slot is the one to which the pulse belongs, otherwise the effect of the modulator will be
to accelerate the accumulation of errors rather than to suppress them.
ye implemented either through the use of a bulk modulator or

Phase modulation can |

through cross phase modulation with a stream of clock pulses that are copropagated with
) O . L) s d

the data stream in a short section of fibre or in a section of a different nonlinear material
s L1 bl g - o

such as a semiconductor [115] As with all active methods of control phase modulators add
ERELN A W) <L DT B . L

extra cost and complication to the systeni. They also remove the bit rate transparency

that a system without active control would have.



2.7.5 Saturable Absorbers

5o far all the confrol methods discussed have been aimed at removing timing jitter and
suppressing interactions. Most of them have not decreased the ASE to improve the signal-
to-noise ratio and if anything, due to the excess gain required to counteract the extra losses
ivolved in these components, these fechniques would increase the ASE and so degrade the
sigual-to-noise ratio. Saturable absorbers do not suppress the timing jitter, however they
can be used to suppress the ASE and dispersive radiation, counteract soliton interactions
[116. 117, 118] and to help suppress the problems that arise when the average soliton
criteria given mn section 2.6.2 are not met.

Saturable absorbers are optical components that absorb low intensities while trans-
mitting high intensities. They can be fibre or semiconductor based. In fibre saturable
absorption can be attained by using the Kerr nonlinearity either through nonlinear polar-
isation rotation [119] as described in section 2.3.6 or through the use of a nonlinear optical
loop mirror [120, 121]. Both of these techniques have the disadvantage that they require
long lengths of fibre and polarisation control. It is also possible to use semiconductor,
multiple quantum well saturable absorbers [122, 116, 123, 124].

The concept behind using saturable absorbers to suppress ASE and dispersive radia-
tion 1s quite simple. The pulse has high power and so does not experience much loss at
the saturable absorber whereas the noise and dispersive radiation which are low power
experience more loss and so are attenuated. When this happens it obviously improves
the SNR as the noise level is greatly reduced. When saturable absorbers are being used
to suppress the build up of ASE and dispersive radiation it is often not necessary to use
the saturable absorber at every amplifier which means that the cost of adding saturable
absorbers is reduced.

There are substantial added benefits from the saturable absorbers ability to suppress
the build up of CW radiation as it 1s often the instability of the soliton when interacting
with dispersive radiation and the degradation of the SNR from the addition of the CW
radiation which leads to pulses breaking up [119, 125]. This means that with the addition

of saturable absorbers it is possible to use stronger filtering without problems that arise
sl a 2 A 2T $

when a large amount of excess gain is required to compensate for the clipping of the

trailing edges of the spectrum leading o a build up of CW radiation at the peak of the

ra. g edge: 11e ¢ an

filter transmission [126, 127]. The saturable absorber can remove the radiation and so
s sLldls b L0, F4] .

‘ ] 1 ine to re ~d Gordon-Haus jitter can be used.
stronger filtering leading to reduced Gordon-Haus )

The other area where saturab

ble absorbers can be useful 1s when very short pulses
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are being propagated. Since short pulses hav

e a short soliton period it becomes difficult

y A Flye o AT O . 1 gy - N .
to fulfil the average soliton criteria which leads to the pulses breaking up as spectral

sidebands are formed. A saturable absorber can effectively suppress the build up of the
dispersive radiation and so extend the propagation distance possible [128].

Saturable absorbers can also increase the collision distance for adjacent solitons [129,
130]. The reason for the collision distance increasing is that the saturable absorber induces
a chirp on the pulse. This leads to the pulses having a rapidly changing phase and so

the pulses can neither attract or repel on a long term basis. As the pulses go in and out

of phase they attract and repel each other leading to a slight oscillation in their position
but no long term change in position or collapse. The use of saturable absorbers with

dispersion management will be discussed in some detail in chapters 3 and 4 of this thesis.

2.7.6 Optical Phase Conjugation.

Other methods that have been used to control solitons include optical phase conjugation
(OPC) or spectral inversion. When an optical signal undergoes optical phase conjugation

1t 1s transformed into its complex conjugate. This can be carried out through four wave

mixing in either a piece of fibre or in a semiconductor laser amplifier. When an optical
phase conjugator 1s placed at some point in an optical fibre transmission line the effect
1s to reverse the accumulated chirp up to that point in the transmission line. If the next
section of fibre is the same as the fibre which induced the original chirp then the chirp
will be 'undone’ in the second section.

For linear pulses, OPC can be used at the midpoint of the transmission line to reverse
the effects of self-phase modulation and group velocity dispersion [131, 132, 133, 134].
OPC does not reduce the effects of third order dispersion and cannot take account of self-
phase modulation efficiently unless distributed amplification is used or the amplification
period is much shorter than the distance over which the OPC occurs.

When OPC is used with solitons it can be either be placed at the midpoint of the
transmission line or they can be placed at every amplifier [135]. When they are placed
at the midpoint of the transmission line soliton interactions can be effectively suppressed
or even undone [136]. This is because the solitons interact by mducing a chirp on the

adjacent soliton which results in the attractive force. When the chirp is reversed so is the

divection of the force and the solitons start to repel. This is only possible if the average

soliton criteria are met. OPC can also be used to reduce the effects of Gordon-Haus jitter
0 ] - o, . L. — .

by a factor of about 2 [137] and can reverse the effects of soliton self frequency shift [138].
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It 1s also possible to use OPC at every amplifier [13/5]/. In this case the solitons are
operating in a completely different regime. Since the conjugation 1s taking place on a
length scale much shorter than the soliton period NLSE solitons are not formed since
the GVD [131] and SPM [139] are both compensated for through the effects of OPC.
It 1s still possible to form solitons through the balance of third order dispersion and
noulinear dispersion hoth of which cannot be compensated for. When the terms for
third order dispersion and nonlinear dispersion are used the describe the propagation of
pulses in optical fibre the resultant equation is of the form of a modified Korteweg-de
Vries equation. This is a well known soliton supporting equation. Since the field is being
conjugated at every amplifier soliton interactions are effectively suppressed and the effects
of noise resulting in Gordon-Haus jitter are also much reduced leading to the RMS jitter

mereasing linearly with distance rather like the case where guiding filters are used.

2.8 Summary

The nonlinear Schrodinger equation describes the propagation of pulses in single mode
optical fibre including the effects of dispersion and nonlinearity. If there is a correct
balance between these two effects it is possible to propagate pulses called solitons that
do not change their spectral or temporal shape during propagation. When loss and gain
are added to the system it is still possible to propagate these pulses through the use of
the average soliton. Solitons are stable under other perturbations such as the addition of
noise however the addition of noise does induce Gordon-Haus timing jitter. The solitons
canl also interact with adjacent pulses. These problems can be controlled through the use
of techniques such as filtering, phase and amplitude modulators, optical phase modulators

and saturable absorbers.
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Chapter 3

Dispersion Management

3.1 Introduction

Over recent years the potential of constructing a transmission line using sections of fibre

with different dispersions has been realised [140]. This technique is known as disper-

ston management. The simplest and most successful dispersion maps involve alternating
lengths of normal and anomalous dispersion fibre to give high local dispersion but low
average dispersion. Maps of this sort have been found to support stable nonlinear pulses
known as dispersion managed solitons [141]. This chapter will give a review of dispersion
managed solitons.

Dispersion managed systems have high local dispersion and low average dispersion
which gives many advantages. One expected advantage of low dispersion is that the

Gordon-Haus timing jitter is reduced. Equation 2.99 shows how the timing jitter depends

on the size of the dispersion. The low average dispersion also means that the soliton
period (given by equation 2.68) is increased which means that the amplifier span length
can be increased as a result of the constraints set by the average soliton model (see section
2.6.2). The high local dispersion means that the four wave mixing is inefficient as it is
pliase matched at zero dispersion. There are also less expected advantages that result
from using dispersion management, for example dispersion managed solitons demonstrate
enlianced pulse energies when compared to average solitons 1n optical fibre with constant
dispersion [141, 142, 143, 144, 145]. This means that it is possible to use lower average
dispersions and so gain further advantage from the reduced Gordon-Haus jitter [146, 147,

148. 149, 150] without degrading the signal-to-noise ratio. A further advantage of using

dispersion managed solitons 1s that it makes it possible to operate at the zero dispersion

SRS EO = = A < =
and even to operate with a normal average dispersion [151, 152, 145, 153, 154].
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This chapter will give a review of the work tha,t has been done previously on dispersion
managed solitons. This will include an examination of the effect of dispersion maps on
the properties of solitons such as the pulse energy and pulse shape as well as the effect
of dispersion management on such things as Gordon-Haus jitter and soliton interactions.
There will also be a review of some of the experimental and numerical results that have

beew published for high bit rate transmission systems that use dispersion management.

3.2 Background

Dispersion management in the context of this thesis will be taken to mean a transmission
line made up of alternating steps of normal and anomalous dispersion fibre. The average
dispersion of the transmission line is set to be significantly less, in magnitude, than the

dispersion of the constituent fibres. An example of a dispersion map is given in figure

3.1. although in this map the two sections of fibre are the same length this does not have
to be the case, maps proposed for the upgrade of the standard fibre network consist of
long sections of standard fibre (with anomalous dispersion) and short lengths of disper-
sion compensating fibre (which has large normal dispersion) [155. 156] as will be seen in
chapters 6 and 7. The dispersion map can also consist on mainly normal dispersion fibre
with ouly a short length of anomalous dispersion fibre [157] such as the dispersion map
used in chapters 4 and 5.

Transmission lines made up of different dispersion fibres have been used for some

timne. The first dispersion maps were used in an attempt to have a dispersion profile

that followed the exponential loss of the fibre. This technique involves minimising the
difference between a true exponential dispersion decreasing fibre [158] (which have also
been used [55. 56]) and a dispersion profile that decreases in steps and so can be more
casily constructed. All the fibres used in these systemns have anomalous dispersion so
are not what are considered dispersion managed systems in the context of this thesis. A
second precursor to dispersion management is using a section of dispersion compensating
filre at the end of the transmission line to remove some of the accumulated timing jitter
from the pulses [159]. The idea behind this is that the dispersion of the line is unaffected
and so a lower average dispersion could be used without having an effect on the signal-
to-noise ratio [159]. In this case the decrease in dispersion at the eud of the transmission
line is gained at the expense of an increased pulse width which hmits the amount of

compensating fibre that can be used.
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Figure 3.1: A dispersion map with equal lengths of normal and anomalous dispersion fibre. /3, and
Lo are the dispersion and length of the anomalous dispersion fibre respectively, 3, and L,, are the same
quantities for the normal dispersion fibre.

Dispersion managed solitons were discovered when a transmission line made up of
alternating lengths of anomalous and normal dispersion was used. The lengths of each
section of fibre are generally 100km or less so the length of the dispersion map in total
15 of the same order as an amplifier span. One of the major areas where dispersion man-
agement is found to be useful is for the upgrade of the standard fibre network. Standard
fibre was originally intended for use at a wavelength of 1.3m and has low dispersion at
this wavelength. The invention of the Erbium doped fibre amplifier has made it more
attractive to work around 1.55um so it is now necessary to operate these fibres at this
wavelength where standard fibre has dispersion of between 16 and 20ps /(num km). Dis-
persion management can be used with this fibre to reduce the average dispersion which
makes working at higher data rates possible without the use of regenerators (155, 156].

Standard fibre propagation will be discussed 1 more detail in chapters 6 and 7.

3.3 Dispersion Managed solitons

This section will give an explanation for the formation of solitons in a transmission line

with dispersion management. Before examining the pulse shapes and energies found for

dispersion managed soliton it 1s interesting to look at what happens to the pulse width



and bandwidth through one dispersion map to see how the halance between dispersion
and nonlinearity is attained in the case of dispersion managed solitons. Since the aver-
age dispersion of the transmission line is much smaller than the local dispersion —at any
point the powers being used are low relative to the local dispersion and so the dispersion
dominates, however the nonlinearity of self-phase modulation still has an important role
to play in the formation of dispersion managed solitons [160].

When an unchirped pulse is launched into a length of anomalous dispersion fibre with

a power less than that required to form a soliton the high dispersion causes the pulse

width to increase as the pulse becomes chirped, this can be seen in figures 3.2, 3.3 and
3.4 which show the pulse shape, FWHM and chirp of a pulse in a length of anomalous
dispersion fibre, the fibre was taken to have no loss and no higher order dispersion. These
figures are of a 20ps Gaussian pulse with a pulse energy of 0.014pJ in 100km of anomalous

dispersion fibre with dispersion of —3.0ps?/km this is well below the pulse energy for a

first order soliton which would be 0.2pJ. Figure 3.5 shows the bandwidth of the same
pulse as 1t propagates over the length of fibre. The bandwidth of the pulse decreases as
1t propagates through the fibre, this is caused by the nonlinearity. The reason for the

decrease n the pulses bandwidth is that the nonlinearity is acting on a chirped pulse.
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Fieure 3.3: The pulse width increasing as the Gaussian pulse propagates through 100km of anomalous
dispersion fibre.
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Figure 3.5: The bandwidth of the Gaussian pulse decreasing as it propagates through 100km of anoma-
lous dispersion fibre.

The reduction in the bandwidth can be thought of like this. Since the dispersion
dominates the pulse quickly becomes chirped in such a way thaf the leading edge is up
shifted in frequency and the trailing edge is down shifted. The effect of the nonlinearity
is to rednce the frequency of the front of the pulse and to increase the frequency of the
trailing edge of the pulse. This means that the extremes of the spectrum are destroyed
creating frequencies closer to the centre of the pulses bandwidth resulting in a decrease

m the bandwidsh.
Figure 3.6 shows the same unchirped Gaussian pulse as 1t 1s inpuf mmto a length of

normal dispersion fibre. The parameters for this simulation are the same as those for the

anomalous dispersion simulation however here the dispersion of the fibre is 3.0ps®/km

Once again the effect of the dispersion on this pulse is to increase the pulse width as can

be seen in figure 3.7. The bandwidth of the pulse in the normal dispersion fibre (given in

figure 3.9) increases, this is because in the normal fibre the chirp induced on a transform

limited input pulse is of the opposite sense to that found in the anomalous dispersion

fibre. this can be seen in the plot of the instantaneous frequency given in figure 3.8. This

means that the pulse has lower frequencies in its leading edge and higher frequencies on
~alls tliat the SC :

its trailing edge. Since the offect of the nonlinearity 1s still to reduce the frequencies on
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Figure 3.6: The pulse shape evolution of a Gaussian pulse is 100km of normal dispersion fibre.

[t is also interesting to look at the evolution of the pulse parameters as they vary
throughout one section of the dispersion map [161, 162]. One section of the dispersion
niap 1s taken to consist of a half length of anomalous dispersion fibre followed by a full step
of normal dispersion fibre and finally another half step of anomalous dispersion fibre. The
half steps are used because the input pulse is transforn limited and in loss-less dispersion
managed systems the stable pulses are unchirped at the midpoints. For this simulation
the dispersion map consists of 100km of anomalous dispersion fibre with dispersion of
=3.0ps?/km and 100km of normal dispersion fibre with dispersion of 2.8ps?/km this gives
aaverage dispersion of —0.1ps?/km, both fibres are talken to have no loss or higher order
dispersion. The input pulse was a 20.0ps Gaussian pulse with a peak power of 0.65mW

this map and input are chosen because the stable pulse shape for this map is almost
exactly Gaussian. Fi gure 3.10 shows the pulse as it propagates through this dispersion
map. reference should also be made to the pulse width in figure 3.11 and figures 3.13 and
3.12 which show the bandwidth and the instantaneous frequency respectively. :
The pulse width increases as the pulse propagates through the first section of anoma-
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Figure 3.9: The bandwidth of the Gaussian pulse increasing as it propagates through 100km of normal
dispersion fibre.
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Figure 3.13: The bandwidth of a dispersion managed soliton as it changes during propagation through

one unit cell.

lous dispersion fibre because it becomes chirped, during this same section of fibre the
bandwidth decreases. Then when the pulse enters the normal dispersion fibre the pulse
width decreases as the pulse becomes less chirped. Since it is the sign of the chirp that
defines whether the bandwidth increases or decreases the bandwidth continues to decrease
during the first half of the normal dispersion fibre. At the midpoint of this fibre the pulse
width reaches a minimum as it is unchirped at this point. After the midpoint the pulse
once again becomes chirped and so the pulse width increases. As the chirp is now in the
opposite sense the bandwidth also increases during the second half of the normal disper-
sion fibre. When the pulse propagates through the final half step of anomalous dispersion

fibre the pulse width is once again reduced as the pulse becomes less chirped and reaches

o 1ninium at the end of this section of fibre. Throughout this section of fibre the chirp is

also being reduced but is still in the same sense as before and so the bandwidth continues

to increase and reaches a peal at the end of this fibre.

It is interesting to note that the minimum pulse width is less in the anomalous dis-

persion fibre than it is In the normal dispersion fibre. This 1s because the bandwidth

is greater in the anomalous dispersion fibre and so a transform limited pulse can have
a shorter temporal width. This also means that the anomalous dispersion fibre has a
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greater dispersive effect on the pulse since the amount of pulse spfeading is Increased

when the bandwidth is increased. This leads to the idéa of an effective clié.persion Whidl is
the deciding factor when considering whether soliton propagation is possible or notThe 3
idea of effective dispersion will be discussed more fully later in the chapter [152]. \\
For the balance between the nonlinearity and the dispersion to be correct it is neces-
sary to have the correct pulse shape and energy, as is the case with traditional solitons
[163]. When dispersion management is used the shape and energy required depend on the
dispersion map as well as the pulse width and the average dispersion [141, 162, 151, 164].
The dispersion map can be described using the average dispersion, ..., the dispersion dif-
ference Af and the normalised average dispersion given by D = —3,,./AS (= Dgawe /AD).
The final parameter used to describe the dispersion map is the dispersion map strength

S. this is given by [143];

S = T (3.1)

where [ is the length of the sections of fibre, and T is the full width half maximum pulse
widtl. This definition of the map strength can only be used for maps with equal lengths

of normal and anomalous dispersion fibre. A more general definition is;

’{n 37: - la»//—:))a )
—/—T-z—‘ (3.2)

wlhere 1, and 3, are the length and dispersion of the normal fibre, [, and f, are the

leneth and dispersion of the anomalous dispersion fibre and T is the full width at half
ngth a spe

maximum pulse width. The map strength is used to give an indication of the amount of

. < undereo in the dispersi A igh map strength which is
pulse spreading the pulses nndergo in the dispersion map. A high map strength

caused by either high dispersion fibre or short pulses means that the dispersion length of

the pulse 1s short compared to the length of fibre. Map strengths up to 12 have been used

to pive stable propagation [143, 165].

The stable pulses in dispersion managed systenis have different pulse shapes from

those in constant dispersion systems. The pulse shapes vary from being very close to sech

shaped for wealk dispersion maps to Gaussian pulse and on to pulses with shapes closer
o < C. . b .

to a sinc function [142 164]. There is no one set shape for a dispersion managed soliton,
. I'd N - ] —“, M

the pulses correct shape can e found numerically using an averaging technique first used
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in reference [143]. If the pulse shape or width of a ,dié}i@fSiOll maﬁage’d sojﬁton a’-ref’n‘_dt:
exactly correct they do not evolve into the correct 15ﬁlse but ogciilafé,'aro.uﬁC1 the correct
solution [166]. The pulse energy is dependent on the strength of th‘e’_dii.ép\eréi:’@ig’”1\-131“_-\2\5;13‘;,’_a:3
well as the average dispersion. ;

The original work to find the stable pulse energies was presented in reference [141] in
this paper the stable enhanced power dispersion managed solitons were found by letting
the pulses evolve over a long propagation distance and removing the dispersive radiation
to Lelp the pulse evolve. It was noticed that the energy enhancement of these pulses had
a quadratic relationship with what is now known as the dispersion map strength. An

empirical relationship for the energy enhancement is given by;

(/31 - ﬂam%) ll - (/32 cwc
T'Z

B = E, (1+0.757) (3.4)

B = E, |1+0.7 (3.3)

where 4y and /3, are the dispersions of the two fibres, [; and [, are the length of the two
fibres. Fupe 1s the average dispersion, T is the FWHM pulse width. S is the dispersion
map strength and Fyy and E, are the energies of the dispersion managed soliton and the
equivalent first order soliton respectively. In the same paper it was first realised that the
pulse shape also varies with dispersion map strength.

The development of the averaging technique to find the exact periodic solutions to
dispersion managed systems has allowed further investigation of the energy enhancement
and the possibilities opened up by using stronger dispersion maps. It has been found that
for svstems with 5 > 4 the energy enhancement does 1ot just depend on the strength
of the dispersion map but also depends on the normalised average dispersion. A semi-

empirical formula for the energy of a soliton for map strengths S > 4 is given by [143];

Eso,g:gﬁZ;( 5 b5 - b)? +(,SD) (3.5)

where a=0.2, b=3.7, ¢=180, S is the map strength and D is the normalised average

dispersion.

The concept of energy enhancement breaks down when solitons that exist in the av-

erage zero dispersion or i the normal dispersion regime since traditional solitons do not

exist in these regions there 1s no energy to compare the value for dispersion managed soli-
) B ) i) P % o) . = ~ hd

tons. Tt is for this reason that the idea of an effective dispersion rather than an average
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dispersion 1s useful.

As stated earlier the effect of the anomalous dispérsi’_on on the soliton is greé’cer’ than
the effect of the normal dispersion fibre because the bandwidth of the pulse is 'glri\eate_i’: .111 |
the anomalous dispersion fibre. This means that the dispersion induced chirp on the pulse
can be anomalous even if the average dispersion is zero or normal. This chirp is caused by
the effective dispersion and it is balanced by the nonlinearity to give stable propagation
of dispersion managed solitons when the average dispersion is zero or anomalous. The

effective dispersion has been found using the variational method and is given by [152];

< A0 >

gy =~ = ,
Heff <Q~2> (36)

where Fe is the effective dispersion, g is the dispersion, and (2 is the bandwidth. Both
the dispersion and the bandwidth vary with propagation distance.

The dispersion map has to be stronger than S=3.9 for propagation at zero disper-
sion or in the normal average dispersion. This value has been found through numerical
simulations but similar values can be obtained through analytical methods [145].

The opportunity to work with zero or normal average dispersion is of particular interest
in WDM systems. Gordon-Haus jitter means that it is advantageous to work as close to
zero dispersion wavelength (A,) as possible. In WDM systems the third order dispersion
means that the wavelength channels that are further away from A, experience greater
dispersion and so suffer more from timing jitter. If it is possible to use wavelengths on
both sides of the dispersion zero then the outer wavelengths can be closer to the dispersion
sero and so experience less dispersion. It is also possible to use dispersion compensating
fibre that compensates for both second order and third order dispersion which flattens

the dispersion of the fibre [8, 9].

3.3.1 Properties of Dispersion Managed Solitons
It is interesting to look at the effect of loss, noise and polarisation mode dispersion on

dispersion managed solitons as well as looking at interactions between dispersion managed

solitons. These effects are well known for svstems with constant dispersion and were

discussed in the previous chapter.

In constant dispersion systemns the effect of loss is to cause a reduction n the non-

. . . roay (] O QeQ 7 . hter - ‘.‘A S AVETALEe S . } '.', se as
linearity as the pulse power decreases. To counteract this the average soliton is used as




was seen 11 section 2.6.2. In dispersion mcmaged 3011’0011 systems thele 15 some‘ewdence .
to suggest that the effect of loss is to reduce the enhanced power 1equned to c1eate the
soliton [167]. This paper suggests that the size of the power enhancement 15 1educed as
the loss 1s increased. It is clear, however, that an enhanced power is required to prop-
agate dispersion managed soliton in the presence of loss [167, 142]. The usual average
soliton constraints (as given in section 2.6.2) still apply i.e the amplifier span must be
significantly less that the soliton period. The inclusion of loss also moves the points in
the dispersion map where unchirped pulses exist from the midpoint of the fibres to a
point closer to the boundary going from the normal dispersion fibre to the anomalous
dispersion fibre. This is because the effects of the nonlinearity are less as the peak power
of the pulses is reduced. From reference [168] the position of the unchirped pulses and
therefore the correct position to launch an unchirped pulse is given by the zeroes of the

following equations.

o1 —eap(—2I2,)

F(z) = F(0) + D1z, + Ria? _ (3.7)
20,
for z, < =
1 —exp|—21%(z, — 2 :
F(z,) = F(z1) 4+ Dafzo — = )+P2(L exp(—21"12y) ol ‘ - V] (3.8)
2T,
for z, > =
where
z Rya> D, al { <Rz RI) . o
oy = S e 2 Dyzy | — — — Jeap(—20'1 =)
F(0) = 2 2T 20 + 2zq4 r, I : o
1 —eap(—=20"z)) (DQ DJ>} _
: —_—— = 3.9
+Rl 21—\] 1—\2 I‘vl ( )

D, and D, are the dispersions of the two fibres, a? is the power enhancement factor fo

the soliton in the dispersion map, I, and Ty are the losses of the two fibres, R, and R,

1 1t - eavity of the fibre. z; is the length of the first section of fibre
give a measure of the nonlinearity of the fibr | g ’
=, is the length of the second section of fibre.

~ : " loss ain into the system means that the effects of amplifier
The introduction of loss and gain 1mto the sys @ é amiy

' st also be considered. As with constant dispersion solitons, dispersion managed
noise must also be considered. -
jor ways. The first is a degradation in the signal-

solitons are affected by noise 111 twoO maj
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fo-noise ratio and the second is Gordon-Haus timing jitter

caused :.by‘ the s_h?iffi‘n'g of fhe;
pulses spectrum by the inclusion of noise photons, these two effects Were‘d-i’sc’ussed n
relation to average solitons in sections 2.6.4 and 2.6.5 respectively. The pelf@lmanceof
dispersion managed solitons is better than conventional solitons when noise is inciuded
as a result of the enhanced power required to form the pulse.

In reference [144] the signal-to-noise ratio for a dispersion managed soliton after prop-

agating over a distance Z was found to be;

E,Z,

SNR = ‘
nsp(G —1)hvZ

(3.10)

Where E, is the energy of the pulse at the output of the amplifier, Z, is the length of
the amplifier span, ng, is the spontaneous emission factor of the amplifier, G is the gain,
I 1s Planck’s constant and v is the frequency. The SNR is increased when compared
to the value of an average soliton because the value of E, 1s greater for a given average
dispersion. Essentially the signal level is higher and so the SNR is greater.

The effect of using dispersion managed solitons on the level of Gordon-Haus jitter 1s
more complicated [149, 167, 148]. This is because the Gordon-Haus jitter does not just
depend on the pulse energy although the enhanced energy does reduce its effect. The size
of the jitter is also affected by the bandwidth of the pulse at the amplifier. The pulse’s
spectrum is only affected by noise photons within the spectral width of the pulse. Figure
3.13 showed that the pulses spectral width changes during the dispersion map therefore
the size of the Gordon-Haus jitter is affected. This can also be thought of as the jitter
depending on the pulse width and the chirp. From reference [144] the timing jitter after

1 amplifiers is given by;

2114, (G — 1)] L ;
o p=1 -

where E, is the energy of the pulse at the output of the amplifier, Z, 1s the length of the

amplifier span, n, is the spontaneous enUssION factor of the amplifier, G is the gain, h 1s

) . 1 2 e+l rrradrarie har A4 1¢ the curr ative
Planck’s constant, v is the frequency, Q;n is the quadratic bandwidth, 4, is the cumulative

dispersion after the pth amplifier, Z is the total system length, Z, is the amplifier span

length and 7. 1s the minimum pulse width.

From this equation it is clear that the enhanced pulse energy reduces the value of the

jitter. The equation also <hows that it is best to avoid amplifying the pulse where it has




the greatest bandwidth. This means that the Worst; pl&cé to amplify the pulse i is af the

unchirped point in the anomalous dispersion fibre.

Polarisation mode dispersion is becoming mcreasingly important as shorter pulse

used in an effort to propagate data at higher rates. It 1s, therefore, important to u-ndép
stand how dispersion managed solitons respond to PMD. In constant dispersion systems
solitons are resistant to PMD as was discussed in section 2.6.3. Since the resistance is
due to a nonlinear process, i.e. cross-phase modulation between the two polarisations, it
might be possible that the enhanced powers of dispersion managed solitons could mean
that they are more resistant. It has been found that dispersion managed solitons perform
in much the same way as traditional soliton under the influence in PMD with limited
improvement for weaker maps. The main cause of the instability of dispersion managed
solitons under PMD is through interactions with dispersive radiation [169]. With fu-
ther optimisation of the launch position, pulse shape and amplifier position it should be
possible to limit the amount of dispersive radiation and so improve the performance of
dispersion managed solitons in fibre with PMD [170].

Single channel interactions are another important property of solitons and are affected
by the use of dispersion management [171, 172, 173, 174, 175]. Interaction for constant
dispersion solitons occur due to constructive interference between the tails of adjacent
solitons leading to a refractive index change. There are three ways in which this process
is altered by the use of dispersion management. Firstly the solitons are no longer sech
shaped, this has an effect because the intensity of a Gaussian pulse for example drops off
more quickly than the sech pulse, this means that the tails have a smaller effect on the
refractive index of the fibre and so the interaction forces are decreased.

The interaction forces are also changed because the pulse breathes as it propagates
This means that the pulse width increases and decreases

through the dispersion niap.

) . il o e taile raries alone the fibre. This would
during propagation and so the overlap of the tails also varies along the fibre. This

tend to increase the the interaction forces. The final property of dispersion managed

solitons that affects the size of the interactions is that the tails of the pulses are chirped.

This means that the tails do not necessarily constructively interfere and so the fact that

the pulse breaths does not necessarily increase the interactions. All of these effects mean

. - s Mmore ¢ icated as the collapse distance depends
that the soliton interactions are NOW InoOre complicat al € 1

on the streneth of the dispersion map as well as the pulse width and 1t will be seen
. 2§ =83 al ) - R <

later that when loss and gain are considered the collapse length is strongly affected by
L L LT : <L U . P iy 1.

amnplifier position. Since lower dispersion can be used with dispersion managed solitons,
C - h U . B d



interactlons are increasing ne Ee P .
intere increasingly being found to thl}, tal propagation distance [174]..

In the lossless case interactions are suppresséd’i f/or/ :Weak maps and the "C“O'll!@p.S.ecy,lengtl’i
is increased. As the map strength is increased and so the brea,t-hing;of thepulgegbo -
greater the collapse length is decreased and is eventually shorter than the collapsé 1é11gt-h
for a non-dispersion managed soliton.

When loss 1s included in the consideration of dispersion managed soliton interactions
the collapse length is found to depend critically on the amplifier position. Experimental
evidence suggests that the collapse length can be more than doubled by correct position-
ing of the amplifier [155]. These results have been backed up by analytical and numerical
studies. The experimental results have suggested that the best place to situate the am-
plifier is 1mmmediately following the the normal dispersion fibre. The analytical results
suggested that the collapse length could be further increased by placing the amplifier in
the normal dispersion fibre [176].

Techniques that have previously been used to improve the performance of soliton
svstems have been found to offer equivalent improvement for dispersion managed solitons.
These include the use of filters [161] and sliding guiding filters [177, 178], amplitude
modulators and, as will be seen in chapters 4 and 5 saturable absorbers. Dispersion
management has also been shown to offer substantial improvements in wavelength division

multiplexed systems by reducing the collision induced timing jitter [179, 180, 181].

3.4 Conclusions

The use of dispersion managed solitons has been found to offer many advantages over
colitons in conventional transmission lines with constant dispersion fibre. Dispersion

managed solitons exist when the transmission line 1s constructed from alternating sections

of nortal and anomalous dispersion fibres. Dispersion dominates the evolution of these

pulses however self-phase modulation plays an important role in their formation. The

pulse width and bandwidth of dispersion managed solitons oscillate as they propagate

along the optical fibre, however periodically they return to their original values.

Dispersion managed solitons are not sech shaped, they tend to have a shape closer

to Gaussian and they also have enhanced power compared to conventional solitons. The

strength of the dispersion map is an important parameter in describing the dispersion

map and the soliton pulses It gives a measure of the amount of dispersive broadening
C cl. , AN ; HES. 2

the pulses undergo in the dispersion map. For weaker maps the energy enhancement
he ses SY
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depends quadratically on the dispersion map stlength dlthbﬁgh it sa;turateé for .’s't,ro‘n';ger
maps. Dispersion management also means that it is poséible to lalfblgaga,f,e SOH"cogs\, in a
transimission line with average zero or normal dispersion as long as the diLSi\afei”f\'s\if(:)\'li\. 1ap15 \
stronger than S=4. k .

The enhanced power of dispersion managed solitons means that they are able to per-
form better than conventional solitons in terms of both signal-to-noise ratio and Gordon-
Haus jitter. The effect of Gordon-Haus jitter also depends on the position on the disper-
stonn map where the pulse is amplified as the bandwidth of the pulse at the amplifier is
unportant. The collapse length of adjacent solitons can be longer in a dispersion managed
system as long as the map is weak. The collapse length has also been shown to depend
strongly on the position of the amplifier in the dispersion map.

The use of dispersion management has led to many impressive experimental results
over recent vears. Using standard fibre it has been possible to propagate single channels
at 10Gbit/s over transoceanic distance [4, 182, 183]. It has also been possible to use
several channels at 10Gbit /s over standard fibre [184]. Standard fibre can also be used to
propagate single channel at 20Ghit/s [185] over 2000k and 40Gbit/s [186, 156, 187] over
distances greater than 1000km. It is also possible to use WDM with higher data rates in
cach channel with total data rates of up to 450Gbit/s possible over 1200km [188, 7].

When the choice of fibre is not constrained to standard fibre it is possible to improve
the performance of dispersion managed systems. Data has been propagated at 20Ghit/s
in single channels over distances well in excess of transoceanic distance [189, 4, 146] and
over shorter distance for several channels [9]. It is now becoming possible to use dispersion
managed solitons to transmit data at 40Gbit /s over transoceanic distance [190, 5]. There

Lave also been some field trials of dispersion managed solitons at both 10Gbit/s [191]
and 40Ghit/s [192, 193, 194] which show that dispersion managed solitons can be used

snccessfully outside the laboratory.
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Chapter 4

Dispersion management and

saturable absorption.

4.1 Introduction

This chapter will take the experimental parameters from reference [195] and carry out
mumnerical simulations to identify the individual roles of dispersion management and sat-
urable absorption in order to understand the mechanism for the observed stable pulse
cvolution. The results show that a combination of dispersion management and periodic
saturable absorption allows stable pulses to propagate with a wide range of energies (from
0.165 to 1.30pJ) with the same input pulse width of 6.0ps. The pulses with the highest
energies have far more energy than would be expected from dispersion managenient alone.
The stable, high energy pulses can only be propagated when both dispersion managerent

and a saturable absorber are used.

Effects such as Gordon-Haus jitter [77] and soliton interactions [80, 82] mean that
it is often beneficial to work close to the dispersion zero. However, as noted 1n section
2.6.4, since the power of a soliton depends on the fibre dispersion, there is a limit on

Low near to the dispersion zero soliton propagation is viable due to the signal-to-noise

ratio (SNR). In chapter 3 it was shown that dispersion management allows solitons with

enhanced energy to propagate [141]. This means that lower average dispersions can be
B " o O

used without an unacceptably low SNR. The use of saturable absorber has also been shown

to improve soliton propagation by suppressing the build up of amplified spontaneous

emission noise (ASE) and dispersive waves (128, 116, 196, 197] (see section 2.7.5). It has

been shown experiment
ses have a further increase in energy [195]. a

weak saturable absorber the stable pulses have a further increase in energy [195]. In fact

oNn

ally that if dispersion manageent is used in conjunction with a




stable pulses have been found that have the same energy as an N=1( average soliton for

the same average dispersion. These solitons were also found to be extremely stable ind
were able to maintain their shape and peak power for more than half an houz,thlsglves
a propagation distance of 360000Mm. The saturable absorption in this experiﬁlenf came
abont through nonlinear polarisation rotation (NPR) utilising the polarisation dependent
loss of the filter. The use of NPR to form a saturable absorber was discussed in section
2.3.6. The dispersion map and saturable absorber used in these simulations are based on
those used i the experiment.

To identify the key effects, iitially a point saturable absorber is used in place of NPR.
The response of the saturable absorber is designed to be similar to that of NPR. In order
to examine the effect of the two different aspects of this system (i.e. saturable absorption
and dispersion management) they are looked at separately to begin with and then the
combined system is examined. When the saturable absorber is used without dispersion
management it is possible to produce shortened pulses in a similar way to mode locked
lasers. The dispersion map alone supports pulses with enhanced energies as found with
other dispersion maps. The combined system supports pulses with a wide range of pulse
cuergies. these pulses have energies that are higher than those found for systems with
dispersion management alone. Finally a 2D model is created to properly model the NPR
of the original experiment which confirms the results of the simpler model. Throughout
the simulations the fibres are taken to be lossless and to have no higher order dispersion,

i1 order to help identify the key effects by keeping the model as simple as possible.

4.2 1D Model

4.2.1 Saturable Absorber
A svstem with constant dispersion and a point saturable absorber is examined 1n order to

identify the effect of the saturable absorber on its own. A schematic of this model is shown

in fieure 4.1, The model consists of 26.3km of fibre with dispersion of 0.1ps/nm/km, the

saturable absorber, an amplifier and a 3nm Gaussian filter. The fibre was taken to have
Scalilll e e DS 21, .

no higher order dispersion and 1o loss, so the amplifier was used purely to recover the
ghe 21 dispers

o~ A : T0F - anv ",;“‘ - X-\'O, al.
loss from the saturable absorber and the filter and did not add any noise to the signal

The equation used to describe saturable absorption through NPR was derived in sec-
S cl B <t

faYa!

i

i
g
i
i




X 26.3km
. Saturable DSF
Filter  Absorber

EDFA

Figure 4.1: Schematic for the system with constant dispersion and the saturable absorber
tion 2.3.6 and is given by [33, 34, 35];

VAN
Pou.t - PingznzTQS'lnz?,g (41)
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where P,,, and P;, are the output and input powers respectively, A¢ is the accumulated
nonlinear phase shift between the two polarisations and # is the polarisation angle of the
mput.

For the purposes of the simplified 1D model the saturable absorber 1s modelled using

the equation:

: Pinﬁ )

Where Pooaps 18 the switching power of the saturable absorber and 1s set to 0.1W for the
following simulations. The strength of the absorber is defined by A, this is set to be
equivalent to a maximum absorption of 1.5dB. A switching curve for this weak saturable

absorber is given in figure 4.2
When this saturable absorber is added to the system the gain of the amplifier can not

be kept at a constant value because as the pulses change peak power, width and shape

they suffer different loss as they pass through the saturable absorber and filter. In order

to stabilise the pulse energy, the energy is calculated at the start of the simulation and

the correct gain to restore the energy to this value is used, this is sumilar to using an

amplifier in saturation which is ihe case in many practical systems.

With the amplifier gain controlled in this way it is possible fo propagate solitons

- - =0 <ol seriods : for a small range of pulse energies. Pulses
for more than 50 soliton periods but only for & all rang I g

with a full width half maximum (FWHM) of 6.0ps and a variety of different energies are

used. Stable propagation can be observed in two different regions, the first of these is for

‘ -2 5 ~25J (launched soli der N=1.
pulses with energy between 9 64 x 1072 and 5.94 x 107*pJ (launched soliton order N=1.0

to N=1.5). These pulses have peak powers that are low on the switching curve of the
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Figure 4.2: Switching curve for the 1D saturable absorber used in these simulations. The solid curve
shows the output power as a function of input power; the dashed line shows the output without the
saturable absorber and the dotted-dashed line shows the output for a constant 1.5dB loss. The switching
power for this saturable absorber is 0.1W.

saturable absorber and so as they pass through the saturable absorber and the amplifier
they undergo lumped loss followed by lumped gain. An example of one of the low power
pulses is given in figure 4.3, this pulse has energy of B = 4.12 x 107*pJ, the evolution
of the pulse width is given in figure 4.4 and the spectral evolution is given in figure 4.5.
These plots show the pulse immediately following the saturable absorber. The pulses
amplitude shows some fluctuations after an initial drop but does not show much variation
over 10000km. The pulse width drops from the input of 6.0ps to oscillate around 5.6ps.

There is a more obvious long term evolution in the spectrum which develops some fine

structure.

r > Py o for SEC 1 A ETolee e nET A a7
The second area of stable propagation 1s for pulses with energies between 0.134 and

0.300 pJ (launched soliton orders N=2.25 to N=2.75). In this region the system produces

shortened pulses in much the same way as a mode-locked laser using NPR [119, 198, 199,

200]. An example of one of these pulses is given in figure 4.6. This pulse has an mput
pulse width of 6.0ps and a pulse energy of 0.165 pJ, the pulse width quickly reduces

. - : o fonne 4.7 th e the pulse width is compressed 1t remains
to 1.5ps. It is clear from figure 4.1 that once the pulse width is compressed it remains

steady at its new value The only plot that shows any long term evolution is the spectrum
Ssteady at 1T! eW Valuce. o )

e - ectrum broadens quickly as the pulse width is reduced and the
oiven in figure 4.8. The spect
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Figure 4.3: The pulse shape evolution of a pulse with energy of [F=4.12 X 107 %p.J, the peak power of

this pulse is well below the switching power of the saturable absorber which is 0.1W.
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Ficure 4.4: The evolution of the pulse width of a low energy pulse ([ =4.12 X 10 pJ) in a system
gure 4.4: > evolu
with constant dispersion and a saturable absorber.
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Figure 4.5: The spectral evolution of a pulse with energy of £ = 4.12 x 10~ 2?pJ, the spectrum can be
seen to develop some fine structure as the pulse propagates.

peak power increases, however the spectrum is not smooth although the fluctuations are
reduced as the pulse propagates. These pulses have peak powers that are close to the
switching power of the saturable absorber. The pulse with energy of 0.3pJ has a peak
power of 0.1W.

In between the two stable regions there 1s a region of pulse energies where the pulses
break up. The peak powers of these pulses are not high enough for mode locking to

take place however they are high enough for there to be a significant difference in the loss

experienced by the peak and the tails leading to instability. The pulse shape and spectrum

of one of these pulses are shown in figure 4.9 and 4.10 respectively. This pulse has an

input energy of 0.08pJ, the pulse initially undergoes pulse width shortening and the pulse

peak power increases however ofter this initial evolution the pulse width increases and

the peak power decreases. The spectrum undergoes a complicated evolution but shows

10 signs of reaching a stable state.
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Figure 4.6: A pulse with an input pulse width of 6.0ps and a pulse energy of 0.165pJ showing the pulse
shortening when the saturable absorber is used in a system with constant dispersion.
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lse width for a 0.165pJ pulse which undergoes compression similar

Figure 4.7: The evolution of the pu r
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Figure 4.8: The spectral evolution of a pulse with energy of 0.165pJ.
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Figure 4.10: Spectral evolution of the 0.08pJ pulse.

4.2.2 Dispersion Map

Simulations carried out using the dispersion map alone are now considered so that the
offoct of the dispersion management can be isolated. The system used here is shown in
figure 4.11. The dispersion map consists of 23.9km of dispersion shifted fibre with dis-
persion of -1.49ps/nm/km and 2.4km of standard fibre with dispersion of 16.0ps/nm/km

this gives an average dispersion of 0.1ps/nm/km. This dispersion map is chosen to be

the same as that used in reference [195] The fibre is taken to have no loss and no higher

order dispersion. This dispersion map differs to many others in that it consists of mainly

normal dispersion fibre which 1s not soliton supporting with only a short length of fibre

with anomalous disperSion{lf)T}. The pulses are launched into a half step of standard fibre

(1.2kin) in order to minimise the amount of dispersive radiation that 1s produced.

Pulses with widths of 6.0ps are again used with a variety of different pulse energies.

The strength of this dispersion map with a 6.0ps pulse is 2.46. According to the simple

S la o L eematior his eives a stable pulse energy for a first order soliton
formula given in equation 3.4 this gives a stable ] 83

colitons in a system with constant dispersion it 15 not

of 0.138pJ. As with first order

necessary to input exactly the correct pulse width or energy since some pulse evolution
2CessSal'y 4 J -

takes place. It is therefore possible to get propagation for a small range of input pulse
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Figure 4.11: Schematic of the system used to test the dispersion map on its own.

cnergles. Pulses with energies between 0.03 to 0.2pJ are able to propagate over more
thann 10000kni. These simulations show that this system is able to support solitons with
slightly enhanced energy without the saturable absorber. The stable pulses are found
to have the higher time-bandwidth product associated with dispersion managed systems.
The time-bandwidth products for these pulses is ~ 0.4 which is closer to a Gaussian pulse
than the input sech pulse

As an example of the pulses that propagate in this dispersion map figures 4.12 and
4.13 show a pulse with an input pulse width of 6.0ps and a pulse energy of 0.138pJ at the

midpoints of the anomalous and normal dispersion fibres respectively. It is clear that

0.030

T

0.025 - /\

— N SN E / o=

I ) ).138pJ sec e af the midpoint of the anomalous dispersion fibre. This
Figure 4.12: A 6.0ps, 0.138pJ sech pulse at I

simulation is for dispersion managernent alone.
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Figure 4.13: A 6.0ps, 0.138pJ sech pulse at the midpoint of the normal dispersion fibre. This simulation
only used dispersion management

there are significant fluctuations in the pulse width and peak power of this pulse. This can
also be clearly seen in figure 4.14 which shows the pulse width evolution at the midpoints
of the two fibres. The reason for these fluctuations is that the input pulse does not have
the correct shape and so undergoes an evolution. This behaviour is typical of a dispersion
managed soliton when the input pulse is not the correct shape for the dispersion map, the
pulse does not evolve into the correct pulse shape [166]. It is also possible to see the effect
of using the incorrect pulse shape by looking at the spectrum. The spectra at the two

midpoints are given in figures 4.15 (anomalous) and 4.16 (normal). These figures show

that the spectrum is no longer smooth after propagating through the dispersion map and

now has a lot of detailed features. The features resemble the sidebands generated when

the average soliton criteria are not met (65, 62] and can be seen most clearly in figure 4.19.

The frequency of these sidebands can be calculated for the average soliton case using [62];

5 ]
Vy — T
" 2mT

where §1. is the frequency of the nth sideband relative to the central frequency of the
LA o g - v

pulse, 7 is the full width half maximum pulse width, z, is the soliton period and z, 1s the
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Figure 4.14: The evolution of the pulse width for the 0.138pJ pulse in the dispersion map. The pulse
width undergoes a similar evolution in both fibres.

amplifier span length. Taking the pulse width as 5.5ps with dispersion of 0.1ps/(nm km)
and an amplifier span length of 26.4km the frequency of the first sideband is 0.18THz
for the average dispersion. In figure 4.19 the first sideband is at 0.015THz this value is
an order of magnitude smaller than expected however it is of the correct order when the
soliton period of the pulse in the anomalous dispersion fibre is used. Sideband generation
has not been studied for dispersion managed systermns.

It is also interesting to look at the way these parameters change over one pass through
the dispersion map. The pulse evolution, pulse width and spectrum for one trip through
the dispersion map are given n figures 4.17, 4.18 and 4.19 respectively. Although there
is quite a significant change in the pulse width and peak power over the course of one
dispersion map there is not a significant change in the spectrum due to the low power
and so low nonlinearity.

It is therefore possible to propagate pulses over long distances using the dispersion
map alone. However the pulses undergo long term changes in pulse shape, width and

spectrum as they propagate if the incorrect initial pulse shape is used.
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Figure 4.15: Spectrum of a 6.0ps, 0.138pJ sech pulse at the midpoint of the anomalous dispersion fibre.

This simulation only used dispersion management
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Figure 4.16: Spectrum of a 6.0ps, 0.138pJ sech puls | . I

This simulation only used dispersion management
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Figure 4.17: A 6.0ps, 0.138pJ sech pulse as it propagates through the dispersion map.
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Fioure 4.18: The evolution of the pulse width for the 0.138pJ pulse during one pass through the
gure 4.18: °

dispersion map.
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Figure 4.19: Spectrum of a 6.0ps, 0.138pJ as it goes through one dispersion map.

4.2.3 Combined System

The system with both dispersion management and a saturable absorber is now considered.
A schematic of this system is given in figure 4.20, the dispersion map and saturable
absorber are the same as those described in the previous two sections. All the fibres

used are again taken to have no loss and no higher order dispersion, the amplifier has

controlled gain and is used to compensate for the loss from the saturable absorber and

the filter. Soliton pulses with a FWHM of 6.0ps and a variety of pulse energies are again

launched into a half step of standard fibre. Each simulation is run until the full-width

at half maximum, time-bandwidth product and peal power of the pulse have reached a

constant value.

°ec ™ 23.9km 2.4km

Saturable DSF SIF

EDFA Filter Absorber

Fioure 4.20: Schematic of the combined systen.
O



Low energy pulses that propagated in the system with constant d,ispers’ibn‘ do not

reach a stable pulse shape even after propagating for over 200 soliton peric As the

pulse energy is increased stable propagation is possible for a wide 1’@1',_1\1ge-’o’f; energies he
west energy reach a ste: ; i o ava , ; aE

lowest energy pulse to reach a steady state in this system has a pulse energy of 0.165pJ]

(the launched soliton was of order N=2.5). As the energy was increased from this value

a range of stable pulses can be found with energies from 0.165 to 1.30pJ (launch orders
from N=2.5 to 7.0).

[t 1s interesting to look at a range of these pulses from those at the lower end of the
cnergy scale to those with higher energy. The first pulse has an energy of 0.165pJ. The
evolution of the pulse shape is given in figure 4.21, all the plots of this pulse are taken
from the midpoint of the anomalous dispersion fibre. The pulse undergoes some initial
changes in its shape, peak power and width. If this pulse is compared with the one from
the dispersion map alone it 1s clear that the saturable absorber adds to the stability of
the svstem and assists the pulse in reaching the correct pulse shape. However from the
plot of the spectrum of this pulse (figure 4.22) it can be seen that it is still undergoing
some evolution even after 10000km and the spectrum of this pulse has the same sidebands
that were seen 1n the previous section. The plot of the pulse in dBm, given in figure 4.23,
shows that the pulse sheds some dispersive radiation, although it is kept at a low level by
the saturable absorber.

As with the pulses in the dispersion map alone the lower power pulses in the combined
svstem show a large change in pulse width and pealk power through one dispersion map
due to the breathing of the pulses, but there is not much change in the spectrum over one
map. This can be seen in figures 4.24 and 4.25 which show the evolution of the pulse and
its spectrum respectively over one dispersion map.

A pulse from the middle of the stable region is now examined. This pulse has an
input energy of 0.422pJ, the plots for this pulse are taken at the midpoint of the normal
dispersion fibre. As with the lower power pulse, this one (shown in figure 4.26) quickly
ovolves into the ‘correct’ pulse shape for this dispersion map and rapidly reaches the

X Toer Ay ous chanees in pulse width or peak power. This 1s
stage where there are no longer any obvious chang ! 1 !

contraryv to what is seen from purely dispersion managed solitons which do not successfully
Tal'v ’ L S .

evolve into the correct pulse shape [166}. In contrast to the lower power pulse the spectrum

of this pulse (figure 4.27) also reaches a steady state and does not have the sidebands
s pulse (figure 4.27) al : A

that were seen previously. It is also interesting to note in figure 4.28 that the saturable

radiation more efficiently as the pulse power

. ; .~ +he dispersive
absorber is now able to remove the dispersiy
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Figure 4.21: A 0.165pJ pulse taken at the midpoint of the anomalous dispersion fibre.
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Fieure 4.22: The spectrum of the 0.165pJ pulse taken at the midpoint of the anomalous dispersion
gure 4.22: ‘
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Figure 4.23: The 0.165pJ pulse shown in dBm at the midpoint of the anomalous dispersion fibre.

. e “ilee ag it breat through one dispersion map
Figure 4.24: A 0.165pJ pulse as 1t breathes throug spers I



Figure 4.25: The spectrum of the 0.165pJ pulse as it passes through the dispersion map once.

1s now further up the switching curve and so there is a greater contrast between the loss
experlenced by the pulse and the loss experienced by the radiation.

There are further differences between the lower power pulse and the 0.422pJ pulse
when the pulse evolution through one dispersion map 1s examined. Figure 4.29 shows the
pulse as it propagates through one dispersion map and as seen in the earlier results this
pulse undergoes breathing as it passes through the dispersion map. This pulse breathes
more than the previous one as it has a greater bandwidth. This can be seen in figure 4.30
which also shows that with the higher powers, leading to more nonlinearity, there are now
larger changes m the pulses spectrum over one amplifier span.

A pulse at the top end of the range of energies is now used. This pulse has an input
cnergy of 1.3pJ and so has a peak power which 1s again higher on the switching curve
of the saturable absorber. As with the previous two, this pulse rapidly reaches the stage
shape and width reach a steady state as can be seen in figure

where its peak power,

4.31 which is again taken from the midpoint of the normal dispersion fibre. The large

contrast in powers between the peak of the pulse and the dispersive radiation means that

the dispersive radiation in this case is almost completely suppressed as can be seen in the

dBm plot in figure 4.33. The spectrum of this pulse like the last one also rapidly reaches
S ] .t . '



0.040 |
0.030 ¢
rff O.OZO;
©.010 |
OZ
OQ%OQQ
— ga()()c)
=
= SO0
<o
= 6,000 =

Figure 4.26: A 0.422pJ pulse taken at the midpoint of the normal dispersion fibre.
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Fioure 4.27: The spectrum of the 0.422pJ pulse taken at the midpoint of the normal dispersion fibre.




Figure 4.28: The 0.422pJ pulse shown in dBm at the midpoint of the normal dispersion fibre.
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Fioure 4.29: A 0.422pJ pulse as it breaths during propagation through one dispersion map
gure 4.29:
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Fiewre 4.30: The spectrum of the 0.422pJ pulse as it passes through the dispersion map once. The
spectrum of this pulse undergoes an obvious evolution over the course of the dispersion map.

the stage where it has reachied a stable state, this can be seen in 4.32.

The higher powers lead to greater nonlinearity and so there are further differences in
the evolution of this pulse over one amplifier span. Looking at the pulse shape first in
figure 4.34 there is more pulse broadening once again due to the wider bandwidth. As a
result of the greater nonlinearity there is more change in the spectrumn over the dispersion
map as can be seen in figure 4.35. This means that the spectrum is much broader in the
anomalous dispersion fibre than it is in the normal dispersion fibre leading to a greater
difference between the peak powers and pulse widths of the pulse at the midpoints of the
two fibres as the pulse energy gets bigger. This will be more clearly demonstrated later
m the chapter.

When the pulse energy is further increased to 1.687pJ stable single pulse propagation
is no longer possible, but the pulses do not completely break up. lnstead, as can be seen
from the temporal and spectral plots in figures 4.36 and 4.37 respectively, these pulse
appear to be undergoing a periodic evolution. The pulses cannot maintain their shape
as the peal power of the pulse is now much greater than the switching power of the

saturable absorber and thus the centre of the pulse experiences greater loss than the rest
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Figure 4.31: A 1.30pJ pulse taken at the midpoint of the normal dispersion fibre.

. ] ‘ ol . sulse taken at the midpoint of the normal dispersion fibre.
Figure 4.32: The spectrum of the 1.30pJ pulse taken at the midj al dispers
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Figure 4.34: A 1.7pJ pulse as it breaths during ]?;~9pa.g21.t1f)11 ‘il“'OUBh 0’3? .(-p/b'l)t‘tl'SlOll map the higher
reathing and a large difference in the pulse widihs and peak powers at the

nonlinearity leads to greater b
midpoint of the two fibres.
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Fig’lu‘e 4.35: The spectrum of the [.3pJ pulse as it passes through the dispersion map once. The
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spectrum of this pulse undergoes greater evolution over the course of the dispersion map than the lower
energy pulses.



of the pulse causing it to develop two peaks which are symmetrical about the centre
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Figure 4.36: A 1.68pJ pulse at the midpoint of the normal dispersion fibre. This pulse has a more
complicated evolution than the lower power pulses.

[t 15 Interesting to look in more detail at the pulse width and the bandwidth of the
stable pulses as they travel through one dispersion map. The pulse width is shown in figure
4.38. Starting at the midpoint of the normal dispersion fibre the pulse width increases
as 1t becomes more chirped. As it travels through the anomalous dispersion fibre the
pulse width reduces to a deep minimum and then increases. As the pulse passes through
the amplifier, filter and saturable absorber there is a reduction in pulse width as the low’
intensity wings are attenuated. Finally the pulse width is further reduced as it passes
through the normal dispersion fibre.

The bandwidth also increases during the first half step of DSEF as can be seen in figure
4.39. The bandwidth continues to increase in the first half of the anomalous fibre and then
decreases during the second half. As the pulse passes through the amplifier, filter and
saturable absorber the bandwidth is further reduced. This is partially due to the filter and
partially due to the saturable absorber which causes a reduction in the bandwidth because
the pulse is chirped and therefore the low intensity wings, which are absorbed, contain

the extremes of the pulses spectrum. The pulse then passes into the normal dispersion

fibre and the bandwidth continues to decrease.
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Figure 4.37: The spectrum of the 1.68pJ pulse as it propagates over 10000

from the centre of the normal dispersion fibre.
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Fioure 4.38: The evolution of the pulse width as it passes through one amplifier span.
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Figure 4.39: The evolution of the bandwidth of the pulse as it passes through one amplifier span.

The steady state pulse width was recorded af the midpoints of each of the two fibres.
The midpoints of the fibres were chosen because these are the points where the pulses are
unchirped and so their widths are at a minimum. A graph of how the pulse width at these
two points changes with energy is given in figure 4.40, the data for a first order soliton in a
constant dispersion systent is included for comparison. The pulse width from the midpoint
of the DSF appears to reach a minimum for pulses with an energy of ~ 0.23p.J, after this
point the pulse width increases with energy. This is contrary to what is expected for a
soliton system. In general the pulse width is expected to decrease with increasing energy
as can be seen from the curve representing the first order soliton energy for a constant
dispersion system. The pulse width in the standard fibre does decrease with pulse energy.
However the change in pulse width with energy 18 very sheht when compared to the
constant dispersion soliton. This also shows how much higher the energy of these pulses
is when compared to the constant dispersion soliton. It can also be seen that as the
nonlinearity is increased with increasing pulse energy there 1s a greater difference between
the pulse width at the two midpoints. This is because, as noted above, the increased
self-phase modulation leads to large bandwidth changes during propagation. When the

bandwidth is larger then the chirp free pulse width can be less.
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Figure 4.40: Pulse width against energy at the midpoints of the two fibres, first order soliton energy is
included for comparison
The TBW product for this system is similar in both fibres as can be seen in figure 4.41.
Initially the TBW product rises quickly with increasing energy but the rate of increase
\ 1 3 g &)
slows at higher energies. The value is always higher than the value for an unchirped sech
pulse (0.32). The values plotted on the graph are all taken from the midpoints of the fibre

where the pulses are unchirped.

4.3 2D Model

In order to more completely model the NPR a 2D model was created. The 2D model
involves solving two coupled nonlinear Schorodinger equations as given in equations 2.42
and 2.43. This model is a more accurate representation of the experiment as the saturable
absorption now takes place due to NPR in the fibre and a polarisation discriminator after
the amplifier. A A/2 wave plate also has to be added to the model to reset the polarisation

at the start of each span.

Tt will be recalled from section 2.3.6 that the output from the polariser in this system
15 given by [33. 34, 35];

SAO
-2 A A 7
Pout. = [psth —9—‘57’77’ 20 (44)
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Figure 4.41: Time bandwidth product against pulse energy at the midpoints of the two fibres.

where 6 is the launch angle and A¢ = (272/A)(n, — n, + (n2/3)(|1Ey|* — |E.]?)) is the
nonlinear phase shift.

For these simulations a launch polarisation angle of 0.6 rad is used with the polariser
at an orthogonal polarisation (i.e 2.17rad). When a polarisation dependent loss of 1.5dB
15 used it 1s found that the pulses are unstable. A stronger polariser results in stable prop-
agation. Thus in the following a polariser that is 100% transmitting in one polarisation
and 0% in the orthogonal polarisation is used. Further experiments have shown that the
polarisation dependent loss of the filter used in the experiment [195] may be substantially
Ligher than the 1.5dB used above and that the polarisation dependent loss varied with
wavelength.

The switching curve for this nonlinear polarisation rotation saturable absorber shown
in figure 4.42. Although it appears that the switching power for this system is far higher
than the one used in the 1D model the difference in the way the two systems are modelled
means that the comparison is not that straightforward. The saturable absorber in the
1D model was at the position in the loop where the pulse’s peak power was lowest and
50 a low switching power could be used. Since the NPR takes place throughout the fibre
power is higher the switching power of the saturable absorber must

where the pulses peak

also be higher. However there is a difference in the switching powers of the two systems
LS 2 G vev J11ere L
since it is difficult to compare them effectivelv due to the variations in peak power caused
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Figure 4.42: Switching curve for an NPR saturable absorber. The launch angle was 0.6rad with the
polariser at 2.17rad.
by the dispersion map.

The simulations are carried out as before with a variety of input pulse energies. Each
simulation is run until the peak power, FWHM and TBW have settled to a constant value.
The dispersion map and the 6.0ps pulse width are unchanged from the 1D simulations.

The evolution of these pulses is very similar to that found for the 1D case. Figure 4.43
shows a launched 1.39pJ (order N=6.5) as it settles to a steady state, the two pictures
represent the two polarisation states that malke up the soliton. The pulse undergoes some
initial changes in its shape before it reaches a stable pulse shape. As in the 1D case the
stable pulse is no longer sech shaped and has a far higher TBW. Figure 4.44 shows the
same pulse plotted on a log scale the strong polariser used here ensured that the dispersive
radiation is almost entirely suppressed. The spectrum of this pulse is shown in figure 4.45.
As with the pulse shape, the spectrum quickly settles to a steady shape and width which
is retained during propagation. Figure 4.46 shows the same pulse as 1t undergoes pulse
breathing through one dispersion map.

Stable pulses exist for a wide range of pulse energies as can be seen in figure 4.47. This
eraph is similar to figure 4.40 for the 1D simulations. The pulse width reaches a minimum
i1 the DSF for a pulse energy of 0.2pJ and a pulse width of 7.08ps. The pulse width then

hicreases with pulse energy. In the SIF the pulse width decreases with increasing energy.
reases wit LsC CLGLE Y-
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Figure 4.46: The 1.39pJ pulse as it propagates through one amplifier span.



This model supports stable pulses with higher pulse energies than those in the 1D model

This difference can probably be accounted for by the different strength and switching

power of the saturable absorber.
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Figure 4.47: Pulse width against energy at the midpoints of the two fibres for the 2D model.

The values of the TBW for this model are given in figure 4.48. The value is always
greater than that for an unchirped sech pulse, however unlike the 1D case here the TBW
reaches a peak in both fibres. In the DSFE the pealk is 0.636 for a pulse energy of 1.14pJ.
Iu the SIF the peak is 0.614 for a pulse energy of 1.34pJ. These values were again taken
from the midpoints of the two fibres where the pulses were nnchirped and clearly show

that the stable pulses are not the sech shape that is launched.

4.4 Conclusions

In this chapter the numerical results from a system using both dispersion management

and saturable absorption were presented. Initially the two effects were treated separately

and the combined effect was investigated using both a 1D model, with a point saturable

absorber. and a 2D model that used nonlinear polarisation rotation and a polariser to

give the saturable absorption effect.

The system with just a saturable absorber produced shortened pulses in much the

same way as a mode locked fibre laser. The pulses had peak powers of around the same
sanie way as @ = . ’
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Figure 4.48: Time-bandwidth product against energy at the midpoints of the two fibres for the 2D
model.

value as the switching power of the saturable absorber the shortened pulses were still
approximately sech shaped. When the dispersion map was used on its own the system
produced the expected dispersion managed solitons with slightly enhanced powers and a
time-bandwidth product slightly greater than that of a sech pulse.

It was found that systems which employed both dispersion management and a sat-
urable absorber were able to support stable pulses over a wide range of pulse energies
and that the energy of these pulses is far greater than the energy of an equivalent aver-
age soliton or dispersion managed soliton. Figure 4.49 shows the stable regions for all of
the various models emploved. Throughout the launched pulses were 6.0ps sech shaped
pulses. Figure 4.49 clearly shows that the systems with both dispersion management and
a saturable absorber are able to support stable pulses over a far wider range of energies

thaw was possible using either dispersion management or a saturable absorber alone.

Since NPR is intrinsically polarisation sensitive it requires polarisation control which

means that svstems using this form of saturable absorber would be complicated to im-
sblls LI L s Vs Lsdlin Mnis

N BN Jou alrl ) vell sat ] e ] ‘Her as thiesc
plement. A more practical system could use a gquantu well saturable absorber as these

are potentially polarisation insensitive (116]. However they tend to have high switching

powers and long recovery time which could make them unsuitable for use at high data

rates.
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Fieure 4.49: The energies for which stable propagation was possible for the various systems investigated.

This chapter considered only single pulses and fibres with no loss or higher order
dispersion. In the next chapter we shall consider a system on the above model for 10Gbit/s
transmission which shows that it is possible to transmit data over extremely large distances

without significant degradation of the signal-to-noise ratio or timing jitter [201].
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Chapter 5

10Gbit /s transmission using

dispersion management and periodic

saturable absorption.

5.1 Introduction

In the previous chapter the benefits of using dispersion management with a periodic
saturable absorber were discussed. In this chapter this idea is extended from the 1dealised,
lossless. single pulse case to a more practical system which transmits data over large
distances. It is found that using dispersion management with a periodic saturable absorber
if is possible to transmit data at 10Gbit/s over hundreds of thousands of ki [201]. In terms
of optical communications this is effectively an unlimited distance since the maximum
required distance are ~ 10000%km.

The main limits on propagating solitons over extremely long distances are the accumu-
lated effects of Gordon-Haus jitter [77], the build up of noise from the amplifier leading to
degradation of the signal-to-noise ratio (SNR) [76] and single channel soliton interactions
[80. 82]. Using filters it is possible to suppress Gordon-Haus jitter and soliton interactions
but filters do not suppress the build up of noise in the signal bandwidth. If strong filtering

is nsed to limit the timing jitter the amount of ASE at the centre of the filter passhand is

increased leading to greater degradation of the SNR. Strong filtering also causes growth

of linear waves at the peak of the filters transmission which lead to instability of the pulse

119].

Saturable absorbers remove the low power 1noise and dispersive waves which both
D1l d = 2 > - -

improves the SNR and allows greater filtering of the pulse [129, 117]. The SNR is improved

-




becanse the low intensity noise is attenuated while the

pulse which is higher up the

switching curve experiences less attenuation [121]. The pulse stability is improved because
the dispersive radiation is also low intensity and so the growth of CW at the centre of the
tilter bandwidth is suppressed which means that stronger filtering can be used without
degrading the pulse stability. There are also the added benefits from using a saturable
absorber with dispersion management as discussed in chapter 4. These are that the pulses
Liave enhanced energy and so the SNR. is further improved by having a high signal power
at low dispersions where the Gordon-Haus jitter is reduced. Also because the saturable
absorber is acting on a chirped pulse it works as an extra filter since the wings of the
pulse which are low intensity and therefore suffer a significant amount of loss, contain the
extremes of the spectrum. This extra filtering also helps to reduce the Gordon-Haus jitter
and means that high powers are required so that the pulses spectrum can be restored
through self-phase modulation.

In this chapter the effects of using a slightly stronger saturable absorber as well as
mcluding the effect of loss and third order dispersion will be identified for the case of a

single pulse. Then the system will be used with a 10Gbit/s data pattern.

5.2 Single Pulse Transmission

It is interesting to look at the effects of loss and gain on a single pulse before looking at
the transmission of a data pattern through the dispersion managed/saturable absorber
svstemn. In this section a single pulse from the 10Gbit/s data pattern will be used in a
dispersion map with loss and gain and its long term evolution along with the bandwidth
and pulse width changes over one amplifier span will be examined.

One amplifier span of the system used in these simulations is given in figure 5.1 the

parameters used are chosen to be the same as those in reference [201] to allow comparison

of the results. The dispersion map consists of 23.6km of dispersion shifted fibre (DSF)

with dispersion of -1.11ps/(nm km) and loss of 0.252dB/km and 1.7km of step index

tibre (SIF) with dispersion of 16.5ps/(mn km) and loss of 0.294dB/km. The filter has a

e ; Vi e o . ‘,',(-'...,’ “7‘:' a
Gaussian profile and a pass band of 2.onm. The amplifier is working in saturation and

has a noise figure of 4.5dB. The saturable absorber is the point saturable absorber used
D>l oG - ‘ ‘ -

in the previous chapter however the power dependent loss has been increased to 3dB to

make it a closer match to the experimental system and the switching power 1s 0.06W.
ake 1t a close ) 0 the ¢

- AN




The response of the saturable absorber is defined by;

5 [ P
_ ' . 2 mn P
Pout — Pzn {1 -’460‘5 (2]3”0“&5 )} (Ol)

where A defines the maximum loss of the absorber and Proabs 15 the switching power. A
graph of the response of this saturable absorber with loss of 3dB and a switching power

of 0.06W 1s given in figure 5.2.
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Figure 5.1: Schematic for the system used in these simulations. The SIF has dispersion of 16.5ps/(nm
ki), the DSF has dispersion of -1.11ps/(nm km) giving an average dispersion of 0.07ps/(nm km). The
amplifier has a noise figure of 4.5dB, the filter has a passband of 3.0nm, the saturable absorber has 3dB
ol power dependent loss and a switching power of 0.06 W.
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Fioure 5.2: The response of the saturable absorber. The loss is 3dB, the upper dashed line represents
lU(T% (ransmission and the lower dashed line represent 3dB loss. The switching power is 0.06W.
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the loss of the saturable absorber has been increased to 3dB with the S’\;Vitchillo"
T o

power

reduced to 0.06W and the amplifier does not now restore the pulse energy to its initial
value but works in saturation by reducing the gain as the pulse power increases which
allows the natural stability of the system to control the energy as can be seen in figure
5.3. Finally the input pulse width is increased to 20.0ps and the pulse is input without an
initial step of prechirping fibre. All these changes were made to more realistically model

the experimental system [201].

0.70 :

0.60

0.50

Energy/pJ

0.40 |

0'300.0 1000.0 2000.0

Distance/km

Fioure 5.3: The energy of the pulse reaching its steady value of 0.63pJ. This gives an average power of
2 05mW at L0Gbit/s
A single sech pulse with a peak power of 0.02W and a pulse width of 20.0ps 1s launched

into this system. This pulse 1s shown in figure 5.4, the output is taken after the pulse

lias passed through the saturable absorber. After passing through the saturable absorber

the pulse has two peaks. this is a result of the peak power of the pulse being greater

than the switching power of the saturable absorber and does not affect the use of these

pulses for data transmission as the filtering of the receiver means that the pulse shape
is not sienificant. The pulse evolve into its final pulse shape in less than 500km. The
‘ d Rete) L * 4 A

final pulse has a narrower width and greater peak power than the input. The spectrum,
C by " ", . ). .

‘ in 11 3.9 Tves auwickly into its final state, although in this case self-phase
given in figure 5.5, also evolves quickly into its final state, ¢ g ;
modulation. due to the higher peak power, causes a broadening of the spectrum and an

J b \ o gL .
cquivalent reduction 1 peak power.
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Fioure 5.4: The evolution of a single pulse, the input pulse was a 20ps sech with a peak power of 0.02W.
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. . S s > input se was a 20ps sech with a peak power
Flgure 5.5: The spectral evolution of a single pulse, the input pulse was a 20ps sech with a peak power
gure 9.9: The s

of 0.02W.




The evolution of the pulse through one dispersion map is shown in figure 5.6.’ This
plot shows that the pulse undergoes the same breathing evolution as in the lossless case.
The spectrum of the pulse, shown in figure 5.7, also has largely the same evolution as the
lossless case. Differences between the lossy and lossless systems can be most clearly seen in
the plots of pulse width and bandwidth in figures 5.8 and 5.9 respectively. The loss breaks
the symmetry of the system to move the minima of the pulse width and the minimum and
maximuin of the bandwidth. The minima of the pulsewidth are now earlier in the normal
dispersion fibre and later in the anomalous dispersion fibre, this is because the nonlinear
cffect are reduced in the later part of the dispersion map the same nonlinear phase shift
requires a greater distance. Experimental results taken from [201] are also plotted on this
graph and show very close agreement with the numerical data. The spectrum also shows
some differences from the lossless case, there is now very little change in the spectrum over
the anomalous dispersion fibre. The minimum and maximum values of the bandwidth
are now no louger at the midpoints of the sections of fibre and are in fact closer to the
amplifier which is located at the end of the anomalous dispersion fibre. This is again due
to less self-phase-modulation occuring as the power is reduced [168]. The minimum pulse

width is 3.5ps, using this value in equation 3.2 gives a map strength of 5.3.

. - . e dee ihe input pulse was a 20ps sech with a peak power of 0.02W.
Figure 5.6: The evolution of a single pulse, the input puls '
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Fiogure 5.7: The spectral evolution of a single pulse, the input pulse was a 20ps sech with a peak power

of 0.02W.

The inclusion of loss and 3rd order dispersion does cause some changes in the evolution
of the pulse in a system with dispersion management and a saturable absorber. However

stable pulse propagation is still possible.

5.3 10Gbit/s Transmission

The previous section showed that it 1s still possible to propagate single solitons in this

svstemn when loss, gain and higher order dispersion are taken into cousideration. For these

pulses to be used in a real system they must also be able to propagate over long distances

without suffering from interactions. The other factor that must be considered is the effect

of addineg noise to the system at each amplifier. The amplifier is now taken to have a noise

anssian pulses have peal power of 0.02W and pulse width of

figure of 4.5dB. The input G
20.0ps. they are placed 100ps apart to give a data rate of 10Gbit /s.

The performance of this system will be measured using Q-values. Q-values are defined
by the equation;

_ T (5.2)
o1+ 0o
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Figure 5.9: The variation of the bandwidth through one dispersion map, the loss due to the filter and
saturable absorber are marked on the graph.

where gty and po are the mean level of the 1 and 0 and o, and oy are the standard

deviations of the 1 and 0. The standard deviations are calculated using;

Z;;l(Pi_/Ll)- (5.3)
(n—1)

gy = .

whoere 1 is the number of 1’s in the data pattern, P; is the peak power of pulse 1 and
mean level of the 17s.
If the levels of the one and zero are assumed to have a Gaussian variation then the bit

crror rate (BER) for the system can he found using the formula

o 0 (5.4)

BER =

1

=)

- . - 5 109 te ecntivaler a O-value of 6. The simulations were
Using this equation a BER of 1077 is equivalent to a Q-value of 6 €

carried out using a random bit pattern of 96 bits. These were contained in 4 files of 24
11ic . using

. e i o eve-digerams and to calculate the Q-values.
bits and the results were combined to form eye-diagranis ¢ alcnle Q-ve
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5.3.1 Results

The simulations were run using the same

parameters as the single pulse in section 5.2. The

2'.1,1111)11'.{'1(:‘1 used in the simulations has a noise figure of 4.5dB. The pulse were propagated
for more than 200000km with very high Q-values throughout the propagation distance. A
eraph of Q-value against propagation distance is given in figure 5.10. There is an Initial
drop i the Q-value at the start of the simulation, the Q-values then show a decrease with
propagation distance, although the variations in the Q-value due to noise are larger than

the decrease which malkes 1t hard to distinguish

400.0 : ,
300.0 '

D

=

«

7

(e
200.0
100.0 ' ' '

0.0 100.0 200.0

Distance/Mm

Figure 5.10: The variation of the Q-value with distance.

One of the reasons for the high Q-values throughout the long propagation distance 1s
that the noise level is suppressed by the saturable absorber. Figure 5.11 shows a section of

the bit pattern on a dB scale taken after 6Mu and the same section of the bit pattern after

200Mm1. The noise level has remained ~ 35dB below the signal level, this demonstrates

tlie effectiveness of the weak saturable absorber in suppressing the noise level.  The

low noise level can also be seen in figure 5.12 which shows an eye-diagram from 208Mm.

The simulated detector used to produce this eye-diagram has an electrical filter with a

bandwidth of 0.2THz which accounts for the pulse being a different shape to those from

the single pulse simulations The eve at 20SMin 1s very open, there is only a small amount

E T A
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Figure 5.11: The upper plot is taken after 6000km and the lower plot is taken after 208000km. Both

Pi(;H <how the same section of the bil pattern and it is clear that there is only a small increase in the

noise level during the propagation. The noise is suppressed by the saturable absorber. The pulse have
ring the 1

moved in the timing window due to the effects of third order dispersion.
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Figure 5.12: An eye-diagram taken after the data has propagated over 208\im. The data has a small

amount ol timing jitter but there is very little evidence of noise.

of timing jitter and the signal-to-noise ratio is high. The reduced timing jitter is also due
to the saturable absorber. Without any filtering the timing jitter can be calculated using

[77. 78]

2y Ny |fa|he(G — 1) L7
Ot N Ay Lo

—
t
Ut

TI"I)IS —

where L = NL, is the total system length, ny 1s the nonlinear refractive index, Ny, 1s the

spontaneous emission noise factor of the amplifier, i is Planck’s constant, c1s the velocity

of light, G is the gain of the amplifier and A? is the soliton amplitude.

. ) . 2 mlee widtl t » 3 Frye which is
Using the parameters for this system and taking the pulse width to be 3.5ps which 1s

RMS jitter after 200Mm 15 > 1000ps. With

the minimum pulse width in the system, the
a pulse spacing of 100ps this level of jitter obviously means that any information would
be lost after this propagation distance.

It is clear from figure 5.9 that not onlv does the filter reduce the bandwidth of the

: '« chirpec “+ nasses through the saturable absorber there
pulses but since the pulse 1s chirped when 1t passes through the saturable absorber t

is also a filtering effect. This means that these pulses are being strongly filtered which is
P | . <l . S . — . . -
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known to reduce Gordon-Haus jitter

Usually the strength of filtering is limited by the

growth of dispersive radiation at the peak of the passh

and of the filter, however here the

dispersive radiation is removed by the saturable absorber.

The effects of this filtering can be included in the calculation of the timing jitter using
cquation 2.111 [95]. The strength of the filtering is inferred from the amount of excess
gain required to restore the pulse energy. The wider bandwidth of the pulses used 1n these
sinulations is accounted for in the calculation by using a pulse width calculated from the
bandwidth of the pulse at the saturable absorber assuming a sech shaped pulse. Since the
bandwidth of the pulses is 0.160THz the pulse width is taken as 2.1ps. In this way the
jitter after 200Mm 1s found to be 9.4 x 1072ps. This is obviously smaller than the jitter
in the eve-diagram which is ~ Ips. The likely reason for the discrepancy between the
caleulated jitter and the jitter from the simulations is that the derivation of the formula
used to caleulate the timing jitter for a filtered system [95] assumes that the filter does not
have a large effect on the pulses bandwidth and so is able to be treated as a perturbation.
Figure 5.9 shows that the filtering effect in this case is very strong and so the perturbation
approximation is not valid. The other possible reason for increased timing jitter 1s that
soliton mteractions contribute to the jitter. Figure 5.13 is an eye-diagram for a simulation
run without noise to isolate any jitter caused by soliton interaction. There is no significant
jitter in this eve-diagram which implies the the jtter in the previous eye-diagram is purely
a result of noise.

It is clear that not only does the saturable absorber have the expected benefit of reduc-
ing the growth of noise and dispersive radiation but, due to the dispersion management

it also has a filtering effect which reduces the Gordon-Haus jitter.

5.4 Conclusions

’s] ‘ e combined with dispersion management it is possible to propa-
Using a saturable absorber combined with dispersion marnagern 1 prope

gate pulses at a data rate of 10Gbit/s over more that 200Mm. As expected the saturable

absorber suppresses the build up of noise and dispersive radiation as well as stabilising

the pulse energy. A less expected benefit of using the saturable absorber 1s that 1t helps
' - . B - i - On . < 10, o - -

to suppress Gordon-Haus jitter. This is due to the digpersion management and the posi-
tionine of the saturable absorber which means that the saturable absorber acts on chirped

pulses. Since the pulses are chirped the low intensity wings of the pulse contain the ex-

tremes of the pulses spectrum. These wings are attenuated leading to a strong filtering
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Figure 5.13: An eye-diagram taken after the data has propagated over 208Mm. This simulation was

run without noise and shows very little timing jitter.

offect. The spectrum of the pulse is reduced by ~ 25% as it passes through the saturable
absorber and the filter.

Strong filtering would normally lead to growth of dispersive radiation at the centre of
the filter pass band, however saturable absorbers have been used in the past to control
the growth of dispersive radiation and it is controlled in that way here. It is clear that
the use of saturable absorbers is compatible with dispersion management and even brings

added benefits in the control of Gordon-Haus Jitter.
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Chapter 6

10Gbit /s standard fibre transmission

6.1 Introduction

This chapter examines the transmission of dispersion managed solitons over standard
fibre at 10Gbit/s making a direct comparison between modelling and recent experimental
results [202]. For the given dispersion map that was used in the experimental investigation
of this problem, the effects of changing the length of the initial step of prechirping fibre
and the position of the output are identified. Oscillations in the pulse width/pealk power
lead to oscillations in the Q-values which can be suppressed by altering the position
and order of the fibres even in a very restricted manner. These results confirm those of
recirculating loop experiments carried out by Harper et al [202]. These simulations are a
vood opportunity to compare the results of numerical simulations to experimental results.

The majority of fibre currently installed 1s standard fibre which has low dispersion in
the second communications window of 1.3um. This communications window was used

at the time the fibre was laid as there were readily available semiconductor sources and

detectors which worked at this wavelength and due to the low dispersion of the fibre. The

dispersion of this fibre in the third transmission window (1.5p1m) is between 16.0 and 20.0
ps/(mm km).

Current systems employ 3R repeaters that restore, re-time and reshape the signal.

These repeaters rely on clectronics to carry out this task and so the speed of the tramns-

mission line is dictated by the speed of the clectronics. This also means that the trans-

mission line is not bit rate transparent, iherefore in order to upgrade a transmission line
to a higher bit rate or to use wavelength division multiplexing it is necessary to replace
the electronics. The major advantage of using repeaters s that the signal is restored to 1ts
ation that the pulses suffer during

original state periodically. This means that any degrad




sropagation will not accumulate ; . e
probes accumulate along the entire transmission line and so the accumulated

cffects of nonlinearity, dispersion and noise do not need to be considered.

The need to work at 10Gbit/s or higher means that the use of electronics to restore
the signal is not cost effective. The alternative is to use all optical amplification. The
first suggested method for amplifying an optical signal was to use the Raman effect as
discussed in section 2.6.9. [54]. Erbium doped fibre amplifiers (EDFA) are now used
in most soliton propagation experiments and optically amplified transmission lines. An
EDFA 1s formed by a length of fibre (a few meters long) which is lightly doped with the
rarc carth element Erbium which is pumped at either 980nm or 1480nm, the signal is then
amplified by stimulated emission. The gain peak is for a transition at 1535nm and with
proper design and the correct dopants in the fibre it is possible to have a gain bandwidth
of 30mm [203, 204].

The use of fibre amplifiers rather than repeaters means that the long term effects of
nonlinearity and dispersion have to be considered. It also means that the signal must
propagate at 1.5um where the dispersion of standard fibre is high. As seen in chapter 2
high dispersion increases the power required to create a soliton, increases Gordon-Haus
jitter and reduces the soliton period which causes problems with the average soliton model
and reduces the collapse length for adjacent solitons.

Dispersion management can be used to reduce the average dispersion of the fibre links
and can offer the possibility of large increases propagation distance [205, 206, 155, 184,
207. 7. 208, 209, 188, 210, 182, 202]. Dispersion management cail be used to upgrade
ihe current standard fibre network as the compensating fibre can be mstalled along with
amplifiers at the sites of repeaters ‘1 the current network and so the upgrade would not

involve the laying of large amounts of fibre.

6.2 10Gbit/s propagation

T i i i L e i the 1.5um window means that it is not possible
The high dispersion of standard fibre in the 1.5pm window mesz ; ]

to propagate solitons aft 10Gbit/s without dispersion management or some other forn

of soliton control. The high dispersion Jeads to three major problems, the first of these

is that the soliton period is short compared to the amplifier span leading to problems
h <l U 2S5 s ] i DD

with the averaee soliton [59, 61]. Using equation 2.68 a 20ps soliton in standard fibre
: Adle avelage » .

(D = 16.75ps/(nmkm)) has a soliton period of 10.0km. To fulfil the average soliton
| an amplifier span of less than Skim which 1s

criteria given in section 2.6.2 would require




far shorter than the spans of ~ 50km that

are generally used. Figure 6.1 shows an average

soliton propagating over 50 amplifiers. The mput pulse had a soliton order of N=1.47
calculated using equation 2.82 for a 36km amplifier span with loss of 0.22dB/km and a
pulse width of 20ps. It is clear that this pulse does not maintain its pulse shape as it

sheds dispersive radiati Ve . .
heds dispersive radiation. When these pulses are used in a data pattern the information

0.15 -

Fieure 6.1: A 20ps first order average soliton in standard fibre with a 36km amplifier span. This pulse
not fulfil the average soliton criteria as the distance between amplifiers is more than 3 times the soliton

period.

is lost after two amplifier spans. The pulse spreading and the dispersive radiation that
the pulses shed lead to greater soliton interactions and the pulses hecoming indistinct.
This can be seen in figure 6.2 which shows a section of a bit pattern at the start of the
svstem and after 72km which 1s 2 amplifier spans.

There are also problems because the high dispersion leads to the pulse accumulating

.. . LT o . - N . SRS ¥ o S PR
large amounts of timing jitter through the Gordon-Haus effect. Using a 20ps pulse n

standard fibre with loss of 0.22dB/km, an amplifier span of 36km and taking the amplifier

to have a noise figure of 4.5dB equation 2.102 gives the maximum error free distance to

be less than 1500km [77, 78]. The fnal difficulty with using average solitons 1s that the

average power required is higher than the powers generally used with an EDFA. The pulse
[l - - - -

in figure 2.15 has an input energy of 2.8pJ whicli gives an average power at the output of
the amplifier of 14mW.

.. o etended usine one of the control techniques discusse
The Gordon-Haus limit could be extended using one of the control te hniques discussed




St

0.15 “h i T . .
| | |
I | | ; _
(i 0.10F ’1! ! \ Il’ _
O ’ il ; | i
= i ! |
) : 1 - ]
e B Il | | M
1 | Ix
* N . i
“ 005 | | ] 1.
I |
: R I \ [ s ) an
) f \ | | l a
| . | [
VAV AV
0.00_ /. \ Joo SN N
400 600 800 1000 1200
Time, ps
015 1 r 1
o 010 -
o
5o n
O 005 A\ [\ !;\\ ]H‘l i[\" ,[\\ i}
- A o
ot it i )
| 1\fl\\J \ AURR /\ O R Y B
SV Vg
000k N - YV L L
400 600 800 1000 1200

Figure 6.2: The top figure shows a section of a bit pattern at

picture shows the same bit pattern after it |

1as propagated over 7

14 A A

ihe start of the simulation. The lower
9km, the amplifier span length is 36km.




‘1 chapter 2 however the o s . ..
1 chap however the problems associated with the average soliton and average powers

be more diff L ‘
would be more difficult to deal with. Linear pulse propagation is also limited due to the
'.()" 17 @ _\’x" g + T - . .

high dispersion which would lead to the pulse width mcreasing and so the pulses would
terfere with each other. The dispersion length of a 20ps pulse in standard fibre is

~ 0.5km using equation 2.18.

6.3 Modelled System

The three modelled systems taken from the experiment detailed in [202] are shown 1n
figure 6.3. The dispersion map consists of 31.6km of standard fibre which is split into two
sections, one section 1s 25km long and the other section is 6.6km long. There is also 6.8km
of compensating fibre. The dispersion of the standard fibre is taken to be 16.75ps/(nm km)
with third order dispersion of 0.07ps/(nm?km) and loss of 0.22dB/km. The compensating
fibre Las dispersion of -76.76ps/(nm km), third order dispersion of 0.07ps/(rnm*km) and
loss of 0.62dB/km, this loss includes the losses incurred due to splicing the different types
of fibre together. This gives an average dispersion of 0.19ps/(nm km). The nonlinearity
is the same in all the fibres and and effective area of 50;m?* is used throughout. The
amplifier restores the power lost through the fibre loss and the loss due to the 3nm filter,
the amplifier is taken to have a noise figure of 4.5dB.

The input pulses used are all 20.0ps sech pulses with powers dependent on the posi-
tion in the dispersion map where the pulse are input. In the experiment of reference [202]
the optimum input energy was found to be 5.4 times the average soliton power. This
is slightly less than would be expected for a map of this strength. Using equation 3.2
the map strength used here is 3.1 from equation 3.4 this would give an expected energy
enhancement of 7.9. This confirms earlier results which suggested that the power en-
Lancement was reduced when loss is included although it should be noted that the power
is still significantly enhanced.

Using this level of power enhancement in map A the input pulses are N=3.9 (soliton
number is related to the average dispersion}, in map B and C the correct input is found
by reducing the input power so that the power at the output of the amplifier remains the

same for all three systems. This gives an input pulse of N=2.034 for map B and in map

C an input of N=3.3 The strength of the map means that this map is well within the
Q. INZ=D D, - i

. . o etable pulses should be expected, it 1s not strong
range where propagation of long term sta ole 1

cnough to allow propagation At the dispersion zero nor o the region of average normal
; g O a. oY
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Figure 6.3: Schematic of the three systems

dispersion.

As the purpose of these simulations is to examine the suppression of the oscillations
in ()-values and pulse width and to compare the results with those found experimentally
cacll simulation was run for distances of about 10000km rather than until the Q-value
dropped below 6. It would be inaccurate to compare the total propagation distances
possible from the simulations to those found experimentally as the input pulses used here
ave perfect sech shaped pulses which can never be produced experimentally. The input
-value from the simulations are ~ 70 whereas the maximum input Q-value from the
experimental results were 12.0. The Q-values are calculated as in the previous chapter

HSlllg,

Q= M T 1o (6.1)

oy + 0o

where iy and po are the mean level of the 1 and 0 and o and oy are the standard
deviations of the 1 and 0.
The £ o tions are carried ane svstem map A. A random bit stream
The first set of simulations are carried Out USIIg =) I
containine 96 bits generated by the computer is used. The input pulses are sech pulses
’ [w) RS 2t i v
- ‘ o e oo ower of 1151 W
with a width of 20.0ps and a pulse energy of 0.23pJ giving an average powel of 1.15mW in
3 : Z . » . o <
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accordance with the powers ye :
( powers used experimentally. The Q-values plotted against distance

arc given in figure 6.4 for this system.
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Figure 6.4: Q-value against distance for system A. It is clear that there are substantial oscillations in
the Q-values.

The oscillations in the Q-value can be clearly seen in figure 6.4. These oscillations
occur as the pulses are not being launched at the optimum place in the dispersion map.
The period of the oscillations is approximately 2000km so the evolution of these pulses
is long compared to the dispersion map. The oscillations can also be seen in the plots of
the pulse shape which is shown in figure 6.5. They can be more clearly examined n the
oraphs of the pulsewidth evolution (figure 6.6) and the time-bandwidth product (figure
6.7).

The minima in the pulse width relate to pulses with high peak powers and approxi-

mately coincide with the high ()-values. The maximumn Qs also relate to the minima m

the time-bandwidth product. The reason for these fluctuations in the pulse parameters

(chirp and width) 1s that the pulse shape is not matched with the dispersion map and

more specifically the chirp free pulses are not being input at the optimum pomt 1 the

dispersion map. The pulse undergoes a long term evolution as the pulse sheds dispersive

radiation and the peak power, pulse width. shape and chirp all change. In the lossless

. . M y . o Toree of f e ARYESE qc 19
case the correct launch point 1s at the midpoint of one of the pieces of fibre. W hen loss is

mcluded this point moves as Jetailed in section 3.3.1, however the start of the standard
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Figure 6.5: The pulse width evolution from system A, the instability of the pulse and the shedding of
dispersive radiation can be clearly seen.
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Figure 6.7: The time-bandwidih product against distance for map A, there are clear fluctuations in
the value during propagation.

fibre is where the pulses would be expected to be most chirped and so this is the worse
point to launch unchirped pulses.

If the chirp of the pulse is examined by looking at the mnstantancous frequency glven
in figure 6.8 then it is clear that although the pulse is initially chirp free at the output
point in the map it soon accumulates a complicated chirp. The points where the pulse
width and Q are highest coincide with the points where this chirp is at a minimum.
These oscillations are typical of dispersion managed solitons that are not launched in the
optimum position [166].

The reason the incorrect launch point leads to this instability of the pulses can be seen
by looking at the pulse width and bandwidth over two periods of the dispersion map. The
pulse width, shown in figure 6.9 varies a lot during the course of each dispersion map due
to the high local dispersion but at the end of the dispersion map it has returned to be close
to its original value. By contrast the bandwidth of the pulse is reduced throughout the
dispersion map. This can be seen in figure 6.10. The reason for this continuous reduction
in the bandwidth is that the chirp on the pulse is always of the same sign and so the

Dandwidth cannot be restored as would happen in the area of the dispersion map where
the pulse is chirped in the opposite sense. This is obviously an unstable situation since

the bandwidth cannot continue o decrease for the entire systenl. The reduction can also




Figure 6.8: Instantaneous frequency for map A this shows how the chirp evolves during propagation.
The point where the instantaneous frequency is flattest corresponds to the points where the pulse has
thie minimum amount of chirp.

lead to long term changes in the pulse width since the minimum pulsewidth is defined by
thie bandwidth of the pulse.

Tn order to minimise the pulse width fluctuation and to stabilise the bandwidth of the
pulses the dispersion map was altered to give system B in figure 6.3. Tu this case an initial
step of pre-chirping fibre 25km long is place hefore the first amplifier. This more closely
matches the point in the standard fibre where the unchirped pulses would be expected
and so leads to a reduction in the pulse shape changes. The compensating fibre has been

moved to immediately follow the amplifier and is then followed by the standard fibre.

i order to account for the new launch position the lannch soliton order is reduced to

N=2.03, (pulse energv:O.()GQp.]L this gives the same average power over one amplifier

span as map A. The Q-values are given in figure 6.11.

The fluctuations in Q for this system are considerably less that those for system A.

T oL ne ] .t boint closer to the natural chirp free point
The chirp-free pulses are now being input at a point closer to the nature 1 I

of the dispersion map. The period for the Auctuations in Q with this initial step of fibre

is ~ 2500km. It interesting to note that although the oscillations i Q-value have been
h Z v, ) Clestlilly

suppressed this has not led to any significant improvement the Q-values. It 1s clear
. e 5 that althoueh there ave still significant

from the plot of the pulse grvern i1 figure 6.12 that although tl ¢ © ¢

more regular and less dispersive radiation

fluctuations in the pulse width these are nOwW
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Figure 6.9: Pulsewidth evolution through two periods of dispersion map A. The pulsewidth varies a
lot due to the high dispersion of the fibre.
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Figure 6.11: Q-value against distance for system B. The oscillations are significantly smaller than those
from map A.

is beine shed. Oscillations are again clearly seen in the plots of pulse width (figure 6.13)
and time-bandwidth product (figure 6.14) which also show that the oscillations are far
more regular m this case.

There are still quite large oscillations in the width and time-bandwidth product of
the pulse and once again these oscillations are reflected in the chirp of the pulses, on this
becasion the evolution of the chirp is less complicated as can be seen s figure 6.15.

The pulse width evolution over two dispersion map periods is given in figure 6.16. The
pulsewidth again changes substantially during the dispersion map but on the scale of one
amplifier span there is not much change. The amplifiers are situated at the border from

thie anomalous to the normal dispersion fibre. Figure 6.17 shows the bandwidth variation

for this system over two dispersion map periods. The bandwidth is again lower at the end

of the simulation than it 1s at the beginning, however the reduction is less than half that

seen in the previous systenl. Iy this case the chirp does change sign and so the bandwidth
increases for part of each amplifier span.

. ‘ oo , entine fibre immediately following the amplifier
It is known that placing the compensating fibre 1 3 & alll] ’

as it is in map B, can increase the amount of dispersive radiation shed by the pulses [170].
[e® o ct . . Sl
The effect of this dispersive radiation cai be to cause instability in the pulse leading to the

fluctuations in pulse width and time-bandwidth product and through them to fluctuations
Alal U h AL C Al :
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Fieure 6.12: A pulse propagating in system B demonstrates that although there are still large oscilla-
tions in the pulse width they are far more regular in this system
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Figure 6.14: The time-bandwidth product against distance for map B.
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Figure 6.16: Pulsewidth evolution through two periods of the dispersion map. the amplifiers are at the
border going from the anomalous dispersion fibre into the normal dispersion fibre.
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i the Q-value. In order to further suppress the oscill

ations the compensating fibre was

moved to immediately precede s :
rediately precede the amplifier, map C in figure 6.3. The input soliton order
0 3. > S

was again changed to give the s
as again changed to give the same average power over one amplifier span. The input

order was set to N=3.3 which oav -
gave an mput pulse energy of 0.16pJ. The Q-values for this

case are shown in figure 6.18,
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Figure 6.18: Q-value against distance for system C. There are still slight fluctuations in the Q-values.

There are still some oscillations in the Q-value, the period of the oscillations 1s now
less than 2000kny. These oscillations can still been seen in the pulse shape shown in figure
6.19 although they seem to be further reduced and there 1s little sign of the pulse shedding
dispersive radiation. The shorter period of the oscillations is also apparent n the graphs

of pulse width (figure 6.20) and time-bandwidth product (figure 6.21). The oscillations

i1 these values are reduced when compared to the graphs from both map A and map B.
The chirp for this system agaln shows that the variations in pulse width can be related
to the output being chirped. The variations in the chirp are greater i this system than
thev were 1n the previous ones. Although this appears to be mainly at the edges of the
pulse rather than the centre so does not lead to larger variations i pulse width.
The graphs of pulse width and bandwidth for this system are given in figures 6.23 and
6.24 vespectively, in this system the amplifier 15 positioned after the normal dispersion

: . T oes ' sne each amplifier span but does not
fibre. Once again the pulse width changes a lot during ¢ ach amyj pe




.00
0.0C
& 0.00%
&S
[T
0.004
0.002
0.000 L
ASTOO
= 2,000 “%i:v;’/‘%
T ool e
= N
=) HOO \_:‘__;——:’//

Figure 6.19: The pulse propagating in system C the oscillations and shedding of radiation are both
further reduced compared to maps A and B.
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change much after one or two dispersion map periods. The |

andwidth is not reduced by

as much over one amplifier span ¢ od Fo i
‘ amplifier span compared to the two previous amplifier positions. It is
clear that by making the two leneths of «f :

y making the two lengths of standard fibre moye equal in length the bandwidth

could be further stabilise o1
stabilised, however the systems modelled here were constrained by the

lengths of fibre avail: in the exper : -
g > available in the experiments on which these simulations were based.
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Figure 6.23: Pulsewidth evolution through two periods of the dispersion map, the amplifiers are at the
border going from the anomalous dispersion fibre into the normal dispersion fibre.

The three systems that have been considered in this chapter have also been examined
experimentally.  The experimentally measured Q-values are given in figure 6.25. For
svstems A and C the experimental and numerical results show the same features with the
same oscillations clearly visible in both. The reduction in the oscillations between the
two setups is also clearly visible. The Q-values in the experimental results are limited

by the input Q-values which are much lower than those used in the simulations where

perfect input sech pulses are used. The results from map B iu the simulations show

reduced oscillations compared to set A, however in the experiment system B does not

allow propagation for more than 1000km. The reason for the difference hetween the

: , ol orieal simulation in this case is not clear. It is clear that
experimental results and the numerical simulation in this case 1s 1 a ‘ é

the problem in the experimental results is related to the stability of the pulses rather than

C o i Hlems would not have been able to accunmulate 1n the
timing jitter or SNR since these problems woul ¢

1000km propagation distance.
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Fieure 6.24: The bandwidth evolution through two dispersion maps. The bandwidth increases in the
normal dispersion fibre which is situated immediately after the amplifier.

6.4 Conclusions

The transmission of dispersion managed solitons in standard fibre was studied. In par-
ticular the effect of rearranging the relative positions of the fibres and the amplifier was
examined. This also included varying the length of the initial prechirping length of the
fibre.

When the dispersion map was used withont any prechirping fibre there were large
oscillations in the Q-value over the transmission distance. These oscillations were similar
to variations observed in the pulse width due to the pulses being chirped at the output. It

could also be seen that the bandwidth of the pulses had a tendency to be reduced during

propagation as the pulses were always chirped in the same direction and so the bandwidth

did not have an opportunity to 1mcrease.

When the dispersion map was changed to give an initial step of fibre, the oscillations

were roduced and made more regular. The source of the oscillation could still be seen 1n

the Auctnations in the pulse width. The bandwidth still had a net reduction over the first

two amplifier spans, however the pulse was now chirped in both directions so over some
parts of the dispersion map the bandwidth increased. Moving the amplifier from just

) : . JCI npensating fibre resulted in a further
hefore the compensating fibre to just after the compeunsating fibre resul g
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Figure 6.25: Experimental results of Q-value versus distance for the three systems, the lower graph has
the simulation results for comparison.

iprovement in the system. In particular this stabilised the bandwidth as the pulse peak
power was now highest in the standard fibre.

The results presented in this chapter demonstrate that proper choice of the position
of the amplifier and using an appropriate length of pre-chirping fibre can improve the
stability of a dispersion managed soliton system. The proper choice of these parameters
can reduce the oscillation is Q-value, however the Q-value at the end of the simulations
was ~ 12 in all of the cases. If no pre-chirping fibre is nused the pulse only gets chirped in

one sense and so the pulse bandwidth suffers a reduction throughout the dispersion map
period.

The simulation results were compared to experimental results and showed good agree-

ment on two of the systems. The experimental Q-values, althongh smaller than the

numerical ones. showed the same oscillations which were improved from system A to C.
The experimental results for system B were limited to less than 1000km. These simula-
tion showed that it is possible to propagate dispersion managed solitons at 10Gbit/s over
distances long enough to cover any realistic needs. They also showed that although the
bre and amplifier positions it does not cause a

svstew is improved by optinising the fi

significant improvement 1n distance.

ST




Chapter 7

Upgrade of standard fibre network
to 40Gbit/s using RZ transmission

7.1 Introduction

I the previous chapter 1t was shown that the transmission of single channel data rates
of 10Gbit/s 1s possible over transoceanic distances in standard fibre. The next challenge
is to investigate the propagation of soliton-like RZ pulses at 40Gbit/s. Since one of the
main purposes of this work is to study the upgrade of the current standard fibre networlk,
thie initial aim is to propagate the pulses over the more modest distances required for
land based communications. This chapter identifies the prospect for the propagation of
(asi-linear soliton-like pulses over more than 2000km with a single channel data rate of
40Ghit/s. This distance was attained using dispersion management utilising a symmetric

dispersion map.
To date there has onlv been a limited experimental investigation of 40Gbit/s trans-

nlission on standard fibre as most work has centred on maximising the performance at
10Ghit/s. The two most successiul techniques for 40Gbit/s transmission in standard fibre
ave optical phase conjugation (OPC) and dispersion management. Using OPC af the mid

. . ) . . . . o . el o . o d T “7/ -1 ’».'Jﬁ‘« o e
poiut of a transmission line it has been possible to propagate over 434km of standard fib

. T . : o erment it ias been possible to propagate non-soliton pulses
[133]. Using dispersion management it has been possible to propag: 1

- o IR ceont exneriments using the soliton like quasi-linear
over SOkm of standard fibre [211]. Recent experiment g 1

pulses similar to those discussed in this chapter have propagated data over 500km [156]
and 1200km [187] of dispersion managed standard fibre. Previous siulations have shown
d 4 { SPCELS
I . .y 1 ¢ . OT
that use of a similar “symmetric” dispersion map allows the propagation of 40Gbit/s over
o Se a3 I 5) =

180km of standard fibre with a 120km amplifier span [212].




There are many problems

40 Gbit/s. The

associated with increacine ; Cop .
d with mcreasing the data rate from 10Ghit/s to

most serious of these is the iner o :
15 of these is the increase in the strength of the dispersion map

which is caused by the necessary reduction in the pulse width. The map strengths that
this leads to are far outside the range where stable soliton propagation is expected. As
stated in chapter 3 map strengths (given by § = Lnﬁ,’,’r—gLaB[’.’) of up to S ~ 12 have been
used for stable propagation. The maps used in this chapter range in strength from 43
to 188, The high map strengths that are used here result in many problems. It is not
fonund to be possible to get the long term stable pulses that are found for wealker maps.

Any such stable pulses would have extremely high powers due to the power enhancement
which means that the pulse energy of a dispersion managed soliton scales as §2. Tt will
be shown later in this chapter that using these enhanced energies 1o stable pulses have
been found.

The short pulse width (5ps) and high fibre dispersion (16.75ps/(nm km)) mean that
tlie dispersion length (as discussed in section 2.3.2) is ~ 0.45km which is short compared
to the lengths of fibre used. The effect of the short dispersion length of these pulses is that
the pulses broaden substantially in the standard fibre. This leads to distinct pulses only
existing near to the point in the fibre where the pulses are unchirped. The final problem
15 that this chirp-free point moves through the standard fibre due to the relatively high
average anomalous dispersion which leads to an mcorrect balance between the average
dispersion and the nonlincarity. The pulses used in this system are described as quasi-
linear as they do not demonstrate the enhanced power that has beein described in relation
to dispersion managed solitons previously (see section 3.3). Indeed the pulses used here
have reduced power when compared to average solitons.

A significant difference between the dispersion map used here and the one i the
previous chapter for 10Gbit/s propagation is that Lere the compensating fibre 1s spht
with the amplifier placed between two sections of compensating fibre. Symmetric maps
yeen shown to improve the performance of dispersion managed systems

have previously |

used for standard fibre propagation [213, 212, 210]. This dispersion map can still be

considered in relation to the upgrade of the standard fibre network as the compensating
fibre is all located at the amplifier.

I this chapter the problems relating to standard fibre propagation and the dispersion

: : T hen the results of the various models will be given and
map used will be considered. Then the results

finally conclusions will be drawn from the results.




7.2 Modelled System

Most of the difficulties associated with propagating RZ pulses over standard fibre at
40Gbit/s are related to the short pulses which must be used to allow a mark to space
ratio of 1:5 or less. This means that the maximum pulse width (FWHM) is 5ps. To

use solitons at this data rate in standard fibre at L.5pm without dispersion management

would require pulses with extremely high peak powers and would lead to average powers
of more than 200mW. This is an unfeasibly high value aud is in fact too high for the safety
regulations. Also since the soliton period of a 5ps pulse in standard fibre is 0.63km it is
not practical to fulfil the average soliton criteria given 1n section 2.6.2 which states that
the awplifier span must be substantially less than the soliton period. This means that
siply using solitons without control in a purely standard fibre systems 1s not feasible.
Figure 7.1 shows a single soliton going through 2 amplifier spans of a system with a 50km

standard fibre amplifier span. it is clear that the pulse is unstable and quickly breaks up.

@

Pow

i ibre. ‘This first order soliton has a pulse width
I i e ranasating in standard fibre. This first order soliton has a pu
Fioure 7.1: An average soliton propagating i standa

ol 5ps. the amplifier span is 50km.

., R el . . v f N crage ',-,'i‘." 1
If dispersion management is used then it is possible to reduce the average dispersio
: - opagate solitons a e soliton
and therefore reduce the average powers required to propagate solitons and th
C : el o = - - -
‘od. As noted in section 3.2 the strength of the dispersion map is given by;
period. As note sect 4
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(7.1)

Due to the pulse width square . ‘ .
puise width squared appearing on the bottom line of this equation there

15 a strong dependence of dispersion map strength with pulse width. Since the energy

\ - a1 ent 3 a U 2 B A
cuhancement tends to vary by S? there is an even stronger dependence of the power with

pulse width. For weak maps the energy enhancement is given by;

v=1+075" (7

—~1
[\

As the pulses required for 40Gbit/s are 1/4 the width of those used for 10Gbit/s
the map strengths are of the order of 16 times those used in 10Gbit/s and the energy
cuhancement would be expected to be 256 times that used for 10Ghit/s transmission.
However these problems would only arise if the energyv enhancement for weak maps held
for the extremely strong maps used here and long term stable dispersion managed solitons
could be found. Figure 7.2 shows a pulse from one of the systems modelled here. This
svstem has 50km of standard fibre and 6km of compensating fibre to give an average
dispersion of 0.14ps/(nm km) using a dps pulse this should give an energy enhancement
of 4481 over a first order soliton for the map strength of 50. It is clear from the figure
that the pulse is not restored even after passing through this dispersion map once. The
pulse at the midpoint of the standard fibre and at the end of the simmlation has clearly
spread out and become distorted.

Omne direct result of the short pulses and the high dispersion of the fibre is that the
dispersion length (as defined in section 2.17) is very short compared to length of fibre
being used. The dispersion length for a 5ps pulse in standard fibre is 0.45km which 1s
far shorter than the amplifier spans that are used. This means that the pulses are n
ecneral able to be described as linear pulses where the dispersion dominates as discussed
m section 2.32.

The 1t of o emrondine caused by the short dispersion length causes a signif-
The amount of pulse spreading ca 3

icant problem when the pulses are nsed in a 40Gbit/s system. Figure 7.3 shows a single

Sps Gaussian pulses as it spreads due to the dispersion in 8km of standard fibre. The
~ . Tl LLD: . P Sy @ty P ot

r carne leneth C Lhhre 1o olver 1T “()‘ e ’—"/.
width of this pulse as it propagates over the same length of fibre is given in figure 7.4
avation distance the pulse has broadened to
ga

It is clear that even after a very short prop
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Figure 7.2: An enhanced power soliton in the dispersion map with 50km of standard fibre. The pulse
has a width of 5.0ps and a pulse energy of 198.6pJ.

sucl an extent that 1t would overlap with an adjacent pulse (the pulse separation is 25ps).
When the pulses overlap like this they mterfere with each other which means that any
information is lost. Figure 7.5 shows 2 pulses in a 40Gbit/s data stream as they overlap
in the same short length of fibre. This overlapping means that it is important to take
the output at the point in the dispersion map where the pulses are chirp free and so
their width is at a mininmumn. This is clearly demonstrated i figure 7.6 which shows 4
pulses from one of the simulations as they emerge from interference caused by the pulse
spreading.

In order to minimise the pulse interactions these simulations use a symmetric disper-
sion map. This means that the compensating fibre is split so that one section of it is

placed before the amplifier with the rest following it [213]. The advantage of the symmet-

ric dispersion map is that it effectively reduces the strength of the dispersion map. This

i« hecause there are now effectively two dispersion maps. One immediately following the

amplifier where nonlinear effects are more important and another in the second half of

the dispersion map where the power ‘s lower and linear compensation takes place [214].

The dispersion map used 1n these simulations is given in figure 7.7. The length

of standard fibre is either 27km, 50km or 100km and is taken to have dispersion of
DLl L. " B = - i 5

and loss of 0.22dB/km. The

16.75ps [ (nmkim), third order dispersion of 0.07ps*/(nimkmn)
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Figure 7.3: A 5ps input Gaussian pulse travelling through 8km of standard fibre. By the end of this
short length of fibre the pulse width has increased to 88ps which is far greater than the pulse separation
of 25ps for a 40Ghit/s data rate.
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Fieure 7.5: Two 5ps pulses as they broaden and interfere, note the short scale over which the interference
takes place.

oint in the fibre where they are unchirped. The system used

Comre T 6+ Four pulses as they reach the p oy . e
Plgulc (.G: Four pulses as they rez r 9ps/nm/km. ['he input Gaussian pulses

here hiad 50km of standard fibre and an average dispersion of 0
had peak power of 0.14W and a FWIHM of 5.0ps.




compensating fibre is 6km long with 2.7km before the amplifier and 3.3km after it. the dis-

yersion of the ¢ N N . )
1 ompensating fibre is varied dependlng on the length of standard fibre and

the required average dispers; : . .
1 average dispersion, the third order dispersion is taken to be 0.07ps?/(nmkm)

and loss of 0.22dB/kim is used. The initial step of prechirping fibre is 3.3km, unchirped

pulses are launched into this fibre hefore going into the first stage of standard fibre. The

filter has a Gaussian profile : - ) E ook . . .
I > and a pass-band of 5.25nm, this bandwidth is 8 tumes that of

the pulses and so this filter can be Sdered 4 O S ‘ ‘
1 21 can be considered to not have a significant effect on the pulse

evolution. The amplifier has a noise figure of 4.5dB
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3.3km Standard 2.7km
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Figure 7.7: The general system used in these simulations. The length of the standard fibre was either
27,50 or 100km and was taken to have dispersion of 16.75ps/(nm km). The 6km of compensating fibre
has been split into two sections with 2.7km before and 3.3km after the amplifier respectively.

The correct splitting of the compensating fibre is found by changing the position of
the amplifier in the compensating fibre and then comparing the Q-values after 500km
transuission. This 1s done using the system with 27km of standard fibre with an average
dispersion of 0.1ps/(nm.km). Gaussian pulses with a pulse width of 5ps and peak powers
of 0.01W are used. As can be seen in figure 7.8 the dispersion map with 2.7km of fibre
hefore the amplifier and 3.3km after gives the best results. The graph shows Q-values
plotted against the length of fibre after the amplifier, the total length of fibre is always
kept at 6km. The Q-value increased from ~ 7 to ~ 16 when the amplifier is moved from
following the compensating fibre to the midpoint of the fibre.

Both sech and Gaussian pulses can be used i this dispersion niap. Although there

‘s not a laree difference between the maximum possible propagation distances with the
' : ' CO

different pulses, Gaussian pulses are found to give better results (see figure 7.13) and so

will be used for the majority of the simulations [141]. The input pulses have a width of

around 5ps.

' 1 ;o larg her of parameters that can be varied in order to
There are obviously a large number of paramet ¢

maximise performance in this model. As well as the parameters of the pulse (shape,
width and peak power) there are the parameters relating to the dispersion map and
finally there are the other components such as the filter and the receiver. In order to
“ 1g varied the filter and receiver will not be changed,

limit the number of parameters belr
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Figure 7.8 Q-values after 500km transmission plotted against the length of compensating fibre following
the amplifier. The best results are found with 2.7km of fibre before the amplifier and 3.3km after it.

the lengths of the fibres being used (other than the length of standard fibre) will not be
altered either. The average dispersion is varied by malking small changes in the dispersion
of the compensating fibre, the width and peak power of the pulses will also be varied.
The optimum performance is found by varying the pulse power, width and the average
dispersion of the map. The optimum performance refers to the maximum distance for
which a Q > 6.0 is found. A random pattern of 96 bits will be used in these simulation.

Ay given earlier in this thesis the Q-values in these simulations are found using;

_ T Ho (7.3)
o1+ Og

where 1, and jip are the mean level of the 1 and 0 and o; and oy are the standard

deviations of the 1 and 0. These values are indicated on the eye diagram given in figure
[e0Y] h ' — . . o

“.9.

This is the simplest method used to calculate Q-values and does not take into account

the effects of patterning caused by intersymbol interference. Although including the effects
Bl bl L L S IR v

of pattering is likely to oive higher Q-values it is a far more complicated and is unlikely
atte 2 15 Y LO HivE
: . -se simulations [215]
TR *ood onclus awn from these simulations [2
to significantlyv affect the conclusions dra
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Flglu‘(‘ .90 A sample eve diagram taken from 1100km in a system with 50km of standard fibre.

7.2.1 Results

The three different models that are used (27km, 50km and 100km of standard fibre) have
sone shared properties which will be discussed before the specific details of the parameters
wsed in each of the systems and the maximum propagation distances attained are given.

The first shared property is related to the position of the chirp free point. It is found
that in the dispersion maps that give the maximum propagation distance the chirp free
point moves in the standard fibre depending on the number of times the pulses have

passed through the map. Figure 7.10 shows the fractional distance through the fibre of

the position of the unchirped pulses against number of amplifier spans. This shows that n

all of the cases the unchirped point, where the clear pulses can be found, is intially beyond

the midpoint of the standard fibre. The unchirped point occurs progressively earlier in

the staudard fibre in the subsequent amplifier spans. The information in the 27km and

50k maps is eventually lost when the chirp free point reaches the start of the fibre. In

the 100km map the pulses are lost through pulse interactions and pulse instability before

this point is reached. Given that the pulse reaching the end of the fibre is the ultimate
o) + by et - . - "

. , iy S seem reasonable that a launch pont that

limit on the total propagation distance 1t @ ould seen é




meant the pulses were initiallv chime L
L 5 were 1nitially chirp free later in the standard fibre would extend the

total propagati istance osnlie ot -
propagation distance. The results given in figure 7.8 show that this is not the case

and that moving the launch position in such a m

anner leads to greater degradation of

the signal due to interactions lead: . .
one * Lo mteractions leading to mtersymbol interference. The optimum launch

point 1s a balance between limitine the st X SN
g the distance due to the walk through and limiting the

1stance 1, S 16 M teroatn o ; ) .
distance due to ISI. It i Imteresting to note that when fractional distance through the

standard fibre is plotted against number of amplifier spans the three lines follow similar

patls.

08 —
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Fioure 7.10: This demonstrates the movement of the unchirped point through the standard fibre for the
g . . § b X . [ . PRt 5 Ther
three dispersion maps. the {ractional distance through the standard fibre is plotted against the number

ol amplifier spans.

Tlhe movement of the unchirped point is caused by the high average dispersion and
: : . e disnersion is 1S S 1t s esses the interactions of the
the nounlinearity. High average dispersion 18 used as 1t suppresses the mter

pulses which lead to intersymbol ‘terference, however it also means that the accumulated

dispersion is greater than can he compensated for through nonlinearity. In a purely
lincar system the pulses are nnchirped at the pomt where the accumnulated dispersion 1s
zero. In dispersion maps like this where the dispersion is clearly the dominant factor the
nonlinearity can be treated as a perturba.tion and so the pulses would be expected to be
michirped close to the point where the accumulated dispersion is zero but the nonlinearity
does have a small effect. The effect of the nonlinearity this case is to add an effective




anomalous dispers; This i¢ hee:
¢ ‘ persion. This ig because, as can be seen in figure 7.11, the bandwidth of a
yulse 18 ereater in the ; ; R . . /
1 greater 1 the anomaloug dispersion fibre and so this fibre has a greater effect on
the pulse than the normal dispersion :

L the L dispersion fiby s interestine § <
1 re. It is Interesting to note that due to the large

amount of pulse spreadine whic e .
; pulse spreading which occurs in this dispersion map, the bandwidth of the pulse
ndereoes most of its chanoes 2+ i . ,
g most of its changes at the pomts on the fibre where the pulses are unchirped

and so the peak powers are cuite hio 1 )
‘ beak powers are quite high. However this effect is very small compared to
- roaveraee 1C1Y O QT 1 . i1 . . . )
the average dispersion and so that is the major factor in defining the position where

the unchirped pulses are found. The variation of the pulse width in the dispersion map
15 given in figure 7.12. There is a very large change in the pulse width with the value

iicreasing from 5 to 300ps. By comparing the pulse width and bandwidth graphs it is
clear that the changes in bandwidth occur when the pulsewidth is at a minimum and so
the peak power is at a maximun. It should be noted that the bandwidth (see figure 7.11)

15 not periodic and is increasing on average during propagation.
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1 § i < throueh the dispersion map. There is very little variation in the
Fioure 7 . The handwidth varying through the dispersion map. 'l 3

1gure (.11 The bandwidth varymng g : ers b Lhere 38 e e
hange that does take place occurs around the point in

bandwidth during propagation and the ¢ ( v > PO : ‘
B be noted that the bandwidth does not periodically return to

where the pulses are unchirped. It should
its original value but is increasing.
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Tt would seem reasonable that in order to counteract this problem it would be best to
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region. however it is found that for very low average dis] o

‘sure 7.13 shows the maximum propagation
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lteractions are a greatly increased problem. Figure
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Figure 7.12: The pulsewidth varying through the dispersion map. There is a large change in pulsewidth
due to the high local dispersion.

distance for different values of the average dispersion around the dispersion zero. For
this set of results the pulses had a pulse width of 5.0ps and a peak power of 0.05W.
Both Gaussian pulses and sech pulses were used and the output position was fixed at
the output of the amplifier. This system used 50km of standard fibre and the average
dispersion which gave no movement in the position of the unchirped pulses was found to

be —0.00286ps/(nmkm).

The propagation distance can be improved to almost 800km at the average dispersion
where the unchirped point is at a fixed point in the dispersion map. I'his is done by varying

the pulse width which reduces the pulse interactions. However decreasing the pulsewidth

=Y

: : : oot of | lSHErSIONn map ¢ rentually reduces the distance
further increases the strength of the dispersion map and ey entually reduces tl é

over which the pulse is stable. A graph of pulse width against total propagation distance

1s given is figure 7.14.
' e s one of the main limitations on the propagation distances
Intersymbol interference 1s one or the
possible in these systems. Intersvibol interference is cansed by a pulse interacting with
ects are dependent on the bit pattern [215] in that
> neigl i Tees and so the effects are dependent on the bit patte
the neighbouring pulses and so th

three 17s in a row for example might be more likely to cause an crrov with the centre 1
G S d oA -

wac four 1's or © s mieht be less affected.
) i R o two whereas four 1's or two 1's 1u1g
growing at the expense of the outer two ) .

. i i Eonre 7.15 which s 'S a section o

This effect, known as patterming, 13 Jemonstrated in figure 7.15 which shows a s
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Figure 7.13: The maximum propagation distance against average dispersion
The output position was kept fixed during these simulations.
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the bit pattern with two 1< ar .

2 L with two 1°s and three 1’s in 4 row. The top picture shows the pulses at
he start of the transmiss; = . e
the stz he transmission whereas the lower picture is taken after 1000km. The two 1’s
still have similar amplitudes afte; 1000km but the middle of the three

its amplitude at the expense of the

1’s has increased

outer two.

The other shared property of the pulses in these three systems is that they have

suppressed energy ¢ ared t oo . .
Pl d energy compared to an average soliton for the same average dispersion. In

general dispersion managed solitons are expected to have enhanced power when compared

to average solitons.  As las already hee . - : ) .
2 as already been pointed out the strength of the dispersion

map used here s far greater than those generally investigated. The use of a symmetric

dispersion map reduces the size of the expected power enhancenient but does not account
for the suppressed energies found here. The relatively large average dispersions that are
used fo suppress the intersymbol interference could also account for the reduced energy. It
15 clear that these pulses are not what have hecome known as dispersion managed solitons
they are quasi-linear pulses but require finite dispersion for optimum performance.

A graph of Q-value against distance for the greatest propagation distances attained
for the three dispersion maps is given in figure 7.16. The initial Q-values are extremely
Ligh as there 1s no noise on the input, this leads to a large fall in () at the start of each
simulation.

The first set of simulations use the dispersion map with 27km of standard fibre and
6km of compensating fibre. In order to find the optimum performance the peak power is
varied between 0.1W and 0.2W, the pulse width is varied between 4.5ps and 6ps and the
average dispersion is varied between 0.1ps/(nm km) and 0.2ps /(mn k). Over most of
the range of these parameters it is possible to propagate the data over more than 1000km.
Varving the pulse width is not found to affect the results strongly and varying the peak
power is limited due to the problems associated with the signal to noise ratio, therefore

the most effective parameter to vary is found to be the average dispersion. A graph of

()-value against average dispersion 1s given in figure 7.17 this shows that the highest Q-
value at a distance of 1500km is at 0.15ps/(nm km) but the fall off for small changes 1
- - bl ALD Ll :

. i . = - - c
. T e bropagation attained also uses Hps pulses
. . . IR TN AX uin pPro Yagation attaine (l (llSO s
average dispersion is not sharp The maximun propag

. o g [P I . L RO ‘.'/,A.,
with a peak power of 0 01W and an average dispersion of 0.15ps/(nm km). This gives
AL 4% sl AR . -

w overall map strength of G=43. An average soliton with the same pulse width and in a
ain overa ap streng D=ED.

e W whieh e siemificantly hicher
constant dispersion fibre would have a peak power of 0.01 7W which is significantly high
- DLl s LD - -

than the peak power of the pulses used her ‘ i

‘ o man consisting of 50k of standard fibre
T o ek iops use a dispersion map col g

The next set of simulations use a
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Figure 7.16: Q-figure against distance for the three systems. The horizontal line represents a @ of 6.0
which is equivalent to a bit error rate of 1077
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Figure 7.18: Maximum propagation dist
These simulations were all run with peak powers of 0.014W

in the svstem with 50km of standard fibre.

and Hps Gaussian pulses.

It is surprising that the dispersion map with more standard fibre and a higher S
number gives better results than the weaker map. It can be seen in figure 7.16 that until
the sudden reduction in Q at the end of the simulation the wealer map gives better Q-
values. The reason for the better results from the stronger map can be seen from figure

.10 which shows the position of the anchirped pulses. The limit of the propagation
distance in both cases is that the chirp free point eventually reaches the start of the



standard fibre and after that peies
: atter that poing the pulses are 1o loneer rorm, .
[ the ol £ ) g tger recovered. Since the position
ol the chirp ree pomnt has 4 inesr waloi: . .
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se widths of between 4 4ps 4¢ 5 .
prilse widths of hetween 44ps and 5.5ps, the average dispersion of the fibre is varied

hetween 0.1ps/(nm km) and 0.25ps /(nm km). The propagation distances possible with

this map are substantially less than those previously found. The maximum propagation

distance was not strongly affected ev ¢ changine the averaoe d; : :
gly affected even by changing the average dispersion. As shown in

figure 7.19 it 1s possible to get propagation over 900km for a range of average dispersions,

however none of these systems still have a Q-value of more than 6§ after propagating over

the dispersion map again. Unlike the previous systems the reason for the degradation

in the Q-value 1s due to interactions and pulse stability rather than problems relating to

tlie movement of the position where the unchirped pulses occur. The greatest Q-value at

900k is attained for pulses with a peak power of 0.03W and a width of 4.5ps in a map
with an average dispersion of 0.16ps/(nm km). This means that the map used here had
a strength of S=188 and for this average dispersion an equivalent average soliton would
Liave an initial peak power of 0.057W. The reason for the sudden drop in the maximum
propagation distance when the length of standard fibre 1s increased to 100km is that the
limiting factor on the distance is no longer the position of the unchirped pulses. Figure
7.10 shows that the simulation ends long before the unchirped pulses reach the start of
the standard fibre. In this case pulse interactions resulting in amplitude jitter and pulse

shape distortions are the limiting factor.

7.2.2 Conclusions

% : c 1 et Fo investicate tl opacation of data over standard fibre
Simulations were carried out to investigate the propagat i
nole channel data rate bit/s. It was found that
using dispersion management at a single channel data rate of 40Gbit/
¢ . .
L e ATICES ore than 2000km were possible using quasi-linear
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Figure 7.19: Q-value against average dispersion after 900km in the system with 100km of standard
fibre. These simulations were all run with peak powers of 0.03W and 4.5ps Gaussian pulses.

standard fibre and the one with 50km were able to transmit data for more than 1500km
with the longest distances of over 2000km possible with a map containing 50km of standard
fibre. The map with 100km of standard fibre was able to propagate pulses for more than
SO0k but was then limited by interactions.

The main difficulty found in propagating at a single channel data rate of 40Gbit/s
over standard fibre were due to the very strong dispersion map that had to be used. The
short pulsewidth and high dispersion of the standard fibre meant that the length of the
standard fibre conld be more than 100 times the dispersion length of the pulses. One direct
result of this was that the pulses broadened to such an extent that they overlapped and
interfered with each other and so it was only possible to get a clear ontput at the point in

the standard fibre where the pulses were unchirped. It was found that there was an added

complication to taking the output at the point where the pulse were nnchirped in that this
point moved through the stan dard fibre. This was because at the low normal dispersions
required to make this point stationary the system length was limited by interactions
to less than 1000km. The effect of varying the output position to detect the pulses
at their unchirped point could also be attained by using post.—~t1'a.nsu11551011. dlSl'l)el‘SllOl‘l
compensation to unchirp the pulses. The higher anonialous dispersions required £0 give

t that tl dispersion
ant tilat

i ’ jere was all excess of anomalous
longer propagation distances 1€




which resulted in the

unchirpe ‘ RTINS ER s & . :
chirped point moy g. The limit on the total propagation distance

in these systems was that after the unchirped point reached the

start of the standard fibre,
the pulses were no longer recovered.

) N _w‘,"/.); lev AVOTa g e . . R .

I'he relatively high average dispersion used also leads to these pulse having reduced
power when compared to average soliton. This is in contrast to what 1s expected from
dispersion managed solitons where enhanced powers are normally found. This leads to

these pulse being considered to be quasi-linear rather than true dispersion managed soli-

tous. Unlike dispersion managed solitons, no long term stable pulses were found for the

strong dispersion maps used here. By better use of filtering or some other form of control

it should be possible to improve the performance of this system.




Chapter 8
Conclusions

This thesis presented the results of numerical simulations relating to the use of dispersion
managed solitons for high bit rate, single channel optical communications. After intro-

ducing the theory behind the propagation of optical pulse in single mode fibre (chapter

2) and the background to dispersion managed soliton propagation (in chapter 3) the re-

sults presented were in two main areas. Firstly the use a periodic saturable absorption
to control dispersion managed solitons was investigated in chapters 3 and 4. The sec-
ond area. considered in chapters 6 and 7 was the upgrade of the installed standard fibre
network to operate at higher data rates. Most of the work in this thesis relates to labora-
torv experiments and where possible comparisons between the numerical results and the
experimental results have been drawn.

In chapter 4 a saturable absorber was inserted periodically into a dispersion managed
transimission line. Single pulses with the same input pulse width and a variety of pulse
cnereies were able to propagate over long distances. As the energy of these pulses increased

the saturable absorber was able to suppress the dispersive radiation more efficiently. The

saturable absorber was also found to have a filtering effect on the pulses due to the pulses

' ' ‘ int i ispersi ap where the saturable absorber was placed.
Deing chirped at the point in the dispersion map where ature

i e require ectore the spectrum after the saturable absorber
Hieh peak powers were required to restore the s

and thus these pulses had significantly higher powers than pulses that propagate m the

dispersion map alone. All these simulations were run without loss, higher order dispersion
2 LD 148 . e £ , el WS

: to underst: 1e formation of the high
or noise and only single pulses were used in order to understand the formation of g
. e 1o rew peeime of stable, high power pulses
cnerov, stable pulses. This result identified a new reginic able, fgh
ek : anagement ¢ saturable absorption
that onlyv exists when a combination of dispersion management and satura 1
Dat only exists when a ¢ ‘
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agement with a periodic saturahla .
o @ periodic saturable absorber, however fibre loss and third order d; ]
1 third order dispersion .

were now included and noise wag added to the signal

ab the amplifier. The effects of loss

I E .()' o1 vl vy t o . . )
and higher order dispersion weye examined for a single

. pulse before this system was used
o transmmt a 10Gbit/s data patter .

o 1 a 10GDit/s data pattern over 208Mm. There was vory little accumulation of
- 8 o LLG A a

nowse over this distance and timing jitte

I'was not a significant problem. The suppression

f the noise was clear . o .
of as clearly due to the effects of the satwrable absorber. The Gordon-Haus

jitter was kept to a minimum for severa] ¢ aver is ' i
alreason. Low average dispersion was possible due

to the enhanced power of these pulses and strong filtering was used both from a filter

and the saturable absorber. Strone filterine was : v
‘ ature absorber. Strong filtering was possible because the saturable absorber

suppressed the build up of linear dispersive waves at the peak of the filter passband.

This demonstrated that saturable absorbers ¢ nehly beneficial in ]
¢ at saturable absorbers can be highly beneficial in the propagation

of dispersion managed solitons at high data rates.

The final two chapters of results examined the upgrade of the installed standard fibre
network to higher data rates. Standard fibre has high dispersion in the low loss region
where Erbium doped fibre amplifiers operate, dispersion management can be used to
lower the average dispersion allowing greater data rates to be used. In chapter 6 a simple
two step dispersion map was used to propagate pulses at 10Gbit/s. The suppression of
oscillations in pulse width when the launch position and the position of the amplifier were
varied was examined. Although the the oscillations could be greatly reduced the final
()-values were not significantly affected.

ClLapter 7 examined the use of dispersion management to further increase the data rate
to 40Ghit/s. A novel dispersion map where the conpensabing fibre was placed both before
and after the amplifier was found to give the best results. In contrast to the previous
chiapters, here the pulses which gave the greatest propagation distance had reduced power
compared to an average soliton. Asa results of this dispersive effects dominated the system
althongli nonlinearity was still found to have a significant effect. Due to the large amount
of dispersive broadening it was found that using the correct output position was critical,

: T ao f ' ‘e throueh the dispersion map 1n the systems
furthermore this position was found to move throug I

. e G propagation distance of more
o o e b e Ty O » stance. A maxunuin propag
tliat gave the glea‘t(;st plopa‘ga,tlon dista

than 2000km was found in this mvestigation.

T : Tre mrocented in this thesis were:
Tle main new results pl(-.,scnt(,d in this

S 1tor X agatl 7 al 1 (?ll:,iﬁ(_d. 1 .S '(_.()‘il]‘](g

L 11eW I'¢ O'in].(* Of hiﬂ"h ()l’lel‘g V. St a.ble SOll 011 l)l ()l)d.gd-l/lOH was ld C &

hv - ¥ :‘k - O - - <Y . . ‘: |

| C £ 18 > 1 jur sf1on wi h yeriodalc
15 0111()"' DOSS e wWlie L13 215 [§ W e

saturable absorption.




e The individual effects of 1 : .
s of the dispersion map and the saturable absorber were iden-
tified ' ' 2

e Tlie system with dispersion ma. v
dispersion tanagement and saturable absorber was used to prop-

agate a 10Gbit/s data pattern over more than 200Mu

e A 10Ghit/s standard fibre ool o X
0Ghit/s standard fibre expermient was successfully modelled and the results
demonstrated the oscillations in Q-values observed experimentally

e Numerical simulations were used to demonstrate that it is possible to propagate

data at 40Gbit/s over more than 2000km of standard fibre. This is the greatest

distanced attained in numerical simulations to date.

8.1 Future work

There are many aspects of dispersion managed solitons that have still to be mvestigated.
[t Las been shown that the position of the amplifier in the dispersion map can have
a lavge effect on the total propagation distance. Further investigation into the reasons
for this might allow greater propagation distances to be attained. The position of the
filter could also have an effect on the propagation distance especially as the bandwidth
of a dispersion managed soliton varies during propagation. At present the amplifier and
filter are generally placed at the same point in the dispersion map, however this may not
necessarily be best.

It would also be interesting to look at using dispersion maps made from more than two
tvpes of fibre. For example in the case of the symmetric map used in chapter 7 it might
fibre with lower dispersion before the amplifier

be advantageous fo use compensating

: . : - e the amplifier. In this way the noulinear effects in the
with higher dispersion fibre after the amplifier. In this way

compensating fibre before the amplifier could be made to be of a similar size to the effect

. : SRR R L o 1is 1s because a longer
of nonlinearity in the section of fibre following the amplifier. This 1s because a long

. * Sulse breathine 1 be reduced.
section of fibre would have to be used and the rate of pulse breathing would be rec

r s observed could be reduced or
. IR Co e handwidth that was observed could I
In this way the increase in the pulse’s band

even eliminated. , : S

Further work into the use of saturable absorbers would also be interesting. 53“*’“.311“’
cuels as the one described on chapter = where stable pulse propagation was not .posmble
conld benefit from the stabilising effect of the saturable absorber. The 1)051.t101‘% of Ithe sat-
wrable absorber would be crucial due to the large amount of pulse breathing that occurs




a2

in this dispersion map. T cafiies
1 ap. If saturable absorberg are to prove useful it will be i tabilis
| | o Ve userul at will be n stabilise
me propagation 1 situations 1ilke +1- i ‘
g propag ations like thig rather than n extending pPropagation: dist %
Xte agation: distances to
several lundred Mm.

Short period dispersion m;
' L At SPCLSION MMaps where 3 civala woe 10 ¢ R
ay here a single amplifier span 1s made up of several
sections of fibre. These maps are 1lealo 1 .
> haps are likely to be used in systems with high single channel
single cha;

ata rates where the shor Coc o bl .
data re here the short pulses mean that the dispersion map become very strong
e O > Ve N 2.

[here arve also other fibre types such as True wave and LEAF fibre which can |

be used for
dispersion managed systems.

8.2 The future of dispersion managed solitons

The use of dispersion management has increased the possibility of solitons being used
m comuercial communication networks. There have been several successful field trials
which have demonstrated that dispersion managed solitons can operate successfully on
stalled systems that were not designed for their use [191, 192, 193, 194, 216]. Dispersion
nianaged solitons are compatible with TDM, WDM and all optical processing which are
all likely to be used in the networks of the future.

As higher data rates are required the strengths of the dispersion maps used are likely
to increase. This will probably lead to the necessary use of further control to get stable
pulse propagation. Saturable absorbers can be used in this respect and have the advan-
tage over other control methods such as phase and amplitude modulation in that they
are entirely passive. Although saturable absorbers are not immediately compatible with
wavelength division multiplexing they can be used to enhance the performance of WDM
svstems [197].Dispersion managed solitons are currently the most successtul method of

transmitting data over standard fibre at both 10 and 40Gbit/s if the daba rates are to

be increased further to 160Gbit/s or through WDM to N x 40Gbit /s it seems likely that

. K Ag PMD is becoming of increasing
dispersion managed solitons will make this possible. As PMD is becoming of increasing

ble that saturable absorhers could be used to increase the pealk powers
> Chlal Saltl :

vd fibres. This would lead to greater cross

concern it 1s possl

of the pulses used dispersion managed standa
C ey P srefore further resistance
phase modulation between the polarisations of the pulses and ther

to 1 2 .[D ] |
1 11 10t di%‘CllS%’(—’d 1 I 1 1% ‘ ].Al(iSlS‘; dlS HETS101L 111(1.11(15)(),111(311{ 1 ¢ c 11
‘-—\‘ y O‘L o - ! S SSEd ] I ‘ . ? |
1 e WwWlie VA ) ¢ Sy 1 1 N 5C : d ) (.‘1'.[_‘1011 map 111 & Ay DT\
¢ x ] t ’h 1 US(‘d ill N M svs CINS. e use o A d S[) S \\
O OTler Yene RS N6 3 qre 1S I ~ 1 ) |
Vstel e the 1 1ndauce ]‘| e 1itter betweell i} e \'\"1,\7(316110‘ <h Ch'd, cls.
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Experiments that used WDM
ki have been carried out 9, 217, 218]
over more modest distances 219].
rates of this order or higher,

nsing dispersion shifted fibre with dispersion m
scattering will iave to be considered. Higher d
possible with shiort period
when operating at these data rates and this ¢

solitous.

1 to Propagate several hundred @
and more than a 1Thit /s has 1
Future optical networks will hav

Single channel data rates of 160G1

dispersion maps. The effects of nonline

it /s over several thousand
been propagated
e to operate at data
bit/s should be possible
anagement although the effects of Raman
ata rates of more than 200Ghit /s may be
arity must be considered

an be done by using dispersion managed
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