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Abstract

This paper presents a greedy Bayesian experimental design criterion for heteroscedastic Gaussian
process models. The criterion is based on the Fisher information and is optimal in the sense of
minimizing parameter uncertainty for likelihood based estimators. We demonstrate the validity
of the criterion under different noise regimes and present experimental results from a rabies
simulator to demonstrate the effectiveness of the resulting approximately optimal designs.
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1 Introduction

In this paper we address optimal experimental design for Gaussian Processes (GPs) with inde-
pendent heteroscedastic noise. The usual assumption in experimental design and modelling is
that the noise is homoscedastic. Our focus is to produce designs which minimise model param-
eter uncertainty, rather than predictive uncertainty (Krause et al., 2008). Zhu and Stein (2005)
present an approach to experimental design for parameter estimation for the homoscedastic
GP case and we extend this approach to the heteroscedastic case. In so doing we introduce a
new heteroscedastic model, which simplifies previously proposed models, making the optimal
experimental design problem more tractable.

Our motivation stems from the field of computer experiments and in particular how to build good
statistical approximations, known as emulators, to random output simulators. Traditionally the
simulators examined in the literature have been deterministic (Kennedy and O’Hagan, 2001) but
computer models with a stochastic response are becoming more common in many applications,
from systems biology to social modelling to climate prediction. Experimental design plays a
crucial role in the building of an emulator (Sacks et al., 1989), and unlike data driven learning
we are able to choose the inputs at which the simulator is evaluated with almost complete
freedom. The simulator is typically expensive to run, thus it is beneficial to optimise the input
points at which to the simulator is run given the available apriori knowledge. The heteroscedastic
GP emulator is then trained on the selected design set and corresponding simulator evaluations.

The paper opens with a review of the experimental design for parameter estimation in Section 2
followed by a discussion of the new heteroscedastic GP model in Section 3. The approach to
experimental design is described in Section 4 followed by experimental results on synthetic data
in Section 5. The new methods are applied to a random output rabies simulator in Section 6.
Conclusions are given in Section 7.

2 Fisher information

In this paper we calculate experimental designs that minimize the parameter uncertainty. We
accomplish this by minimizing the log determinant of the Fisher Information Matrix (FIM), a
p× p symmetric matrix, where p is the number of unknown parameters θ. The FIM is defined
below:

F =
∫ (

∂2

∂θ2
ln(f(X|θ)

)
f(X|θ)dθ,

where f(X|θ) is the likelihood function.

In the case of multivariate normal distributions it can be computed analytically. Let X dis-
tributed as N(µ(θ),Σ(θ)), the i, j element of the FIM is:

Fij =
∂µT

∂θi
Σ−1 ∂µ

∂θj
+

1
2
tr(Σ−1∂Σ

∂θi
Σ−1 ∂Σ

∂θj
) (1)
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where (·)T denotes the transpose and tr the trace. The focus in this paper is on identifying
covariance function parameters and we will assume the trend parameters are known or of no
interest, thus only the second term in (1) is relevant.

In the machine learning area, the Fisher information has been used for active learning (Hoi et al.,
2009) where a submodular function was found to be a good approximation to the FIM in the
case of classification assuming small length scales. The submodularity allows for robust usage
of a greedy optimization algorithm, guaranteed to be within a constant factor of the optimum.

We consider regularity assumptions on a covariance structure Kr(d) with unknown parameter
r and d the distance of two design points. Introduced in Stehĺık (2009) and referred to as the
ABC class, we assume for covariance K that

a) Kr(d) ≥ 0 for all r and 0 < d < +∞,

b) for all r mapping d→ Kr(d) is semicontinuous, non increasing on (0,+∞)

c) limd→+∞Kr(d) = 0.

Under these conditions, FIM related optimal designs are reasonably well behaved. In particu-
lar both infill domain asymptotics and increasing domain asymptotics are feasible. From the
probabilistic point of view we can see the ABC class as a class of Gaussian processes which
are semicontinuous extensions of the Ornstein Uhlenbeck process. The assumptions ABC are
fulfilled by many covariance functions, e.g. by the power exponential and Matérn class.

The determination of optimal designs for models with a correlated errors is substantially more
difficult and for this reason not so well developed. For the influential papers there is a pio-
neering work of Hoel (1958), who considered the weighted least square estimate, but considered
mainly equidistant designs. Bickel and Herzberg (1979) considered least squares estimation and
determined asymptotic optimal designs. Müller and Pázman (2003) determine an algorithm
to approximate optimal designs for linear regression with correlated errors and introduced the
instrument called virtual noise.

Theoretical justifications for using the Fisher information for D-optimal designing under corre-
lation can be found in Abt and Welch (1998) where asymptotic analysis shows that in the limit
the inverse of the information matrix coincides with the covariance of the limiting distribution of
the maximum likelihood estimator. Pázman (2007) provides justification of the FIM for a small
noise levels. An experimental justification for the use of the FIM under homoscedastic noise was
given in Zhu and Stein (2005) where simulations from Matérn covariance function based GPs
were used to study whether the inverse Fisher information matrix is a reasonable approximation
to the empirical covariance matrix of maximum likelihood estimators, as well as a reasonable
design criterion.
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3 Heteroscedastic GP Models

One approach to modelling heteroscedastic noise within a GP framework is to use a system of
coupled GPs modelling the mean and variance functions respectively. In Goldberg et al. (1998)
a Monte Carlo approach was utilized to incorporate the uncertainty of the variance GP into the
overall predictive uncertainty. The computational expense of this method however motivated an
approximation whereby only the most likely value of the variance is utilized and the associated
uncertainty around this estimate is discarded (Kersting et al., 2007).

Snelson and Ghahramani (2006) proposed a heteroscedastic version of the sparse pseudo-input
GP method (hereafter SPGP+HS). However as was noted in Snelson and Ghahramani (2006)
this method does not perform well when small numbers of observations are available due to the
flexibility of the model (Snelson and Ghahramani, 2006). Large training set sizes are uncommon
in the emulation context where simulator runs are typically expensive to obtain – where the
simulator is very cheap, its direct use might be preferred.

The model we develop in this paper is similar to the SPGP+HS model but allows different mean
and variance response structures. The log variance function is modelled as a linear in parameters
regression using a set of fixed basis functions h(x). The heteroscedastic GP prior is thus:

p(t|θ,x) = N [0,Kµ + diag(exp(h(x)Tβ))P−1],

where diag denotes the diagonal matrix of the input vector, Kµ is the usual covariance matrix
which depends on parameters θµ representing process variance and length scales, β the linear
coefficients and P a diagonal matrix containing the number of replicated observations at each
training point site. In this paper P is always set to the identity and x is the training data input
matrix. The set of free parameters for this model is θ = {θµ, β}.

We considered two types of basis functions, local (radial basis functions) and global (polynomial)
to provide the input dependent nugget term. An advantage of local basis functions is the
interpretability of priors on the β coefficients. The number of local basis functions required for
domain coverage grows exponentially with the input dimension.

In high dimensional cases global basis functions may be more appropriate or a non-parametric
method could be considered using an additional ‘variance kernel’: p(t|θ,x) = N [0,Kµ+diag(exp(kTΣ(KΣ+
σ2
n)−1β))P−1] where KΣ and kΣ are the variance kernel functions, depending on parameters θΣ,

and in this case β is a variance ‘pseudo observation’ vector, and σ2
n a nugget term. Note that

sparse approaches to this parameterisation, similar to Snelson and Ghahramani (2006), are likely
to be more computationally attractive. The main difference of this model from the model of
Snelson and Ghahramani (2006) is that we do not entangle the mean and variance response,
allowing separate kernels for each. This will be important where the complexity of the mean
and variance response is different. This model also bears resemblance to the Kersting et al.
(2007) model, however here we directly represent the log variance function as a non-parametric
kernel regression rather than employing a Gaussian process model and then using the most likely
value. This enables us to write down a simpler model, with the same flexibility as Kersting et al.
(2007), for which we can evaluate the FIM.
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4 Sequential Search Bayesian Design

The calculation of the FIM (Section 2) is defined for a given parameter value vector, θ0. If a
point estimate for θ is used the design is termed locally optimal, in the sense that we obtain an
optimal design for that specific parameter value θ0. In practice θ will not be known in advance
so we follow the approach of Zhu and Stein (2005) using the approximate Bayesian criterion:

U(s) = −
∫

ln |F(s, θ)| p(θ) dθ (2)

where p(θ) the prior on the parameters, s the proposed design and |F(s, θ)| the determinant of
the FIM given by (1).

The integral in (2) can be approximated using Monte Carlo:

U(s) ≈M(s) = − 1
N

N∑
i=1

ln |F(s, θi)|

for N samples from the prior p(θ).

To complete the specification of the experimental design algorithm the method of optimization
must be defined. The most commonly employed approach is to provide a large candidate design
set, and select a subset of design points from this set. A complete enumeration of all possi-
ble designs quickly becomes infeasible as the number of candidate points increases. Various
search strategies have been proposed in the literature to address this limitation. Some authors
have suggested using a stochastic algorithm like simulated annealing with multiple restarts to
guarantee robustness (Zhu and Stein, 2005) or random sampling where an information gain is
estimated for each candidate point by averaging the design score over all searches in which this
point was included (Xia et al., 2006).

Another option is greedy optimization where the candidate point which maximizes the score gain
at each step is included in the selected set. In Xia et al. (2006) the greedy approach is shown to
be superior to simple stochastic optimization schemes. We confirm this result, providing further
experimental results supporting the effectiveness of the greedy approach in Section 5.2.

One challenge with the sequential greedy optimization method is initialisation. It is necessary to
have at least two points to compute the Fisher score (2), with more providing better numerical
stability. A potentially useful initialisation is to evaluate the Fisher score for all point pairs.
The approach utilized in the experiments is to pick a set of N points closest to a space filling
equal grid for the design space. This compromise appears to have little effect on the final designs
found as shown in Section 5.2.

5 Synthetic Experimental Results

The experiments1 on synthetic data aim to investigate the utility of the Fisher information
for experimental design purposes (Section 5.1) and demonstrate the effectiveness of the greedy

1The code will be available online and extends the gpml library of Rasmussen and Williams (2006).
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optimization method (Section 5.2). Since a local design is rarely justifiable, we present in Section
5.3 experimental results on Bayesian design.

5.1 FIM for Design

In this section we show that under different signal-to-noise ratios the Fisher score remains
monotonic to the empirical parameter covariance. The inverse of the FIM provides a lower
bound to the empirical parameter covariance and the bound becomes tighter as the number of
samples grows. In Figure 1(a) we show for different sample sizes the approximation error.

(a) Increasing design size (b) Designs

(c) Low noise (d) High noise

Figure 1: Relation of the log determinant of the Fisher information to the log determinant of
the empirical parameter covariance. (a) The FIM (solid) and empirical parameter
covariance (dashed) for designs of size 10 to 100. (b) The non-random designs
used. (c),(d) The approximation for 50 point designs under different noise levels.
(c) is using a linear basis variance model and (d) an RBF variance model with two
Gaussian basis functions centred equidistantly. Designs 7-9 are random and 10 is a
uniform Latin hypercube.

We use the Matérn covariance function with fixed differentiability ν = 5/2, length scale λ and
process variance σ2

p and a linear model for the log variance. The empirical parameter covariance is
computed by sampling from a GP with a polynomial heteroscedastic noise model. A maximum
a posteriori estimate (MAP) for the GP parameters is calculated for each GP sample. The
parameters of the generative GP were set to λ = 0.5, σ2

p = 0.75 and the linear coefficients to
β0 = 0.01 and β1 = −30 which correspond to a high noise level in the initial part of the design
space quickly reducing to low noise. The empirical parameter covariance was calculated using
MAP parameter estimates from 1000 realizations of the generative GP.
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The next experiment demonstrates the monotonicity of the Fisher information to the empir-
ical parameter covariance. We generate six designs of 50 points with the distance between
neighbouring points determined by the quantiles of exponential distributions with different rate
parameters (Figure 1(b)). In addition three random and a Latin hypercube design were also
used.

In the low noise case, a linear basis variance model was used with the parameters of the GP set
to the same levels as in the previous experiment. For the high noise case a two Gaussian basis
RBF model was used. The basis functions were positioned equidistantly in the design space
with their variance set to the squared distance between their centres. The parameters were set
to λ = 0.33, σ2

p = 1.8 and β0 = −3.7, β1 = −0.8. Finally, we calculate confidence intervals for
our estimates of the log determinant of the empirical parameter covariance using 1000 bootstrap
samples (see Appendix). The results are shown in Figure 1(c)-(d) where we observe that for the
higher noise level case the approximation error is larger but the monotonicity still holds.

We repeat this experiment on larger designs and varying signal-to-noise ratios. We use designs
of 100 points where we sample from a GP with different levels of heteroscedastic noise. Two
Gaussian basis functions were used with their centres and widths set as before. Samples from
the GP for the different noise scenarios are shown in Figures 2(d)-(f). The length and process
variance of the Matérn covariance were unchanged. The linear coefficients for the variance
model were set to β0 = −4.7, β1 = −2.8 for the low noise case, β0 = −3.7, β1 = −0.8 for the the
medium noise case and β0 = −2.7, β1 = 1.2 for the high noise case. We see in Figures 2(a)-(c)
that although the approximation of the FIM to the parameter variance gets progressively worse
as the noise level increases, the monotonicity holds even for relatively high noise levels.

The monotone relationship between the log determinant of the FIM and the log determinant
of the empirical parameter covariance holds in all scenarios tested and affirms the usage of the
FIM as a design criterion for minimizing parameter uncertainty. This conclusion agrees with
the findings of Zhu and Stein (2005) which showed this relationship in the homoscedastic case.

5.2 Greedy Optimization

The experiment considers the selection of 9 locations from a candidate set of 29 points in a locally
optimal design. The design is given the point parameter prior θ0 = (λ = 0.5, σ2

p = 0.7, β0 =
0.1, β1 = −10) and we compute the FIM score of all

(
29
9

)
combinations. The Matérn covariance

and a linear basis function for the log variance is used. We also show the Fisher scores for the
solution obtained using greedy optimisation and an approximate grid design selected from the
candidate set (Figure 3(b)).

In terms of Fisher score, the greedy solution is very close to the optimum while the score for
the grid design is significantly worse. Additionally, even for this simple example we notice a
very large number of local optima close to the optimum demonstrating the near equivalence of
a large number of designs.

The optimal, greedy and grid designs are shown in Figure 3(a) along side the candidate set. The
relatively long length scale of the GP means the noise signal dominates and the optimal designs
place the points near the boundaries due to the log linear form of the variance function.
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(a) Low (b) Medium (c) High

(d) Low (e) Medium (f) High

Figure 2: Effect of noise on the monotonicity of the FIM vs parameter uncertainty. Designs
1-3 increasing distance designs (Figure 1(b)), 4 a Latin design and 5 is random (a,
b, c). Illustrative GP realisations for the various noise levels (d, e, f).

Since the motivation of using the Fisher information as a design criterion is to minimise param-
eter uncertainty, we expect the likelihood for the optimal designs be more informative about
the optimum θ than the grid design. We demonstrate this effect by plotting the profile likeli-
hood for each parameter (Figure 4) using a single GP sample as our training data. For all four
parameters using only nine training points, the likelihood on the optimal design excludes with
more certainty larger portions of the parameter domain than the grid design.

5.3 Bayesian Optimum Designs

The previous sections have demonstrated the effectiveness of the Fisher information criterion
applied to the fixed basis heteroscedastic variance model. However local designs require a point
estimate of the parameters which in practice is an uncertain quantity. Following the discussion
in Section 4, we present experimental results demonstrating the implementation of Bayesian
D-optimal design which removes this need by allowing specification of a prior belief on the
distribution of parameters. The computational cost however is increased due to the intractability
of integral (2) necessitating the usage of Monte Carlo.

The validation metric we use to compare the bayesian design based on a vague prior to the grid
design is the relative root mean square error (rRMSE) of the parameter estimate θi to the true
value θ0 averaged over N samples (Zhu and Stein, 2005), i.e. 1/N

∑N
i=1

√
θi − θ0)2/θ0. The

scaling of the error by θ0 ensures the rRMSEs are comparable.

We simulate from a heteroscedastic GP with Matérn covariance and a two Gaussian basis vari-
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(a) Designs (b) FIM solutions

Figure 3: Complete enumeration for a locally optimal design. Candidate Set (green triangle),
optimal design (red circle), greedy design (blue diamond) and grid design (black
square).

(a) log λ (b) log σ2
p (c) β0 (d) β1

Figure 4: Profile likelihoods for locally optimal design (dashed blue) and a grid design (solid
black). The true parameter value is also shown (vertical red line).

ance model. We place zero mean, variance 20 log normal priors on λ and σ2
p and normal priors

N(−2, 40) on the linear variance coefficients β0, β1. We sample from the prior 100 times and for
each parameter sample we simulate from the GP 50 times providing a total of 5000 realisations
of the experiments. The resulting designs and corresponding rRMSE values are shown in Figure
5.

The mean and median rRMSE for each parameter is given in Table 1 for both the greedy
optimum and grid designs. We note a significant improvement for all parameters. In Zhu and
Stein (2005) a similar experiment was conducted by simulating from a homoscedastic GP and a
benefit in terms of average rRMSE was noted. In our case however it turns out that the average
rRMSE is dominated by a few extreme values in the parameter estimation. When looking at
the median rRMSE in Table 1 the metric is better for the grid design. We have repeated this
experiment with different configurations with similar results. It appears the FIM based designs
are more robust but further evidence is needed since these results are based on a few extreme
values despite the large number of simulations.
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(a) Designs (b) rRMSE

Figure 5: Bayesian Designs for 1D synthetic example: Candidate set (green circle), Greedy
(blue diamond) and Grid (black square).Also shownm box whisker plot of the
rRMSE values for each parameter.

Table 1: rRMSE on Bayesian simulation for Grid and Greedy designs.

Statistic Design λ σ2
p β0 β1

Mean Grid 2.10 -0.07 0.58 -0.38
Greedy 0.25 0.04 -0.11 0.14

Median Grid -0.09 0.01 -0.09 -0.09
Greedy 0.15 0.03 -0.09 -0.10

6 Stochastic Rabies Model

Our motivating example is a stochastic simulation model developed for the analysis of the risk
and strength of rabies spread in a community of raccoon dogs and foxes (Singer et al., 2008). We
emulate a single output of the model, the number of time steps required for the disease to become
extinct in the raccoon dog population. This output is important in deciding on the response to a
potential rabies outbreak. We note this output has a rather complex, non-Gaussian, distribution;
in this paper we emulate the log extinction time, which is more approximately Gaussian, as
determined from visual inspection of Q-Q plots. The model normally has 14 inputs but we have
fixed all but the two most relevant inputs to their nominal values to permit easy visualisation.
The raccoon dog winter density and death rate parameters were identified through sensitivity
analysis and discussion with the domain expert as the most relevant inputs.

The candidate set is a Latin hypercube of 961 points (Figure 6(a)) from which 49 points are
selected. We used the greedy Bayesian design approach (Section 4) which allows the specification
of a prior over the parameters. The computational cost is increased due to the intractability of
integral (2) necessitating the usage of Monte Carlo.
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(a) Full design (b) Grid

(c) Greedy informative (d) Greedy vague

Figure 6: Resulting designs for rabies model.

Two experiments were conducted using different priors to highlight the effect of the prior on
the Bayesian design. The same priors are also used during inference producing MAP estimates.
Our informative prior is a zero mean GP with a Matérn isotropic covariance and fixed basis
variance models consisting of 16 Gaussian basis functions. The basis functions were centred
on a square grid and the width set to the squared distance between grid points. We place a
Gaussian prior on the log variance linear coefficients β. The time to disease extinction is known
to be correlated with the density factor and anti-correlated with the death rate (for higher death
rates more individuals die before they transmit the disease). For low densities and high death
rates the disease becomes extinct quickly with high certainty. We therefore set the mean of the
β to low values (−11) for high death rates and low densities and a higher mean (−1) for high
density, low death rate areas of the input space and place intermediate values between these
extremes. To prevent the prior dominating we set the variances for the β to 20. The priors for
λ and σ2

p are Gaussian with mean −1.6 and variance 4 in the log space, corresponding to a 95%
coverage in the data space of [0.0023, 17.5087]. The purpose of this prior is to ensure numerical
stability by excluding very small, unrealistic values.

The vague prior uses essentially the same settings but the mean for all coefficients β is set to
−5 and the variance increased to 25.
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The greedy algorithm was initialised with a 4 point grid to ensure numerical stability. The
resulting designs using the informative and vague priors are shown in Figures 6(c) and (d)
respectively. A grid design is also plotted for comparison.

To validate the designs, we maximise the parameter posterior using 50 realisations of the simu-
lator for all designs and compute the root mean squared error (RMSE) of the mean prediction
and the mean squared error (MSE) of the predictive variance (Figure 6). The MSE variance
is defined as MSEV ar = 1/N

∑N
i=1(Var[ti] − σ̂2(xi))2/Var[σ̂2(xi)] where N is the number of

design points, Var[ti] the GP predictive variance at input point xi, σ̂2(xi) the at-a-point sample
variance calculated from 100 realisations of the simulator and Var[σ̂2(xi)] the normalisation by
the variance of the sample variance. The mean and median values of all validation measures are
given in Table 2.

(a) RMSE (b) MSE Variance

Figure 7: Distributions of validation measures when using the informative prior.

Comparing the grid and greedy Bayesian designs the predictions of the mean exhibit similar error
as seen in terms of the RMSE (Table 2) but the greedy Bayesian design allows more accurate
estimates of the variance as the MSE on the variance reveals. This is illustrated in Figure 8
where the predictive standard deviation using the grid and greedy designs with the informative
prior are plotted against the sample variance calculated using 100 realisations of the simulator.
The fit is better with the informative prior (Table 2).

Table 2: Design validation for the rabies model. µr and Mr the mean and median RMSE
respectively, µσ and Mσ the mean and median MSE on the variance.

Prior Design µr Mr µσ Mσ

Informative Grid 0.028 0.027 5.16 1.15
Greedy 0.028 0.028 1.84 0.44

Vague Grid 0.030 0.030 2.79 0.86
Greed 0.029 0.030 1.85 0.54
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(a) Full Design (b) Grid (c) Greedy

Figure 8: Illustration of the fit of the GP standard deviation (surface) to the empirical simu-
lator standard deviation (points).

7 Conclusions

We have presented the use of the Fisher information as an effective design criterion in the case of
heteroscedastic GP noise models. Results on synthetic data have demonstrated the monotonic
relationship of the FIM to the empirical parameter covariance required for its use in design. The
complete enumeration of all designs in Section 5.2 demonstrated the effectiveness of the greedy
algorithm in finding near optimal designs and the effect of these designs on the likelihood profiles.
The application of the Bayesian design approach to the rabies model resulted in the GP capturing
the simulator variance more accurately than a standard grid design. The experimental results
suggest that approximately optimal Bayesian FIM designs obtained using the greedy algorithm
allow for more robust parameter estimation of covariance parameters and can subsequently lead
to better predictions. The approach presented in this paper can be extended to the case of
replicated observations. The main difficulty is the combinatorial explosion of possible designs
when replication is allowed, warranting the investigation of more efficient optimization schemes.

Appendix: The bootstrap method

We use a method suggested in Efron and Tibshirani (1993) to determine the number of bootstrap
samples required to estimate the standard error in Section 5.1. As usual, bootstrap is done by
random sampling with replacement.

In particular we first estimate the bias Ebootstrap−Edata, where Ebootstrap the mean value across
all bootstrap samples and Edata the estimated value from data. If the bias / standard error ratio
is less then 0.25, we judge we have enough samples in our bootstrap.
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