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A B S T R A C T

Advancements in Medical Internet of Things (MIoT) technology ease remote health monitoring
and effective management of medical devices. However, these developments also expose systems
to novel cyber security risks as sophisticated threat actors exploit infrastructure vulnerabilities
to access sensitive data or deploy malicious software, threatening patient safety, device
reliability, and trust. This paper introduces a lightweight dynamic risk assessment approach
using scenario-based simulations to analyse cyber security events in MIoT infrastructures and
supplement cyber security activities within organisations. The approach includes synthetic data
and threat models to enrich discrete-event simulations, offering a comprehensive understanding
of emerging threats and their potential impact on healthcare settings. Our simulation scenario
illustrates the model’s behaviour in processing data flows and capturing the characteristics
of healthcare settings. Our findings demonstrate its validity by highlighting potential threats
and mitigation strategies. The insights from these simulations highlight the model’s flexibility,
enabling adaptation to various healthcare settings and supporting continuous risk assessment
to enhance MIoT system security and resilience.

1. Introduction

Trends in digital healthcare emphasise maintaining a continuous connection between patients and hospitals while safeguarding
onfidentiality and ensuring privacy [1]. This can be achieved by effectively integrating technologies such as the Medical Internet of
hings (MIoT), cloud computing, virtual reality, virtual machines, and low-power wireless networks [2]. Among these, MIoT is a vital
ase technology, forming a network for interconnecting devices and sensors specifically designed for healthcare applications [3].
hese devices collect, transmit, and analyse medical data in real-time, facilitating patient monitoring and medical equipment
anagement [1]. Examples of MIoT devices are blood pressure monitors and smartwatches, which are prevalent in hospitals

nd widely accessible to the healthcare community, allowing bi-directional communication of patients, staff and equipment [2].
ubstantial work is concerned with integrating multiple IoT in healthcare using various technologies and allowing automatic data
nalysis [4,5].

Although MIoT in healthcare offers significant benefits, it also exposes the digital space to threat actors and malicious activi-
ies [6–10]. It has been reported that the issue of excessive alerting [11] is a significant problem in Information and Communication
echnologies (ICT) systems and sub-systems within complex solutions across various domains (not limited to healthcare). This
roblem is further compounded when security tools are integrated into the analysis, as they often produce numerous false positives
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and duplicated alerts, requiring extensive investigation and overwhelming response teams. AI-assisted approaches [12,13] have
een proposed to address this problem, along with optimised inspections of Security Operations Centre (SOC) critical paths [14].
he organisation sometimes does not understand cyber security requirements clearly, causing researchers to formalise them over

technical and quantitative aspects [15].
Numerous surveys and systematic literature reviews have demonstrated the research community’s interest in MIoT cyber

security [16–19]. Generally, research topics involve potential paths for adversarial attacks [20,21], specific IoT attacks [19] and
infrastructure-supporting systems [22]. However, these prior studies had limitations, such as not providing explicit guidance on
dynamic strategies for anticipating and responding to cyber-attacks or exploring in-depth how different technologies could support
the cyber security of MIoT. Recent research emphasises the need for an integrated approach, combining multiple digital technologies
and solutions to support healthcare cyber–physical resilience [23].

In this work, we propose the use of simulation to better understand data flows in interconnected hospital systems, helping teams
prioritise and address critical cyber security events, particularly in resource-limited environments where the volume of alerts and
ttack complexity can overwhelm resources [24]. Simulation, recently combined with Digital Twins (DT) concepts [25], enhances the
bility to anticipate, monitor, and respond to cyber-attacks by providing a structured framework for efficient interventions [25,26].

While MIoT systems can incorporate redundancy and automated alerts to ensure secure operations, these features are often lacking
ue to poor design or requirement elicitation [27]. This research integrates Discrete-event Simulation (DES) and threat modelling
o analyse the potential misuse of MIoT infrastructures.

Our approach applies dynamic risk assessment through scenario-based simulations to identify and mitigate emerging cyber
ecurity threats, leveraging real-time infrastructure data for proactive defence. These simulations, driven by synthetic data, represent
he MIoT system and simulate cyber security events based on threat models. For real-world MIoT applications, this framework can

be instantiated with actual infrastructure data while maintaining generalisation. Combined with threat models that capture cyber
threat events, this approach remains adaptable across various system configurations. While simulations provide valuable insights,
they also introduce significant computational overhead and increase energy consumption - critical limitations in resource-constrained

IoT environments [28]. Given these constraints, the following research question arises: ‘How to employ simulation-based technology
o anticipate, monitor and respond to a wider range of cyber-attacks in diverse, real-world MIoT settings without compromising system
performance or resource efficiency?’.

We address this question through the following structure. Section 2 outlines the cyber security context in MIoT and the benefits
f a dynamic risk assessment approach. Section 3 details the conceptual approach, presenting a simulation model applied to a
ynthetic smart hospital case study. Finally, Section 4 summarises the contributions, discusses potential extensions and implications,
nd concludes with considerations on the persistent and evolving threats in MIoT networks and practices to mitigate cyber risks.

. Research background in MIoT cyber security

MIoT integrates IoT technologies into healthcare, providing significant benefits such as remote monitoring and efficient data
ollection [29,30]. However, with these advancements come considerable cyber security challenges. Over the years, MIoT cyber
ecurity has evolved to address these shortcomings, focusing on Confidentiality, Integrity, and Availability (CIA) [31]. For instance,
arish et al. (2024) [32] integrated machine learning and blockchain to enhance network security in MIoT, specifically targeting
he challenges of maintaining CIA in these evolving networks.

Early MIoT systems employed traditional encryption techniques to secure data transmission and storage, but these methods were
often insufficient due to the unique constraints of MIoT devices, such as limited computational power and energy resources [29]. As
he volume of medical data and the complexity of cyber threats increase, the need for specialised cryptographic solutions tailored to
IoT’s specific requirements becomes evident [30]. Researchers have proposed innovative approaches to meet these requirements,

uch as trust-based frameworks and more machine learning-enhanced intrusion detection systems [1,30]. These advanced techniques
rovide real-time threat detection and response, ensuring sensitive medical data remains protected from unauthorised access and
yber-attacks [8,31]. In addition, developing lightweight authentication and key agreement schemes is crucial for maintaining secure
ommunications within MIoT environments without overburdening the devices [31]. Meanwhile, the hybrid encryption model
iscussed by Jyotheeswari and Jeyanthi (2020) [29], which integrates symmetric and attribute-based encryption, highlights the
mportance of securely managing large volumes of medical data and demonstrates the need for specialised cryptographic solutions
ailored to the unique demands of MIoT.

Despite these advancements, significant challenges remain in MIoT cyber security, particularly in maintaining data integrity
nd confidentiality while managing the limited computational capabilities of MIoT devices. Addressing this requires developing
ightweight algorithms and optimising security protocols for low-power devices, ensuring robust yet efficient data protection without
verburdening the devices [30]. Furthermore, the dynamic nature of MIoT networks, where devices can join and leave frequently,
emands continuous adaptation and updates to address the changing network environment, complicating the implementation
f consistent and reliable security protocols [8]. Overcoming these challenges requires continuous research and development of
daptive, scalable security solutions [33]. Integrating AI-based protocols and anomaly detection mechanisms presents promising
venues for enhancing the resilience of MIoT ecosystems against sophisticated cyber threats in real-time, significantly reducing
he risk of data breaches [1,31]. Additionally, simulation studies have been crucial supportive technologies in validating these
yber security measures, providing detailed insights into their performance under various scenarios and helping to identify potential

eaknesses and areas for improvement [1,29,30].
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Fig. 1. Core cyber security dimensions and objectives in systems infrastructure.

Fig. 1 displays the core principles of cyber security, which are essential for protecting systems from cyber threats. These
principles incorporate traditional CIA triad [34] and other dimensions such as Authenticity (verifying identities against access
controls), Privacy (protecting personal data and controlling access to sensitive information), Non-Repudiation (ensuring actions are
uniquely attributable to individuals), and Accountability (ensuring responsibility for actions). Together, they address critical areas
in information security, providing the necessary attributes and assurances to strengthen systems against cyber-attacks.

Bhuiyan et al. (2021) [35] explored enabling technologies, security aspects, and market opportunities in MIoT, highlighting
the need to expand beyond CIA concerns, particularly for MIoT devices communicating over the Internet. This expanded security
framework, which we refer to as CIA+, requires security managers to balance the integration of these dimensions with budget
constraints to ensure smooth operations. Continuous monitoring is crucial for maintaining service quality, auditing infrastructure
for abnormalities, and ensuring accountability for potential perpetrators.

Improper controls at the infrastructure level in healthcare can expose patients and their medical data to significant risks unless
best practices, industry standards, and vendor and community recommendations are followed. Common cyber-attacks affecting
MIoT systems include Man-in-the-Middle (MitM), Distributed Denial-of-Service (DDoS), malware and data exfiltration [36,37]. These
attacks on patients’ smart devices can leak sensitive information to hackers and propagate to other interconnected devices, such as
personal computers and hospital networks. A typical IoT infrastructure consists of multiple layers, each with distinct responsibilities:
Application, Transport, Network, Data Link, and Physical layers. While this architecture and infrastructure are beyond the scope of
his paper, extensive literature is available on the subject [38–42].

Recent studies reviewed advancements in security for MIoT systems [43], outlining effective measures and best practices to
ackle the aforementioned cyber security challenges [21,43,44]. Malamas et al. (2021) [44] specifically focused on risk assessment
ethodologies, providing frameworks for evaluating and mitigating threats. In addition, research efforts have identified the

challenges in managing evolving cyber security threats exploring how to use security recommendations and standards when
integrating risk into modern development practices like DevOps [45].

Moreover, predicting and differentiating cyber-attacks from abnormal (or incompetent) use remains particularly difficult.
Simulation-based technology helps mitigate these shortcomings, being a powerful approach to model scenarios, uncover complexi-
ties, and reveal potential vulnerabilities within MIoT systems [6,8,9,24,27].

2.1. Assessing MIoT cyber security using simulation techniques

Analysts working with MIoT infrastructure have been using simulation-based technology as a valuable approach to test and
evaluate security strategies. These simulations show promise in enhancing cyber security by modelling and predicting various types
of attacks [46], yet significant gaps remain. Much of the experiments occur in controlled environments that may not fully capture
the complexity and variability of real-world MIoT deployments [29,30]. Recent work from 2020 to 2024 have increasingly applied
simulation techniques, such as machine learning [28,47], encryption schemes [29,48], and anomaly detection [49], to address key
challenges like data privacy [47], threat detection [28,47,49], and resource constraints [30,46,50] in MIoT environments. Table 1
shows recent studies in MIoT cyber security, highlighting their approaches and applied simulation tools.
3 
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Table 1
Current simulation-based approaches for analysing MIoT cyber security.

Authors Research objectives Simulation tools

Jyotheeswari and Jeyanthi
(2020) [29]

Develop a hybrid encryption model for managing
data security in MIoT

OpenSSL, Python library (cryptography)

Park et al. (2020) [50] Lightweight framework to develop authentication
and key agreement scheme for MIoT

OpenSSL, CP-ABE library

Kamarei et al. (2023) [46] Develop a framework to secure MIoT systems
against malicious and benign congestion

NS-2.35 simulator

Sankaran et al. (2023) [47] Framework for secure M-Trust privacy protocol for
MIoT in smart healthcare systems

MATLAB, AI-based modules

Aversano et al. (2024) [49] Develop a framework to detect anomalies in
synthetic MIoT traffic using machine learning

Scikit-learn, TensorFlow

Ioannou et al. (2024) [28] Develop a green and effective machine learning
intrusion detection system for MIoT

TensorFlow, energy- efficient models

Zhang et al. (2024) [48] Framework to enhance secure attribute-based
dynamic data sharing with efficient access policy
hiding and updating for MIoT

Eclipse IDE with Type A1 pairing from
JPBC

Nagarajan et al. (2024) [30] Establish a robust defence against intrusion attempts
and still trust in edge networks for MIoT

NS-3 simulator

This paper’s contribution Develop a dynamic risk assessment simulation-based
framework for analysing cyber security events in
MIoT and assist in threat analysis

Discrete-event Simulation (Arena®
Simulation), threat modelling

Jyotheeswari and Jeyanthi (2020) [29] employed Python cryptography library and OpenSSL to simulate a hybrid encryption
model for data security in MIoT. Using a different technology, Zhang et al. (2024) [48] leveraged Eclipse IDE with Type A1
pairing from JPBC to simulate attribute-based encryption schemes, focusing on secure data sharing and policy updating. Park et al.
(2020) [50] used OpenSSL and CP-ABE library to simulate a lightweight authentication and key agreement scheme, enhancing
authentication efficiency. These simulations present both limitations and opportunities for further refinement and optimisation
through more holistic security risk assessments considering the evolving threats to MIoT environments.

Sankaran et al. (2023) [47] used MATLAB with AI-based modules to simulate a secure M-Trust privacy protocol to improve data
privacy and reduce unauthorised access incidents, an essential aspect of user protection. Despite this, using MATLAB does not fully
capture event-driven interactions and dependencies between entities as effectively as a DES approach, and it requires additional
development to address a broader range of cyber security threats.

Aversano et al. (2024) [49] applied Scikit-learn and TensorFlow to simulate anomaly detection in synthetic Medical IoT traffic,
achieving high accuracy in identifying and explaining anomalies. It is worth mentioning that synthetic data provides flexibility to test
various scenarios and is useful for initial testing and model validation. Likewise, synthetic data plays a crucial role in demonstrating
model requirements and outlining the steps involved in our dynamic risk assessment approach.

Ioannou et al. (2024) [28] used TensorFlow, however, in energy-efficient models to simulate a green machine learning intrusion
detection system. In another important direction, Kamarei (2023) [46] used NS-2.35 to simulate congestion scenarios in IoT-based
healthcare systems, focusing on mitigating both malicious and benign congestion. A common characteristic of these simulation
models is their high specialisation and reliance on specific setup and parameterisation. However, their approaches could complement
 broader dynamic risk assessment framework, which could integrate hybrid simulation techniques for a more proactive and
omprehensive cyber defence.

Nagarajan et al. (2024) [30] employed NS-3, a discrete-event network simulator designed for research and education. The authors
imulated internet protocols and network behaviours, explaining detailed models for various network scenarios and making them
deal for trust management and edge network security simulations. While effective in modelling specific network scenarios, their

approach lacks the adaptability needed to address evolving and dynamic cyber threats in real-time.
The differences in simulation approaches highlight the diverse methodologies employed to enhance MIoT cyber security. Network

imulators like the Network Simulator (NS) enable detailed simulation of network protocols and behaviours, essential for managing
trust and security in networked environments. Each simulation tool offers distinct advantages; for instance, MATLAB and TensorFlow
simulations provide sophisticated environments for developing and testing AI-based security protocols and anomaly detection
systems, essential for proactive cyber security measures. Simulations using Eclipse with JPBC and Python’s libraries focus on ensuring
data integrity and secure communications, addressing specific encryption and authentication needs. Meanwhile, those using Discrete-
event Simulations (DES), such as NS (on different versions), Arena® Simulation Software [51] and Simul8 [52], excel at modelling
detailed interactions and event-driven processes, making them ideal for simulating real-world behaviours and evaluating the effects
of dynamic threats. Integrating diverse simulation approaches into a comprehensive and effective cyber security framework requires
leveraging the capabilities of each approach to address the multifaceted challenges safeguarding MIoT environments.

Each simulation approach offers specific advantages but also presents drawbacks and limitations. NS is well-suited for detailed
network simulations but lacks the flexibility required for broader cyber security applications beyond protocol and network behaviour
4 
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analysis. Despite their powerful capabilities for developing sophisticated algorithms, MATLAB with AI modules and TensorFlow are
resource-intensive and may be less suitable for environments with limited computational power. With JPBC and Python’s libraries,
clipse IDE focuses primarily on data security and encryption but may fail to address comprehensive threat detection and real-

time response mechanisms. Although these tools are effective within their specific domains, they often do not provide the holistic
view needed for MIoT cyber security. Our approach addresses this gap by advocating for a process-oriented DES, which offers a
lightweight, flexible framework for simulating workflows and processes. It is ideal for assessing system efficiency and resource use
in MIoT environments, complementing the network-specific focus of tools like NS-3 and remaining flexible enough to incorporate
other security models and threat data as input.

3. A conceptual approach to dynamic risk assessment

Risk Assessment involves investigating potential vulnerabilities, the likelihood of cyber-attacks, and their potential impact on
systems [53–56]. As discussed in previous work [21], numerous challenges exist when tackling dynamic and emergent situations
in a cyber security context. Our focus has been on MIoT, discussing the importance of continuously monitoring the cyber health of
systems for timely updates on potential risks. This research highlights the need for improved simulation models that allow analysts
and developers to anticipate cyber security issues before systems are deployed in real-world operational settings [57].

Our dynamic risk assessment (DRA) framework follows a structured six-step approach to evaluate and mitigate cyber security
risks in MIoT environments. Fig. 2 illustrates our approach, showing the sequential flow (Steps-I to VI) from data collection,
preprocessing, and simulation scenarios proposition, eventually leading to actionable security recommendations. This process
enables continuous monitoring and adaptation to new threats, using a dynamic and proactive approach to cyber security risk
management.

• Step-I begins with collecting cyber security-related data from multiple sources (streams), such as network traffic, applica-
tion/device logs, and threat intelligence feeds, to name a few possibilities.

• Step-II involves data preprocessing and deduplication to ensure that only accurate, non-redundant information is used in the
analysis.

• Step-III parameterises the simulation model using the cleaned data, configuring key variables like resources, time to process
entries, and arrival/departure patterns. Particularly to cyber security, data informing connection requests, data transfers,
user creation/deletion, or configuration changes (to mention a few) could inform abnormal behaviours typical of malicious
adversaries.

• Step-IV executes multiple simulation scenarios, testing various potential cyber security events, such as Denial-of-Service attacks,
i.e., scenarios we aim to better understand in our study.

• Step-V aggregates the outputs from these scenarios and evaluates them based on predefined metrics, including system
resilience, data integrity, and response times. In our THC case study, we illustrate the resource utilisation index as a metric for
investigating overall capacity and identifying overuse, serving as a means for taking action to balance the system effectively.

• Step-VI generates a comprehensive report for decision-makers and stakeholders, with actionable recommendations for
improving the system’s security posture based on the simulation insights. This process enables continuous monitoring and
adaptation to new threats, providing a dynamic and proactive approach to cyber security risk management.

These steps allow for understanding the problem and reason about how simulation-based approaches could help improve cyber
security in MIoT for specific events, namely availability concerns and resource overuse (potentially due to unwarranted cyber-attacks.
Analysts could refine models using the latest monitoring and incorporate them into the cycle described by our methodology for more
accurate results and decision-making capabilities.

We selected a synthetic case study as our research strategy to enable a detailed examination of specific operational events [58]
within the framework proposed. This simulation-oriented approach allowed us to simulate and analyse cyber security incidents to
demonstrate the practical application of each step of our proposed framework.

3.1. Cyber security events in MIoT networks: a simulation study

This section introduces a synthetic Case Study to illustrate and discuss a model proposition that can serve as a baseline model
for evaluating MIoT environments and scenarios by instantiating the different elements composing the ‘real-world’ and defining key
model parameters and data. The model enables the simulation of multiple scenarios. Its primary objective is to identify potential
shortcomings and explore alternative solutions.

Telehealth Hospital Centre (THC) Case Study: Suppose THC is a fully integrated synthetic smart hospital located in a densely
populated urban area, serving a population of nearly 1 million residents. THC employs 50 Medical Doctors (MDs), 95 nurses,
and 100 support staff, with a capacity of 250 beds, and operates in three shifts: (i) from 1 am to 7 am, (ii) from 7 am to 3
pm, and (iii) from 3 pm to 1 am. Regarding daily attendance, THC handles about 2000 daily occurrences distributed across
Accidents & Emergency (A&E), Intensive Care Units (ICU), and pre-scheduled surgeries.
5 
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Fig. 2. Intertwined simulation within DRA approach proposition.

Upper management has made significant investments to transition THC into a smart telehealth hospital, leveraging extensive
MIoT technology across its premises, staff, and patients. The goal is to remotely monitor hospital operations seamlessly, using
low-cost sensors throughout the setting and transmitting data over secure networks. The managers acknowledge the vital role
of cyber security, recognising it as a key factor in building stakeholder trust and driving greater efficiency when interacting
with medical equipment and workflows and enhancing overall patient experience. Before investing, managers chose to model
and simulate scenarios with virtual staff and patients to understand better challenges, focus efforts, and allocate resources
efficiently. This cost-effective, low-risk approach demonstrated its value by revealing potential shortcomings and comparing
various outcomes. In addition, integrating MIoT devices expands the hospital’s attack surface, escalating concerns about cyber
security threats that could compromise the integrity and privacy of operations.

3.1.1. Mapping key actors and attack surface in MIoT environments
Typically, cyber security measures and systems are in place; however, upper management has determined that these alone are

insufficient to ensure a fully secure and trustworthy operation in a dynamic smart hospital environment. Recognising the complexity
of the infrastructure, they have made substantial investments in building redundant services, allowing analysts to obtain a real-
time, comprehensive operational overview via a dedicated Security Operations Centre (SOC). This SOC is continuously supplied
with data from a vast array of MIoT devices and sensors distributed throughout the facility, which monitors every aspect of the
ospital’s operations. These sensors generate near real-time alerts, enabling responsible personnel to promptly identify and respond
o potential threats. The infrastructure allows for the automatic execution of responsive tasks across interconnected systems and
ervices, ensuring proactive risk management and operational resilience. We have identified the following key general actors in THC
ettings:

• Medical staff - includes doctors, nurses, and medical assistants directly involved in patient care.
• Support staff - encompasses technicians, maintenance teams, response teams, and IT administrators responsible for the

hospital’s technical and operational support.
• Upper management - comprises the Chief Executive Officer (CEO), Chief Scientific Officer (CSO), Chief Technology Officer

(CTO), and Chief Information Security Officer (CISO), who oversees hospital management in a holistic/strategic fashion and
makes decisions in line with budgetary constraints.

We list the following potential equipment within THC’s context:

• Wearable technologies - a range of MIoT devices, including blood pressure monitors, smartwatches, electrocardiogram (ECG)
trackers, and other biosensors such as heart rate monitors or sleep monitoring sensors.

• Diagnostic machinery - MIoT-enabled devices used for remote management, such as Magnetic Resonance Imaging (MRI)

machines, X-ray machines, ultrasound devices, and mammography systems.

6 
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• Hospital equipment - other essential hospital equipment not previously mentioned, including vital signs monitors,
wheelchairs, hospital beds, surgical tables, centrifuges, sterilisers, and ventilators. These are critical auxiliary devices that
sustain daily operations and require continuous monitoring for failures or performance metrics.

• Information and Communication Technologies (ICT) - systems that support hospital operations, including Information
Systems (IS) for data storage and retrieval related to hospital management, patients, and staff. These systems aim to ensure
smooth operations, enabling investigations to take place (i.e., resolving specific incidents or anomalies, such as a suspected
security breach), audits (i.e., systematic reviews or evaluations to ensure compliance with standards or policies), and forensic
examinations (i.e., detailed data examination to reconstruct events, often after an incident) as needed.

As healthcare systems become increasingly interconnected and relying on smart technologies, the risk of cyber threats is a
growing issue [59,60]. It is crucial to recognise threat actors that can exploit vulnerabilities in these systems, compromising both
patient data and hospital operations. It is worth mentioning that both internal and external actors can exploit system vulnerabilities
in a smart hospital setting. The following threat actors are particularly relevant in healthcare environments, and we introduce them
in this THC case study:

• Insiders - Malicious system administrators or staff members with legitimate credentials to access key systems and patient data.
In the THC context, they could manipulate or steal data, disrupt services, or disable security measures from within.

• Disgruntled employees - Former staff member who may still have access credentials, posing a significant risk to the hospital.
Following an unamicable departure, these individuals might launch cyber-attacks or engage in other malicious activities to
retaliate against the hospital.

• Visitors - While typically family members of patients, adversaries may disguise themselves as visitors. In a hospital such as
THC, they can bring their own devices, potentially scouting for vulnerabilities in surveillance, access points (APs), or network
infrastructure. Their physical access to the premises allows them to install malware, disrupt communications, or sabotage
critical equipment.

• State-sponsored agents and cyber-terrorists - These actors launch sophisticated cyber-attacks aimed at weakening the
hospital’s capabilities by exploiting vulnerabilities. In the THC case, they could be considered Advanced Persistent Threats
(APT) employing Living Off the Land (LOTL) to infiltrate and maintain long-term control over the hospital’s infrastructure.

• Industrial espionage actors - Similar to state-sponsored agents, these actors could be competitors or third parties with an
interest in the hospital’s telehealth systems and MIoT technology. Their goal at THC would likely be data theft or exfiltration,
such as patient records or proprietary operational information, among other cyber-attacks.

• Script kiddies - Inexperienced hackers who use pre-made scripts or tools from the Internet/Dark Web to attempt attacks.
Although less skilled, these individuals could still disrupt THC’s systems by exploiting basic vulnerabilities or conducting
(Distributed) Denial-of-Service (DoS/DDoS) attacks, testing the hospital’s cyber security defences.

The setting is highly dynamic, with new devices frequently entering and unpredictably leaving the infrastructure. Each device
has its protocols, technology stack, and unique characteristics that must be accounted for in a comprehensive analysis. By mapping
takeholders, devices, threat actors, and equipment, we establish a foundation for integrating these elements into a simulation model,
hich is explored in the next subsection.

.1.2. Understanding the data flow in hospital MIoT environments
We are modelling the flow of data units across hospital systems. Fig. 3 provides an overview of the data flow within hospital MIoT

ettings, illustrating the potential sources from which various systems generate data. At the centre, the SOC dashboards aggregate
nd display critical information, enabling a wide range of stakeholders to monitor system health and communications. The figure
ighlights key components such as Information Systems, Security Information Systems, External Data Sources, Data Consumption,
nd Data Sink, all interconnected to ensure seamless data management.

Given that numerous systems produce data within hospitals, our modelling effort focuses on the two highlighted triangles, where
yber security data is generated and consumed. It is worth mentioning that any data reaching the ‘Dashboard @SOC’ (refer to Fig. 3,
he central component) is subject to a host of attacks namely data integrity, MitM, or availability attacks (to mention some), that aim
o disrupt systems based on adversaries’ objectives. In this sense, employing anomaly detection and conducting evaluations against
istorical data (before enabling data consumption to stakeholders) could help in identifying such issues and mitigating these attacks
ffectively.

Data from various systems offer analysts a comprehensive panorama of potential issues that require attention. The goal is to
onnect all these data sources into a centralised facility, where multiple dashboards display critical information about the system’s
ealth and communication. Stakeholders can access key data and alert systems, filtering significant events to focus their attention
nd respond effectively.

Regarding cyber security related data, firewall logs and access data can be integrated with a Security Information and
vent Management (SIEM) system and Intrusion Detection System (IDS) outputs, which monitor user activity and data transfers.
dditionally, external sources such as vulnerability catalogues, for instance, the US’s National Vulnerability Database (NVD),
ommon Vulnerabilities and Exposures (CVE), and scoring systems such as the Common Vulnerability Scoring System (CVSS), along
ith expert commentary, can improve the understanding of ongoing threats, especially from sophisticated attackers.
7 



R.M. Czekster et al.

t
a
B
s
w

m
a

3

a
p
i

p
i

Internet of Things 29 (2025) 101437 
Fig. 3. Overview of data flow within hospital MIoT settings, key systems and devices.

The Data Sink component aggregates and processes information from MIoT devices across the hospital infrastructure, collecting
ime-series data from near-patient and in-hospital sources. These sources include MIoT devices, wearables, medical equipment,
nd beds-feeding, all of which contribute to the Data Sink’s ability to centralise critical data for further analysis and monitoring.
efore reaching the SOC dashboards, this data undergoes validation to remove duplicates and invalid entries. This process provides
takeholders with a near real-time snapshot of the dynamic attack surface, ensuring they can prioritise mitigation efforts efficiently
hen required.

Additionally, the figure shows the interactions between various actors (such as medical staff, SOC operators, and potentially
alicious insiders), and the system, illustrating the importance of a robust cyber security framework to safeguard hospital operations

nd ensure data integrity.

.1.3. Threat modelling for hospital settings and data security
Threat Modelling (TM) is a crucial activity that involves a comprehensive risk assessment of systems, offering a structured

pproach to evaluating system designs while considering cyber security trade-offs [54]. Shostack (2014) [61] outlined the TM
rocess by posing four essential questions: (1) What are we working on?, (2) What can go wrong?, (3) What are we going to do about
t?, and (4) Did we do a good enough job?. These questions guide the evaluation and mitigation of potential risks within the system.

Focusing on system implementation, Tarandach and Coles (2020) [62] defined it as ‘‘the process of analysing a system to look for
weaknesses that come from less-desirable design choices’’. Several important techniques have been developed to support this process,
including STRIDE [61], PASTA [53], LINDDUN [63], Attack Trees [64,65], Persona non Grata, Security Cards, hTMM (Hybrid
TM Method), Quantitative TMM, Trike, VAST (Visual, Agile, and Simple Threat) Modeling, INCLUDES NO DIRT [62], SPARTA,
CORAS [66], among others [62,67]. More recently, Ekstedt et al. (2023) [55] introduced Yacraf (Yet Another Cyber security Risk
Assessment Framework), which focuses on organisational decision-making capabilities through comprehensive risk assessments.

TM aligns with the goals of our study, as we address potential vulnerabilities arising in MIoT networks and frequent data
exchanges. In this context, one technique particularly suited to these challenges is the use of Data Flow Diagrams (DFD) [68],1
which help visualise and assess data movement within the system, and identify potential security risks at various stages.

Fig. 4 illustrates one (out of many possible) threat model that focuses on capturing the process of how patients and administrators
log into an information system to retrieve and update reports, respectively. It highlights potential vulnerabilities in the authentication
rocess for both user types and shows how data flows among processes, while also pointing to potential cyber-attack scenarios
nvolving different adversaries, such as malicious insiders or hackers. A system of this scale (i.e., THC hospital system) not only

contains multiple sub-systems but is also inherently complex, with various threat models arising from user interactions. The purpose

1 Link for DFDv3: https://github.com/adamshostack/DFD3.
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Fig. 4. Threat model for manipulating patient reports for authenticated users.

is twofold: first, to provide insights into potential attack vectors targeting underlying systems, and second, to inform our simulation
model on how data flows between sub-systems and key servers.

Additional threat models could further complement this one by addressing scenarios such as: (i) generating patient data and
transmitting it to the Data Sink; (ii) retrieving data from external (and complementary) systems and integrating it into local data
systems (e.g., dashboard); and (iii) authenticated users accessing and consuming data over a specific time period. This list is non-
exhaustive, as many more threat models would need to be developed by security analysts throughout the project to strengthen
security defences and mitigation strategies comprehensively.

In summary, threat models can help various stakeholders (such as managers, security officers, and system administrators), in
easoning about how systems might be vulnerable to cyber-attacks and developing appropriate mechanisms for mitigation and
ardening. In our simulation approach, these threat models can be used to inform the ‘What-If’ scenarios and produce simulation
utputs that analysts can use to guide proactive and informed responses. The integration of DFDs into Step-I of our methodology
Fig. 2) provides a structured approach to mapping data flows, which strengthens the simulation’s ability to represent potential
hreats and vulnerabilities within the system. This approach provides a comprehensive understanding of data exchanges and locates

areas where security risks may emerge.

3.2. Simulating key cyber security events in MIoT systems

To guide effective protections, it is essential to address potential ‘under attack’ scenarios in MIoT networks. A key challenge
is distinguishing between common network abnormalities, such as intermittent behaviours, and active cyber-attacks intended to
disrupt the platform or damage connected devices. In the context of our THC case study, simulating key cyber security events in MIoT
systems enables us to identify how various attacks exploit vulnerabilities in interconnected medical devices and hospital networks.

Before discussing the simulation, Fig. 5 presents the fundamental concepts to understand the attack surface of the THC case
study. This visualisation helps to conceptualise how actors, threat agents, and security practices interact, guiding the identification
f vulnerabilities and informing a broader DRA in the hospital’s MIoT environment. It showcases a typical cyber security analysis
f the organisation, where Modelling & Simulation approach could be used to present analysts with ‘What-If’ scenarios, capturing

system overloads or under capacity conditions, among others. It also highlights the role of best practices, cyber security awareness,
continuous monitoring, and SOC dashboards in maintaining CIA+ throughout the process.

The core idea of our approach is to gather synthetic or real data from MIoT, process it to remove duplicates or invalid entries,
parameterise the simulation model, and run the model to identify potential cyber security issues in these networks. This builds on
our previous research on Dynamic Risk Assessment (DRA) in healthcare [21], which addressed challenges posed by MIoT in dynamic
networks.

Our framework adopts a holistic approach to the cyber security challenges faced by patients and hospitals, the end-users of smart
device applications. Enacting these capabilities involves training users and administrators to grasp security concerns and report
issues to security analysts for timely mitigation. These key elements, such as data processing and parameterisation, are essential for
supporting the initial considerations and abstractions for the simulation model.
9 
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Fig. 5. Understanding attack surface in the THC case study.

For the purpose of demonstration and validation of our approach, we used the Arena® Simulation Software [51], by Rockwell
Automation,2 to model and simulate the THC Case Study using Discrete-event Simulation (DES) concepts. It is noteworthy that

rena® has been used for modelling various problems across application domains [69,70]. Using DES allows us to model systems
behaviour as a sequence of discrete events over time. Each event occurs at a specific point, and the system transitions between states
based on these events. A key concept in DES includes ‘Entities’ (representing elements like patients or devices), ‘Activities’ (actions
or processes in the system), ‘Resources’ (elements needed for activities, such as staff or equipment), and ‘Queues’ (waiting lines for
resources). Parameters like arrival rates, service times, and distributions are used to define how entities move through the system.
Understanding these basic concepts is essential for parameterising our simulation model for MIoT analysis. For more background
n DES concepts, please refer to Rosseti (2015) [51].

Table 2 presents the operational details for running the hospital, i.e., the total staff assigned to fulfilling its business objectives
(MD, Nurse, IT administrators, Security officers, and Response teams), as well as equipment (beds, wearable, machinery, systems,
tc.) over three shifts (per day analysis). The column Total shows the amount of resources available in the system at any point
uring the simulation, corresponding to the resource provisioning required to meet the modelled patient demands. The column
SOC represents the proportion of resources (divided across three shifts) actively monitoring the dashboard’s alert system and
aking decisions. The attributes of each element are also defined, as they will be reflected in the simulation output plots (in Fig. 7).
hese parameters were used in the simulation ‘Run Setup’ options within Arena®. The model operates on a 24-h clock, simulating
ne day (1440 min) divided into the three detailed shifts.

For this case study, we specifically simulate data processing requirements to ensure the SOC dashboard is supplied with accurate
nformation for stakeholders, both in normal conditions and under attack, where adversaries inject spurious data or corrupt it during
ransit or while at rest. Furthermore, our system abstraction operates under the following assumptions:

• We focus exclusively on ‘noticeable cyber security events’ from the MIoT device network, prioritising data from patient
monitoring devices, though other sources like security information systems and equipment sensors also reach the SOC
dashboard.

• A device is modelled as either ‘normal’ (functioning as expected) or ‘compromised with malware’, meaning it generates and
transmits incorrect data that deviates from expected patterns (e.g., size, payload, frequency, and other characteristics).

• Among the resources (listed in Table 2), only a subset is allocated to handling MIoT-related cyber security events through
different interfaces, such as mobile apps or desktop applications with dashboards that display the devices (attached to patients)
under their supervision.

• Column #Min. represents the total time (in minutes) per shift. During each shift, there are potential ‘arrivals’ of MIoT data
(originating from both ‘in-hospital’ and ‘in-patient’ devices), which may generate noticeable cyber security events.

• We modelled arrivals using an exponential distribution with the parameter ‘Total arrival∕|Interval|’ to capture the inter-arrival
times, as required by the simulation software (where the operator | ⋅ | refers to the size or extent (length) of the ‘Interval’).
This distribution is well-suited for systems like these, where events occur independently over time, i.e., the probability of an
event occurring in the future is independent of any previous events [51].

2 Link: https://www.rockwellautomation.com.
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Table 2
Initial considerations and abstractions for the THC MIoT system under study.

Hospital operational details Total %SOC Attribute

Staff

Medical Doctor (MD) 50 4% R_MEDIC
Nurse 95 5% R_NURSE
IT admin 5 90% R_TTEAM
Security officer 7 50% R_STEAM
Response team 5 85% R_RTEAM

Total %

Equipment

Number of beds 250 30% T_BEDS (0)
Wearable technologies 500 60% T_WEAR (1)
Diagnostics machinery 25 3% T_DIAG (2)
Hospital equipment 50 6% T_EQUI (3)
ICT/IS equipment 10 1% T_ICTS (4)

Shifts

Duration Total arrival #Min. Interval Attribute (on entity)
01:00–07:00 500 360 [0;360] T_1ST
07:01–15:00 1500 480 (360;840] T_2ND
15:01–00:59 250 600 (840;1440] T_3RD

Table 3
Assigning types according to arrivals on the system and involved resources.

Equipment Av.a Ratio Factor R× F Ub Ac Involved

(types) R F Resources

Beds (0) 250 30% 0.10 0.0299 0.26 0.26 R_MEDIC
R_NURSE

Wearable (1) 500 60% 0.10 0.0599 0.52 0.78 R_STEAM
R_RTEAM

Diagnostics (2) 25 3% 0.35 0.0105 0.09 0.87 R_TTEAM
R_STEAM

Hospital (3) 50 6% 0.20 0.0120 0.10 0.97 R_TTEAM
R_STEAM

ICT/IS (4) 10 1% 0.25 0.0030 0.03 1.00 R_TTEAM
R_STEAM

Totals: 835 100% 1.0 0.1153 1.0 – –

a Available units.
b Uniformisation of 𝑅 × 𝐹 .
c Accumulated value.

Table 3 shows how we assign device type (in the simulation model) based on MIoT system arrivals, using uniformly distributed
ariables to determine the device type based on the number of devices, where each type has an equal probability of being selected.

The Ratio column computes the percentage of each device type relative to the total, normalising it based on the sum. Observe
hat we use a variable called Factor, i.e., ‘Attack Factor’, which assigns a value in the range [0;1], to map cyber security protections
n devices and tackle situations where threat actors disrupt, corrupt, or abuse the equipment.

Lastly, column A⋆ applies this normalised value to assign device types using a random number drawn from a uniform distribution.
or instance, if the value falls within [0.0; 0.26], it assigns a ‘Bed’ (all MIoT-enabled), and if between (0.26; 0.78], it assigns a ‘Wearable’
evice, and so forth.

Table 3 also shows the resources allocated (mapped) for addressing occurrences. Note that ‘Beds’ and ‘Wearable’ involve all
esource types, while technical teams handle the remaining equipment in cases of malfunction or unexpected behaviour.

.3. THC case study model outline and parameterisation

Ideally, all queues, delays, capacities, inter-arrival times, and schedules would be derived from actual MIoT logs and data that
onitor staff and equipment. Note that choosing the appropriate probability distribution is fundamental to any analysis. To overcome

hese limitations, such as the absence of real data, we will make assumptions and employ ‘What-If’ scenarios to assign the simulation
arameters.

Fig. 6 shows the core concept of our model, which we simplified to showcase only the essential components of our approach, as
the complete Arena® (DES) model on GitHub repository,3 includes 10 ‘Seize-Delay-Release Queues’, 6 ‘Resources’, 8 ‘Variables’, 13
Assignments’, and 11 ‘Decide’ modules. In Arena® these concepts [51] are defined as follows: ‘Seize-Delay-Release Queue’, i.e., the

3 Arena® (DES) model: https://github.com/czekster/dra-model-2024.
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Fig. 6. Simulation model showing the main process for running the case study.

rocess where an entity seizes a resource (e.g., a device or staff), delays while performing an activity, and then releases the resource
or others to use. ‘Resources’ are elements (equipment, staff) that entities need to carry out activities within the simulation. ‘Variables’

introduce data holders that store values which can change during the simulation (e.g., counters). The module ‘Assignments’ attributes
new values to variables (or updates them) based on simulation events. The module ‘Decide’ allows the inclusion of decision points
that direct the flow of entities based on conditions or probabilities, allowing for diverging paths in the simulation.

The approach begins by initialising the arriving elements (‘Entities’) with attributes and global variables (e.g., timeout and
threshold). The core simulation then starts by processing data, which involves tasks such as collating, aggregating and removing
duplicates, outliers and invalid entries; similar to the continuous work performed by the SOC throughout the day. The data entry is
then inspected for obsolescence (based on the ‘TIMEOUT’ constant) or suspicious behaviour. If further analysis is required, the data
s sent to processing units to confirm or refute potential threats. If no issues are found, the data proceeds with standard processing;
therwise, it is directed to mitigation (response teams).

Table 4 lists the parameters used in the simulation model. Analysts can adjust these parameters to adapt the model to
different contexts or explore various behaviours. Additionally, we outline further modelling decisions for the simulation, particularly
concerning device (equipment types) maintenance and prioritisation (the full model will be explained in later sections). All queues
in Arena® are configured to select the next entity based on Priority attribute, determined by a random value drawn from a Normal
Distribution expressed as NORM(50,20), with a mean of 50 and a standard deviation of 20. Activities present ‘service times’
represented by the TRIA(min,mode,max) function, which denotes a ‘Triangular’ probability distribution in the simulation tool. Its
parameters specify a minimum value, most likely value (mode), and maximum value, drawing random values within the range [min;
max]. The triangular distribution is often used in simulations when there is limited sample data available, but these values are known
or can be estimated [51]. The goal is to establish a threshold that processes high-priority entities first (this can be parameterisable).

We stress that conducting a ‘What-If’ scenario analysis is fundamental, especially for resource allocation and investment decisions
(e.g., hiring more staff), to maintain a reasonable Quality-of-Service (QoS) for end-users while preventing operational staff from
becoming overburdened, which could lead to underperformance or burnout.

Regarding cyber security considerations in the model, we use the explained ‘Attack Factor’ (refer to Factor in Table 3) to identify
suspicious data. This mapping helps us understand our system’s abstraction and focuses explicitly on MIoT data as it arrives, is
validated, and is consumed within the system, indicating events potentially subject to cyber security violations.

3.4. THC case study model output detail

As mentioned, the strengths of the approach outlined in this work lie in providing a basic model that abstracts data flows within
a healthcare setting and simulates MIoT operations involving various resources (see Table 2).

Regarding the soundness and expressiveness of the approach, the level of detail in the simulation model determines the analyses
and variations available for consideration, which, e.g., analysts might consider. We believe our mapping serves as an initial modelling
effort, valuable for upper management overseeing the complex attack surface of distributed MIoT, as well as for security analysts
investigating potential cyber-attacks in such networks.

Fig. 7 illustrates the resource utilisation across all replications (i.e., independent runs of the simulation model to assess the
ariability of outcomes and provide more reliable estimates of performance measures [51]) representing the daily workload of key

stakeholders managing the dashboards. In this experiment, we ran 10 replications, which showed a reasonable level of confidence
in the simulation outcome (resource utilisation estimates). These results reflect the probability distributions assigned in the model;
hence, analysts may adjust parameters to achieve suitable compromises that align with resources/budget constraints; one can also
utilise advanced tools like Arena® OptQuest [51], which is a built-in feature of the simulation suite, to identify optimal configurations
by systematically varying parameters.
12 
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Table 4
Arena® simulation parameters for ‘What-If’ scenario analysis.

Elements Activities description Probability distributions

Queues (Q)

Automated data processing TRIA(0.5,1.0,1.5)
Process suspicions NORM(5,2)
Process BED by nurse TRIA(3,5,7)
Process MIoT by MD TRIA(6,7,10)
Process WEARABLE by nurse EXPO(2)
Process DIAGNOSTIC by IT UNIF(1,10)
Process HOSPITAL by IT UNIF(5,10)
Process EQUIP by STEAM UNIF(5,15)
Process ICT by IT UNIF(3,7)
Mitigate & Respond TRIA(9,11,15)

Value if true

Choices

Escalate to MD? 50%
Escalate to STEAM? 25%
Is it suspicious? a

Confirmed threat? 25%
Is it obsolete? b

Q. Policy Highest priority first –

Constants
SUSP_THRESHOLD (perc) 25%
TIMEOUT (min) 10
SELECT_PRIORITY (value) 80

a UNIF(0,1) < SUSP_THRESHOLD.
b Time in system < TIMEOUT.

Resource Quantity

Capacities

MD 2
Nurse 5
IT admin 5
Sec officer 4
Resp team 5
Auto-script 2

Fig. 7. Resource utilisation output across all simulation replications.

In this simulation exercise, a total of 5571 data items were processed, with 625 discarded due to obsolescence. Given the
llocation of numerous resources, queue sizes remained minimal, allowing us to reduce the number of professionals in the model
nd observe the resulting impact on resource utilisation (Fig. 7), as changes in staffing levels affect overall system dynamics. It is
mportant to highlight that this experiment was intended to demonstrate the potential of the simulation model as a parameterisable
pproach to evaluate different MIoT scenarios effectively. In addition, the synthetic case study aimed to reflect realistic conditions
n MIoT environments, such as resource constraints, data flows, and cyber security threats. We intended to approximate the model
o real-world MIoT operations, making its outcomes valuable for operational planning and risk assessment.
13 
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Our model provides security analysts with a base model template representing the MIoT infrastructure, enabling them to create
ultiple ‘What-If’ scenarios for timely analysis and output comparison. The simulation model is designed to be generic for IoT,

ddressing the need to manage data across large attack surfaces. With budgetary constraints in mind, it can be adapted to different
ontexts and scaled accordingly. Our DRA approach including simulation models informed by threat models, therefore, enhances

the overall risk assessment process, offering an additional perspective on the dynamic interactions and potential threats within an
MIoT system.

As Kaufhold et al. (2024) [24] pointed out, response teams engaged in cyber situational awareness face the challenge of managing
multiple data sources feeding dashboards with status updates and incidents across extensive attack surfaces. Sometimes, capacity
constraints can hinder the timely and adequate mitigation of cyber-attacks as they evolve within networks and systems. Our
contribution aims to assist management in adjusting operational capacity through simulation, which provides insights into team
composition and more strategic resource investment. The next step in this analysis is to vary the constants, variables, decision
lements, resource allocation schemes, and fit probability distributions using real hospital MIoT data streams.

Additionally, we plan to study TM’s integration into the simulation, building on our initial considerations to better structure
scenario development. This will allow a more systematic evaluation of how threats impact resource allocation and system dynamics.
The ultimate objective is to identify a scenario where resources can efficiently and promptly process data, ensuring high Quality of
Service (QoS) and efficient hospital operations. Although the model was developed in Arena®, which contains built-in functionalities
specifically designed for DES, similar capabilities can be achieved using Python libraries (e.g., SymPy, salabim). Analysts have the
flexibility to use their preferred tool by learning its specific features or adapting our simulation model to fit their chosen platform.

Another important direction involves enriching our simulation models with data from Cyber Threat Intelligence (CTI) sources
nd incorporating this information into model parameters. We have previously explored aspects of this approach [71,72], which

remains a hot topic in cyber security research, as evidenced by other relevant works [56,73].

4. Conclusion

Cyber-attacks continue to permeate MIoT networks as sophisticated threat actors engage in criminal activities to disrupt, abuse,
steal, or corrupt healthcare systems. Over the years, security managers have documented and analysed the typical pathways attackers
use to access systems, exfiltrate data, and perform lateral movements to inflict damage. However, raising awareness alone is
insufficient; it must be coupled with continuous security monitoring, user and staff training, and secure programming practices,
which inevitably increase budgetary demands and investments.

The approach presented in this work aimed to determine the mechanisms behind attacks (the ‘how’) and the motivations driving
malicious activities (the ‘why’) through simulations, providing actionable insights for counteractions and mitigation. The idea was
o examine potential weaknesses or shortcomings in systems through simulation models to understand how to enact effective
rotective measures. The dynamic aspect of the DRA approach was abstracted in the simulation model, where we considered

emerging threats as they impact MIoT networks. In the future, we plan to study how to plug-in real-time data directly into the
simulation model for timely analysis, which will help better capture the nuances and dynamics of progressing cyber-attacks. The
framework described herein maps the critical segments of the MIoT attack surface, using modelling to identify vulnerabilities and
guide mitigation strategies. The approach remains lightweight and cost-effective, requiring only a basic mapping of MIoT devices,
heir interconnections, and relevant operational parameters.

Finally, understanding cyber-attacks and malicious activities in MIoT environments remains a significant challenge for analysts.
herefore, we advocate for combining simulation-based approaches with other tools and resources, such as MITRE’s ATT&CK
avigator,4 to stay informed about emerging threats and security incidents in systems. Such a combination allows for a more

comprehensive understanding of potential vulnerabilities and effective mitigation tactics. Additionally, risk assessment is a critical
area of research that has seen significant contributions over the years. We believe that achieving near real-time analysis is paramount
for understanding the progression of attacks and stymieing malicious incursions before they escalate, ultimately ensuring the security
and resilience of MIoT systems.

Acronyms

A&E: Accidents & Emergency; AP: Access Point; APT: Advanced Persistent Threats; CEO: Chief Executive Officer; CIA: Confi-
dentiality, Integrity, Availability; CISO: Chief Information Security Officer; CP-ABE: Ciphertext-Policy Attribute-Based Encryption;
CSO: Chief Scientific Officer; CTI: Cyber Threat Intelligence; CTO: Chief Technology Officer; CVE: Common Vulnerabilities and
Exposures; CVSS: Common Vulnerability Scoring System; DBMS: Database Management System; DoS/DDoS: Distributed Denial-
of-Service; DES: Discrete-event Simulation; DFD: Data Flow Diagram; DMZ: Demilitarised Zone; DoS: Denial-of-Service; DRA:
Dynamic Risk Assessment; DT: Digital Twins; ECG: Electrocardiogram; hTMM: Hybrid Threat Modeling Method; ICT: Information
and Communication Technologies; ICU: Intensive Care Unit; IDE: Integrated Development Environment; IDS: Intrusion Detection
System; IoT: Internet-of-Things; IS: Information Systems; IT: Information Technology; JPBC: Java Pairing-Based Cryptography;
LINDDUN: Linkability, Identifiability, Non-repudiation, Detectability, Disclosure of information, Unawareness, and Non-compliance;
LOTL: Living Off The Land; MD: Medical Doctor; MIoT: Medical IoT; MitM: Man-in-the-Middle Attacks; MRI: Magnetic Resonance

4 Link: https://mitre-attack.github.io/attack-navigator/.
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Imaging; NMAP: Network Mapper (tool); NS: Network Simulator; NVD: National Vulnerability Database; OpenSSL: Open Secure
ockets Layer; PASTA: Process for Attack Simulation and Threat Analysis; QoS: Quality of Service; SIEM: Security Information
nd Event Management; SOC: Security Operations Centre; STRIDE: Spoofing, Tampering, Repudiation, Information disclosure, DoS,
levation of privilege; THC: Telehealth Hospital Centre; TM: Threat Modelling. VAST: Visual, Agile, and Simple Threat Modeling.
acraf: Yet Another Cyber Risk Assessment Framework.
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