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The statistical evolution of ensembles of random,
weakly interacting waves is governed by wave kinetic
equations (WKEs). To simplify the analysis, one
frequently works with reduced differential models
of the wave kinetics. However, the conditions for
deriving such reduced models are seldom justified
self-consistently. Here, we derive a reduced model
for the wave kinetics of the Schrödinger–Helmholtz
equations in two spatial dimensions, which constitute
a model for the dynamics of light in a spatially
nonlocal, nonlinear optical medium. This model has
the property of sharply localizing the frequencies
of the interacting waves into two pairs, allowing
for a rigorous and self-consistent derivation of
what we term the semilocal approximation model
(SLAM) of the WKE. Using the SLAM, we study the
stationary spectra of Schrödinger–Helmholtz wave
turbulence, and characterize the spectra that carry
energy downscale, and waveaction upscale, in a
forced-dissipated setup. The latter involves a nonlocal
transfer of waveaction, in which waves at the forcing
scale mediate the interactions of waves at every larger
scale. This is in contrast to the energy cascade, which
involves local scale-by-scale interactions, familiar
from other wave turbulent systems and from classical
hydrodynamical turbulence.
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1. Introduction
Wave turbulence is the statistical theory of large ensembles of random, weakly nonlinear,
dispersive waves [1,2]. Accordingly, when developing the wave turbulence description of
a physical system, one is most frequently concerned with the mean square of the wave
intensity: the waveaction spectrum. The equation of motion for the spectrum is known as
the wave kinetic equation (WKE), and describes the irreversible evolution of the spectrum
over nonlinear timescales (which are long compared to the linear wave period), due to
resonant M-wave interactions. For a system in d spatial dimensions, the WKE involves an
integration over R

(M−1)d, constrained to the resonant manifold of interacting waves. The
complexity of this so-called collision integral makes solving the WKE a challenging task in
general. Nonetheless, certain analytic techniques exist, in particular the Zakharov–Kraichnan
transform that allows one to find the Kolmogorov–Zakharov (KZ) cascade spectra [3]. These
are stationary solutions of the WKE on which, for many systems, the dynamical invariants
cascade with constant flux through spatial scales, via a self-similar, spectrally local (scale-by-
scale) transfer, analogous to the Kolmogorov energy spectrum in classical hydrodynamics. The
stationary spectrum of thermodynamic equilibrium—the Rayleigh–Jeans (RJ) spectrum—can also
be derived trivially as the spectrum on which the collision integral has an integrand that vanishes
pointwise.

In a seminal paper, Dyachenko et al. [4] demonstrated that the collision integral can be greatly
simplified if one makes the ad hoc assumption that the wave interaction coefficient is sharply
peaked, so that all M waves taking part in interactions have approximately the same frequency.
This assumption, which we will refer to as superlocality, allows one to reduce the collision integral
to a differential operator. The resulting equation—the differential approximation model (DAM)—
preserves a great deal of the structure of the original WKE, namely its conserved quantities, the
degree of nonlinearity with respect to the spectrum, its scaling with frequency, and, as a result of
the latter, the stationary RJ and KZ solutions. DAMs are the wave turbulence equivalent of the
Leith model of classical hydrodynamics [5,6].

Being differential equations, DAMs are much easier to work with than the collision integrals
from which they are derived. They have been used in a wide variety of physical systems to
examine topics such as the stationary RJ and KZ wave turbulence spectra [4,7–12], thermalization
at the end of a cascade spectrum [13], the crossover from strong to weak turbulence [14] and the
nature of transient spectra before the KZ spectra are established, including the anomalous scaling
of spectral fronts [15–18].

The reduction of a WKE to a DAM is predicated on the assumption of superlocality. However,
this assumption is rarely justified in the cases where DAMs are applied, indeed Dyachenko
et al. [4] introduced the DAM in the context of the cubic nonlinear Schrödinger equation,
whose interaction coefficient is a constant across Fourier space. Furthermore, DAMs are often
constructed heuristically, based on the scaling properties of the interaction coefficient, with the
desired stationary solutions and degree of nonlinearity built in. To our knowledge, there has been
no rigorous derivation of the DAM for any system whose interaction coefficient has the required
properties to justify any locality assumption.

In this paper, we derive such a reduced model for the wave kinetics of the Schrödinger–
Helmholtz equations (SHE). We introduce the SHE in §2, along with their physical context, the
dynamical invariants that they conserve (namely energy and waveaction), their WKE, and the
directions in Fourier space that their invariants flow during the wave kinetic evolution. The SHE
are of interest to us because they comprise the first system studied in the wave turbulence context
in which the spectral locality of interactions arises naturally from the functional form of the
interaction coefficient. In fact, the locality manifested by the SHE is one in which distinct pairs
of interacting waves are localized in frequency space. We refer to the latter as a semilocal, as
opposed to a superlocal, limit. We exploit this property in §3 to reduce the kinetic equation of
the SHE to a simpler model, in the same spirit as the derivation of the DAM in [4]. It transpires
that the semilocality property allows the collision integral to be reduced to an integro-differential
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operator, rather than a purely differential one. The resulting reduction of the WKE we term the
semilocal approximation model (SLAM).

Analysis of the SLAM allows us to extract the stationary spectra of the WKE, including
prospective candidates for the KZ cascade spectra, in §4. However, we demonstrate that the
KZ waveaction cascade spectrum is pathological, as it leads to a divergence of the SLAM at
high frequency. Furthermore, in §5 we show how the KZ spectra lead to flux directions that are
inconsistent with the more general argument we present in §2c(ii), requiring us to reconsider the
spectra that establish the turbulent transport of dynamical invariants across scales of the system.
We proceed to find the true waveaction flux spectrum in §6, and conclude that both stationary
solutions that describe the flux of energy on the one hand, and waveaction on the other, are
very closely related to the RJ equilibrium spectrum. The waveaction flux spectrum, which carries
waveaction to large scales, is dominated by nonlocal interactions, with waves at the forcing scale
mediating wave interactions at all larger scales. By contrast, the energy flux spectrum, which
carries energy to small scales, has local scale-by-scale interactions. We start by introducing the
SHE in the next section.

2. Schrödinger–Helmholtz equations
The SHE consist of a nonlinear Schrödinger equation for the dynamical variable ψ(x, t) ∈ C,

i
∂ψ

∂t
+ ∇2ψ − V(ψ)ψ = 0, (2.1a)

coupled, via the potential V(ψ) ∈ R, to the Helmholtz equation,

∇2V −ΛV = α|ψ |2. (2.1b)

We take the spatial domain to be a d-dimensional periodic box of side length L. The SHE (2.1)
are a spatially nonlocal1 version of the familiar cubic nonlinear Schrödinger equation (NLSE, also
known as the Gross–Pitaevskii equation),

i
∂ψ

∂t
+ ∇2ψ ± |ψ |2ψ = 0. (2.2)

The NLSE is obtained from equation (2.1) by sending α,Λ→ ∞ in such a way that α/Λ remains
constant, and renormalizing ψ .

The physical applications of the SHE were discussed in [12]; in brief, for d = 3 they describe
so-called Fuzzy Dark Matter [19–21] in a universe with cosmological constant Λ. In d = 2,
equation (2.1) describes the perpendicular dynamics of laser light in a thermo-optic or elasto-
optic nonlinear medium [22–24]. In the optics case,Λ is the normalized Kerr coefficient of spatially
local interactions. The dynamical variable ψ(x, t) represents, respectively, the wave function of the
putative dark matter boson, or the envelope of the electric field. Here, we restrict ourselves to the
d = 2 case.

Also closely associated with the SHE are the Schrödinger–Newton equations (SNE) [25–27],

i
∂ψ

∂t
+ ∇2ψ − V(ψ)ψ = 0 (2.3a)

and ∇2V = α|ψ |2, (2.3b)

which are obtained by formally setting Λ= 0 in the SHE. However, as discussed in [12], the SNE
are ill-posed in periodic settings, or when one wants to describe fluctuations over an infinite, static
background, because that background does not solve the Poisson equation (2.3b), c.f. the ‘Jeans
swindle’ [28]. Non-trivial dynamics are recovered by introducing a spatially local term to the left-
hand side of equation (2.3b), i.e. moving to the SHE [29]. This fact is reflected in the divergence of
the SLAM when we set Λ= 0, see §7a.

1The spatial nonlocality originates from the inversion of the Helmholtz operator in equation (2.1b). The term ‘local’ is used
here in a different sense to the locality of interactions in frequency space, to which the semilocal approximation refers.
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(a) Hamiltonian and invariants of the SHE
Most commonly in wave turbulence, the equation of motion under study can be derived
via Hamilton’s equation i∂tψ = δH/δψ∗. Equation (2.1) is no exception, with the Hamiltonian
functional being

H =
∫

|∇ψ |2 dx +
∫
α

2
[(∇2 −Λ)−1/2|ψ |2]2 dx. (2.4)

The first term on the right-hand side of equation (2.4) is the quadratic energy, associated with
the free propagation of dispersive waves. The second term is the energy contribution due to the
nonlinear interaction of waves via the spatially nonlocal potential V(ψ) = α(∇2 −Λ)−1|ψ |2 that
solves equation (2.1b). The operator (∇2 −Λ)−q, with q rational and positive, is to be understood
as a formal power series, and is made concrete in its Fourier-space representation (the latter is
found in [12]).

In the absence of forcing and dissipation (see below), the Hamiltonian H is conserved under
the evolution via the SHE, and is strictly positive. The other positive invariant is the waveaction
(a.k.a. number of particles, in reference to the application to Bosonic systems),

N =
∫

|ψ |2 dx. (2.5)

The momentum P = (i/2)
∫

(ψ∇ψ∗ − ψ∗∇ψ) dx is yet another conserved quantity. However, not
being sign-definite, it plays no role in the argument regarding the invariant cascade directions,
see §2c(ii). The momentum will not feature in the work we carry out in this paper.

(b) SHE in Fourier space
In Fourier space, equation (2.1) becomes an equation of motion forψk(t) = (1/L)d ∫ ψ(x, t) exp(−ik ·
x) dx, the Fourier series coefficient of ψ(x, t) for the wave mode with wavevector k:

i
∂ψk

∂t
− k2ψk −

∑
k1,k2,k3

W12
3kψk1ψk2ψ

∗
k3
δ12

3k = 0. (2.6)

The quantity

W12
3k = −α

2

[
1

|k1 − k|2 +Λ
+ 1

|k2 − k|2 +Λ

]
, (2.7)

is the interaction coefficient for the SHE. It gives the strength of nonlinear interactions between
tetrads of waves that satisfy k1 + k2 − k3 − k = 0, to which the sum in equation (2.6) is
constrained via the Kronecker delta δ12

3k := δ
k1,k2
k3,k . The functional dependence of W12

3k on the
wavevectors is indicated in the super- and subscript indices, and its functional form is obtained
by writing equations (2.1a) and (2.1b) in Fourier space and combining. Using the Kronecker delta
δ12

3k, we establish the symmetries W12
3k = W21

3k = W12
k3 = (W3k

12 )∗, which are required by the fact that
the Hamiltonian (2.4) is real.

(i) Freely evolving versus forced-dissipated systems

In a closed system, namely one with no sources or sinks of dynamical invariants, equation (2.6)
(equivalently equation (2.1)) describes the conservative dynamics of the field ψk(t) (equivalently
ψ(x, t)) evolving freely from an initial condition. Alternatively, one can consider a system in
which invariants are injected into the system by some forcing mechanism, and removed from
it by dissipation. These mechanisms manifest as extra terms Fk and Dk, respectively, on the right-
hand side of equation (2.6) (and their Fourier inverses on the right-hand side of equation (2.1a)).
Analogous terms appear on the right-hand side of the WKE (2.8) in the forced-dissipated case.

In turbulence theory, one usually considers forcing to be isotropic (depending only on k := |k|),
statistically time-independent, and to act in a narrow band of lengthscales around a characteristic
wavenumber kf . Fk is then a stochastic term supported within the forcing range and negligible
elsewhere. Dissipation is usually significant at the largest and/or smallest lengthscales of the
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system, and negligible elsewhere. In this paper, we assume both large-scale and small-scale
isotropic dissipation, with respective characteristic wavenumbers kd− and kd+.

Furthermore, we take the forcing and dissipation scales to be widely separated: kd− � kf �
kd+. Lengthscales in between, but far from, the forcing and dissipation scales are known as the
inertial ranges. Inside the inertial ranges the dynamics are conservative, described by equation
(2.6) (equivalently (2.1a), and when we consider wave turbulence, the WKE (2.8)) with zero right-
hand side. The role of forcing and dissipation is to provide a source and sink of invariants on
either side of the inertial ranges, setting up a flux of invariants through them. We discuss the
directions of these fluxes in §2c(ii).

(c) Wave kinetic equation
Wave turbulence is primarily concerned with the waveaction spectrum nk(t) = (L/2π )d〈|ψk(t)|2〉.
The operator 〈·〉 denotes an average over a statistical ensemble of realizations, starting from
independent initial conditions ψk(0), with phases uniformly distributed in [0, 2π ), and identically
distributed amplitudes. Taking the domain size L → ∞, and then assuming weak nonlinearity,
one can derive the following WKE describing the evolution of the spectrum at intermediate times
due to the nonlinear four-wave interactions of the 2 ↔ 2 type [2]:

∂nk

∂t
= 4π

∫
|W12

3k|2δ12
3kδ(ω

12
3k)n1n2n3nk

[
1

nk
+ 1

n3
− 1

n1
− 1

n2

]
dk1 dk2 dk3. (2.8)

The right-hand side of equation (2.8) is the collision integral, and is taken across the joint k-space
R

2 × R
2 × R

2. Here, δ12
3k := δ(k1 + k2 − k3 − k) and δ(ω12

3k) are Dirac delta functions that constrain
interacting wave tetrads to the resonant manifold defined by

k1 + k2 − k3 − k = 0 (2.9a)

and
ω12

3k :=ω1 + ω2 − ω3 − ωk = 0. (2.9b)

Here ωk = k2 is the linear dispersion relation. We have also used the shorthand notation ni =
nki ,ωi =ωki , etc. for i = 1, 2, 3.

Inspecting equation (2.7), we see manifestly that the interaction coefficient W12
3k decays rapidly

when all wavevectors are very different. The first term in W12
3k becomes dominant when k1 → k.

By equation (2.9a) we then have k2 → k3. If we also have Λ� k2, then the interaction coefficient
becomes sharply peaked in the joint k-space where k1 ≈ k and k3 ≈ k2, with the latter following
from the above symmetries. Likewise, if the second term in W12

3k is dominant then it becomes
peaked over k1 ≈ k3 and k2 ≈ k. These pairings are equivalent to the first pairings by exchange
of dummy variables, as W12

3k always appears under a sum or integral.
Thus, the four-wave interactions responsible for evolution of the system under the SHE (2.1),

and therefore the corresponding WKE (2.8), are dominated by interactions in which k1 ≈ k and
k3 ≈ k2. This property of the interaction coefficient, of picking out dominant interactions when
pairs of wavevectors become equal, we refer to as semilocality. It is this property that will allow
the collision integral to be reduced to a simpler operator. We will retain the possibility that k1 �≈ k2,
so the reduction will be to an integro-differential, rather than a purely differential, operator.

At this point we note that taking the NLSE limit α,Λ→ ∞ with α/Λ→ const. sends W12
3k → ±1.

In this case there is no natural pairing of (k1, k) and (k2, k), and we lose the semilocality property.
We return to this point in §7a.

(i) Invariants of the wave kinetic equation

In general, WKEs of the M/2 ↔ M/2 type (M being an even integer denoting the order of the
resonant wave interaction), such as equation (2.8), conserve the two quadratic invariants

E =
∫
ωknk dk and N =

∫
nk dk. (2.10)
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Comparing with equation (2.5) we see that N is the total waveaction, expressed in equation (2.10)
as an integral over Fourier space. Both the original SHE and the WKE derived from them conserve
the waveaction exactly. By contrast, E is the Fourier-space representation of the quadratic energy
(first term on the right-hand side of equation (2.4)). Recall that the WKE is derived under the
assumption of weak nonlinearity. Under this condition, E will be the leading contribution to
the total Hamiltonian H, i.e. the original equations of motion conserve H exactly, while their
WKE conserves H asymptotically, and E exactly. Here, we are interested in the quantities that
are conserved by the WKE and its reduced model, the SLAM. Therefore, we will simply refer to
E as the energy hereafter.

The interaction coefficient W12
3k is unchanged under global rotations. We further assume that

when the system is forced and dissipated, it is done so in a spatially homogeneous and isotropic
manner. Therefore, we expect that the spectrum nk will be isotropic, depending only on |k|, or
equivalently on frequency. Accordingly, we can consider the spectrum as a function of either k, or
frequency ω at that value of k, via the dispersion relation ω= k2. Namely, we adopt the notation
nωi := n(ki(ωi)) = nki =: ni. Converting the k-space integrals in equation (2.10) into integrals over
ω, the invariants of the WKE become, for a two-dimensional isotropic spectrum,

E = π

∫
ωnω dω and N = π

∫
nω dω. (2.11)

(ii) Flux directions—the Fjørtoft argument

The action of the WKE is to redistribute the spectral density of E and N across k-space. The
qualitative manner of this redistribution is predicted by the argument of Fjørtoft [30]. This
argument is recapitulated in many places in the wave turbulence literature, see for example [11,12]
for its application to the forced-dissipated SHE, and [2] for a version of the argument in freely
evolving systems.

We restrict our discussion to the isotropic case, which allows us to elide from k-space to
ω-space via the dispersion relation, and speak of scales when referring to frequencies. The
conclusion of the Fjørtoft argument is that the presence of each invariant constrains how the ω-
space distribution of the other invariant can evolve, so that the bulk of each invariant moves to the
sector of ω-space where its spectral density dominates. For the SHE this means that the majority
of the energy E, which has a spectral density of ω= k2, moves towards high ω, whereas most of
the waveaction N, having a spectral density of 1, moves towards low ω.

More specifically, for a freely evolving system the Fjørtoft argument predicts that the invariant
densities are redistributed by the WKE so that the centroid of E, defined as (π/E)

∫
ω2nω dω, moves

towards small scales, while the N-centroid, (π/N)
∫
ωnω dω, moves towards the largest scale in the

system [2]. The total E and N of course remain constant during the evolution.
In a forced-dissipated system, E and N are injected at the intermediate forcing scale ωf , and

transported by the WKE until they reach the dissipation scales at ωd− (large scale), and ωd+ (small
scale), where they are removed. We assume a wide scale separation ωd− �ωf �ωd+. We further
assume that the system has reached a non-equilibrium stationary state in which forcing and
dissipation are continuous, and the rate of dissipation has adjusted to match the rate of forcing, so
that the total E and N remain constant. We conjecture that this steady state condition is universal,
independent of the detailed manner of forcing and dissipation, and will be attained from a wide
range of initial conditions after a transient phase. In these circumstances, the Fjørtoft argument
predicts that most of the energy injected at ωf will be transferred with constant positive energy
flux P through the direct inertial range (namely, scales ω such that ωf �ω�ωd+), to be dissipated
at small scales around ωd+. Likewise, most of the waveaction injected at ωf will be transferred
with constant negative waveaction flux Q through the inverse inertial range (ωd− �ω�ωf ),
until it is dissipated at large scales near ωd−. This scenario, of one invariant moving to small
scales and the other moving to large scales, is common to all wave turbulence systems with two
quadratic invariants, and also two-dimensional hydrodynamic turbulence [2]. It is referred to in
the literature as the dual cascade, although the term ‘cascade’ usually implies a scale-by-scale flux
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of invariants in which all the waves taking part in the transfer are localized in ω-space. We will
see that for the SLAM, the direct transfer of energy involves entirely local interactions, whereas
the inverse waveaction transfer is nonlocal, involving waves at ωf participating in every tetrad
of interacting waves throughout the inertial range. In this paper, we will still speak of the direct
cascade of energy, and inverse cascade of waveaction, which together make up the dual cascade,
having made this caveat about the (non)locality of interactions in these cascades.

The Fjørtoft argument is premised only on having positive-definite integral invariants,
which are quadratic in wave amplitude, but which have different spectral densities, and on
having widely separated forcing and dissipation scales. Having such parsimonious assumptions,
the predictions of the Fjørtoft argument are robust, and must be recovered by any subtler
manipulation of the WKE. More concretely, once we derive the SLAM, we can look for its
stationary solutions that realize the dual cascade, but these solutions must have fluxes P> 0 and
Q< 0 in their respective inertial ranges, to correspond to the predictions of the Fjørtoft argument.
On the other hand, the argument makes no assumptions about the locality of interactions
in ω-space. This must be determined by examining individual candidate solutions, which is
particularly straightforward in the SLAM.

3. Derivation of the semilocal approximation model
To derive the SLAM, we follow the initial strategy set out in [4] for deriving the DAM. First, we
multiply equation (2.8) by an arbitrary test function ϕk = ϕ(k), integrate with respect to k, and use
the resulting symmetries of the integrand to split it into four pieces:∫

ϕk
∂nk

∂t
dk = 4π

∫
ϕk|W12

3k|2δ12
3kδ(ω

12
3k)n1n2n3nk

[
1

nk
+ 1

n3
− 1

n1
− 1

n2

]
dk1 dk2 dk3 dk

= π

∫
[ϕk + ϕ3 − ϕ1 − ϕ2]|W12

3k|2δ12
3kδ(ω

12
3k)n1n2n3nk

[
1

nk
+ 1

n3
− 1

n1
− 1

n2

]
dk1 dk2 dk3 dk. (3.1)

Next we assume that the spectra nk and test functions ϕk are isotropic, and consider both as
functions of frequency (see §2c(i)).

At this point, following the discussion after equation (2.9b), we make the semilocality
assumption that k1 ≈ k, and hence k3 ≈ k2, but retain the possibility of k1 and k2 being distinct.
This is in contrast to the procedure of Dyachenko et al. [4], who assume that all interactions are
superlocal in frequency space.

Taylor expanding the terms in square brackets in equation (3.1) up to first order in frequency,
and using equation (2.9b), we have[

1
nk

+ 1
n3

− 1
n1

− 1
n2

]
≈ ∂ωnω−1(ω − ω1) − ∂ω2 n−1

ω2
(ω2 − ω3)

= (∂ωn−1
ω − ∂ω2 n−1

ω2
)(ω − ω1)

= (∂ωn−1
ω − ∂ω2 n−1

ω2
)(k − k1) · (k + k1)

≈ (∂ωn−1
ω − ∂ω2 n−1

ω2
)(−p1) · 2k, (3.2)

where the difference vectors pi := ki − k, shown in green in figure 1a. Similarly,

[ϕk + ϕ3 − ϕ1 − ϕ2] ≈ (∂ωϕω − ∂ω2ϕω2 )(−p1) · 2k.

Therefore, equation (3.1) simplifies to∫
ϕk
∂nk

∂t
dk

= π

∫
α2

(Λ+ p2
1)2
δ(−2p1 · p2)n2

2n2
k(p1 · 2k)2(∂ωn−1

ω − ∂ω2 n−1
ω2

)(∂ωϕω − ∂ω2ϕω2 ) dk1 dk2 dk,
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–k

–k

(a) (b)

θ p
1

p
3

p
2

p
1

p
3

p
2

k1

kχ

k2

φ

k3

Figure 1. Geometry of wavevectors and definition of angles involved in deriving the SLAM. (a) A tetrad of wavevectors
{k1, k2, k3, k} that satisfy the resonant conditions Eq. (2.9) are shown in blue. Note the semilocal approximation k1 ≈ k and
k3 ≈ k2. The difference vectors {pi := ki − k} are shown in green. (b) Triangle formed by {pi}. Note that due to the frequency
resonance condition δ(ω12

3k) in equation (2.8), only wavevectors with difference vectors that form a right-angle triangle,
i.e. θ = π/2, will contribute to the collision integral, see appendix A.

where we have also used equation (A 1) in the argument of the frequency delta function, and
exhausted the delta function of wavevectors by integrating out k3.

To constrain the integral to the resonant manifold, we fix k and k2 and change variables from
k1 to (p1, θ ) where θ is the angle between p1 and p2, see figure 1b. The volume element transforms
as dk1 = p1dp1 dθ , and we perform the θ integral as follows:∫

(. . .)δ(−2p1 · p2)p1 dθ dp1 =
∫

(. . .)
1
p2

dp1,

where we have taken into account the fact that p1 and p2 are orthogonal, see appendix A. Then,
using the properties of the scalar triple product, we can write k · p1 = ±k · (ez × p2)p1/p2 = ±ez ·
(p2 × k)p1/p2. Thus, we have∫

ϕk
∂nk

∂t
dk = 4π

∫
α2p2

1

(Λ+ p2
1)2

|p2 × k|2
p3

2

n2
2n2

k(∂ωn−1
ω − ∂ω2 n−1

ω2
)(∂ωϕω − ∂ω2ϕω2 ) dp1 dk2 dk. (3.3)

The dependence on p1 can be factored into the reduced interaction coefficient, which can be
calculated exactly,

SΛ = 4π
∫ ∞

0

α2p2
1

(Λ+ p2
1)2

dp1 = π2α2
√
Λ

. (3.4)

This last step highlights the important feature of the SHE in this analysis: it is in this step that
we have used the peaked nature of the interaction coefficient to reduce it to the coefficient SΛ
analytically. To our knowledge, the SHE constitute the first system analysed in wave turbulence
theory whose interaction coefficient can be reduced in this way.

To express the p2 dependence of (3.3) in terms of k2 and k, we denote the angle between
vectors k and k2 by φ (see figure 1a), note that |p2 × k|2 = |k2 × k|2 = k2

2k2 sin2(φ), and use basic
trigonometry to re-express p2, giving∫

ϕk
∂nk

∂t
dk = SΛ

∫ k2
2k2 sin2(φ)

(k2
2 − 2k2k cos(φ) + k2)3/2

n2
2n2

k(∂ωn−1
ω − ∂ω2 n−1

ω2
)(∂ωϕω − ∂ω2ϕω2 ) dk2 dk.

The k ↔ k2 symmetry of the integrand allows us to replace (. . .)(∂ωϕω − ∂ω2ϕω2 ) → 2(. . .)(∂ωϕω).
The next step is to move to frequency space by writing the integrations over k and k2 in polar

form, so that dk = (1/2) d χ dω and dk2 = (1/2) dφ dω2. Here χ is the polar angle of wavevector k
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(see figure 1a), which we integrate out immediately and cancel from both sides. We obtain

∫
ϕω
∂nω
∂t

dω= SΛ

∫
ω2ω sin2(φ)

(ω2 − 2
√
ω2ω cos(φ) + ω)3/2 n2

ω2
n2
ω(∂ωn−1

ω − ∂ω2 n−1
ω2

)(∂ωϕω) dφ dω2 dω.

(3.5)
Finally, we integrate by parts with respect to ω to isolate the test function ϕω on both sides, and

use the fact that ϕω is arbitrary, to obtain the SLAM for the SHE:

∂nω
∂t

= − 1
π

∂Q
∂ω

, (3.6a)

where

Q = πSΛ

∫
f
(√

ω2

ω

)
ω2√
ω

n2
ω2

n2
ω(∂ωn−1

ω − ∂ω2 n−1
ω2

) dω2 (3.6b)

is the waveaction flux flowing through ω in frequency space (or circle of radius k = √
ω in

wavevector space; the factor of π arises from the transformation between the two spaces). In
equation (3.6b), the function f (s) is defined as

f (s) =
∫ 2π

0

sin2(φ)
(1 − 2s cos(φ) + s2)3/2 dφ. (3.6c)

In appendix B, we note some properties of f (s).
The SLAM, defined by equation (3.6), is the main result of the present paper. The SLAM must

be supplemented with initial and boundary conditions to produce a well-posed problem. To retain
consistency with the semilocal approximation, the initial condition can be any arbitrary function
supported on ω�Λ, and whose characteristic scale of variation ∂ω/∂(ln nω) �Λ. Respectively,
these conditions ensure that W12

3k decays sufficiently rapidly that superlocality is satisfied, and that
the Taylor expansion in equation (3.2) can be truncated. As mentioned in §2c(ii), we conjecture
that the steady-state dual cascade spectra in the forced-dissipated problem will be independent
of initial conditions.

As for the boundary conditions, if one were concerned with a solution on the whole real line
then physicality requires that the spectrum and fluxes vanish as ω→ ∞. The situation as ω→ 0
is quite involved, as one expects solutions that exhibit finite-time blowup there, associated with
condensation [31]. At this point not only does the support of the spectrum violate the ω�Λ

condition, but the system becomes strongly nonlinear, meaning that the WKE (and hence the
SLAM) no longer describe the dynamics. However, when examining the dual cascade spectra, we
assume that dissipation forces the spectrum to vanish at ωd+ and ωd−. We take these as boundary
conditions of the solution in §§5 and 6 when we characterize these spectra.

(a) Conservation of invariants in the SLAM
To show that the original invariants of the WKE continue to be conserved in the SLAM, we
first note that (3.6a) is a continuity equation for waveaction, and so N is manifestly conserved.
Secondly, we note that the energy density is ωnω, and so the continuity equation for energy is

∂(ωnω)
∂t

= − 1
π

∂P
∂ω

, (3.7)

where P is the energy flux. Together with equation (3.6a), this gives ∂ωP =ω∂ωQ. Integrating from
0 to ω, we obtain

P(ω) =ωQ(ω) −
∫ ω

0
Q(ω̃) dω̃. (3.8)

Integrating equation (3.7) over all ω gives ∂tE = −[P(∞) − P(0)]/π . Using equation (3.8), and
assuming that the particle flux decays fast enough at large and small ω, so that ωQ(ω)|∞ =
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ωQ(ω)|0 = 0, we obtain

∂E
∂t

= SΛ

∫ ∞

0

∫ ∞

0
f
(√

ω2

ω̃

)
ω2√
ω̃

n2
ω2

n2
ω̃(∂ω̃n−1

ω̃
− ∂ω2 n−1

ω2
) dω2dω̃. (3.9)

Now we observe that by equation (B 4), the factor (ω2/
√
ω̃) f (

√
ω2/ω̃) is symmetric under ω̃↔ω2.

This leaves the integrand on the right-hand side of equation (3.9) antisymmetric under exchange
of the integration variables, and so we must have ∂tE = 0.

Therefore, in a closed system the SLAM preserves the same quadratic invariants as the WKE
from which it is derived. The rest of this paper is devoted to obtaining solutions of the SLAM,
particularly the solutions that realize the dual cascade of invariants that is predicted by the Fjørtoft
argument in a forced-dissipated system.

4. Stationary solutions of the SLAM
In this section we show that the usual stationary solutions of the WKE—the equilibrium RJ
spectrum, and the KZ cascade spectra—are stationary solutions of the SLAM (3.6). We are
particularly interested in spectra that are self-similar, i.e. of power-law form nω = Cω−x, where
C is a constant that is positive for physical spectra.

(a) Thermodynamic equilibrium (RJ) spectrum
The RJ spectrum describes the state of thermodynamic equilibrium where a linear combination of
the integral invariants is partitioned equally over k-space:

nω = T
μ+ ω

(equipartition of μN + E), (4.1)

where the thermodynamic potentials are the temperature T and chemical potential μ (both
constants). This spectrum is a stationary solution of the SLAM because the bracket (∂ωn−1

ω −
∂ω2 n−1

ω2
) in equation (3.6b) vanishes when equation (4.1) is substituted.

The RJ spectrum has the asymptotic limits

nω ∝ω0 (equipartition of N),
nω ∝ω−1 (equipartition of E),

}
(4.2)

which are self-similar spectra with spectral indices x = 0 and x = 1, respectively.

(b) Stationary non-equilibrium cascade (KZ) spectra
As mentioned in §1, in many systems one can find stationary solutions of the WKE that are of
power-law form, and which describe the constant flux of invariants via a self-similar, scale-by-
scale cascade. These are the KZ cascade spectra, and they are the first candidate for the spectra that
realize the dual cascade predicted by the Fjørtoft argument for forced-dissipated systems. When
the KZ spectra are physically relevant, the flux of each dynamical invariant will be described by
its own KZ spectrum, and on that spectrum the flux of all other dynamical invariants will be zero.

To find the KZ spectra, we first substitute nω = Cω−x into equation (3.6b), giving for the
waveaction flux

Q = πSΛC3x
∫

f
(√

ω2

ω

)
ω2√
ω
ω−2x

2 ω−2x(ωx−1 − ωx−1
2 ) dω2. (4.3)

(i) Energy cascade spectrum

In the wave turbulence literature, KZ spectra are frequently found by making non-identity
transformations of the collision integral that allow one to read off spectral indices x that make
the integrand of the transformed collision integral vanish. This technique is known as the
Zakharov–Kraichnan transform [3].
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We now adapt this method to the SLAM in order to find the KZ energy cascade spectrum.
We split the right-hand side of equation (4.3) into two halves. In the second half, we substitute
ω2 =ω2/ω̃2. Using equation (B 4), and dropping tildes immediately, we obtain

Q = πSΛC3

2
x
∫ [

1 −
(ω2

ω

)y]
f
(√

ω2

ω

)
ω2√
ω
ω−2x

2 ω−2x(ωx−1 − ωx−1
2 ) dω2,

with y = 3x − 3/2. Choosing the spectral index x = 1/2 leads to a vanishing waveaction flux Q,
suggesting that this represents the KZ energy cascade spectrum.

To see that this is indeed the case, we extract the overallω dependence in equation (4.3), leaving
a reduced, dimensionless collision integral I(x), as follows:

Q(ω) = 2πSΛC3ω(1−6x)/2I(x), where I(x) = x
∫ ∞

0
f (s)s3−4x(1 − s2x−2) ds, (4.4)

and s = √
ω2/ω. Substituting equation (4.4) into equation (3.8) gives for the energy flux

P(ω) = 2πSΛC3 1 − 6x
3 − 6x

ω(3−6x)/2I(x). (4.5)

Setting x = 1/2 in equation (4.4) reproduces the result that Q(ω) = 0, because I(1/2) ∝∫∞
0 sf (s) ds − ∫∞

0 f (s) ds, which vanishes by the s → 1/s symmetry in equation (B 4) (note that the
transformation s → 1/s is exactly equivalent to making the Zakharov–Kraichnan transform).

When x = 1/2, equation (4.5) gives P(ω) = 0/0. To resolve this indeterminacy we use L’Hôpital’s
rule, obtaining

P(ω) = 2πSΛC3

3
I′(1/2) = 2πSΛC3

3

(
3
∫ ∞

0
f (s) ln(s) ds

)
= −4.85432(πSΛC3),

where the prime denotes differentiation with respect to x, and we have again used equation (B 4).
Thus, when x = 1/2 the energy flux P is a constant, independent of ω, while the waveaction

flux Q vanishes, indicating that this is indeed the KZ energy cascade spectrum. However, we note
that on this spectrum the sign of P is negative, which is opposite to the sign predicted by the
Fjørtoft argument. We elaborate on this in §5.

(ii) Waveaction cascade spectrum

To determine the KZ spectrum for the cascade of waveaction, we put x = 1/6 in equation (4.4),
obtaining Q(ω) = 2πSΛC3I(1/6), which is independent of ω. Likewise, equation (4.5) gives P(ω) =
0 × I(1/6). This would satisfy the requirements to be the KZ waveaction cascade spectrum if I(1/6)
converged. However, from the second equation in (4.4) we see that

I(1/6) = 1
6

∫ ∞

0
f (s)(s7/3 − s2/3) ds.

Noting the asymptotic behaviour of f (s) from equation (B 3c), we see that I(1/6) diverges as s → ∞.
Therefore, even though the power-law spectrum with x = 1/6 superficially gives the correct

properties for the KZ waveaction cascade spectrum, we must rule it out because the collision
integral is divergent on that spectrum.

(iii) Summary of KZ spectra

To summarize, the formal KZ cascade spectra that are our first candidates for realizing the dual
cascade are

nω ∝ω−1/2 (KZ spectrum: cascade of E),

nω ∝ω−1/6 (KZ spectrum: cascade of N).

⎫⎬
⎭ (4.6)

However, both spectra suffer pathologies: on the first spectrum the flux of energy is in the wrong
direction, and the second spectrum causes the collision integral to diverge. We must, therefore,
rule them out, and seek other spectra on which the dual cascade can be supported.
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Figure 2. (a) Sketch of the energy flux P andwaveaction flux Q dependence on spectral index x, where nω = Cω−x . The signs
of the fluxes are determined by the relative ordering of the RJ and KZ spectra (equations (4.2) and (4.6), respectively), where
one or both of the fluxes is zero, and the behaviour at large and small x. The qualitative behaviour of the fluxes in between the
zeros follows by continuity, see §5. (b) Convergence (green) or divergence (red) of equation (3.6b) with respect to spectral index
x. Above the x-axis refers toω2 in the ultraviolet range, and below the x-axis refers toω2 in the infrared range, see appendix
C. (Convergence is unconditional exactly on the thermodynamic spectra x = 0, 1. This is indicated by the narrow green strips
around these two spectra.)

These pathologies notwithstanding, it is still worth noting that the original interaction
coefficient W12

3k is not a homogeneous function of the four wavevectors, i.e. it possesses no obvious
properties that would lead to a self-similar scaling behaviour. Nevertheless, the semilocality
property of W12

3k allows us to integrate out its non-homogeneous part, giving the constant
coefficient SΛ. The resulting equation, the SLAM, is self-similar. However, unlike KZ spectra, the
relevant solutions of the SLAM that manifest the dual cascade do not turn out to be self-similar
themselves, as we demonstrate in the following sections.

(c) Interpretation of divergent spectra
As mentioned above, the divergence of the collision integral at a certain scale causes us to rule out
a prospective KZ spectrum. However, we expect the true solution to retain some characteristics
indicated by this divergence. Namely, waves of a scale that approaches the divergent scale will
be increasingly dominant in every tetrad of interacting waves in which they participate. In other
words, wave interactions at every scale will be mediated by waves whose scale approaches the
divergent scale. In this situation, the true solution is termed a nonlocal flux spectrum, as opposed
to the spectrally local cascades that are described by physically realizable KZ solutions.

In the specific case here, the divergence of the KZ waveaction cascade spectrum as s → ∞
implies that the true waveaction flux spectrum is nonlocal, dominated by interactions at ω2 �
ω. By contrast, the fact that the KZ energy cascade spectrum gives convergence of the collision
integral signals that the true cascade solution has local interactions. We need only resolve the
matter of the cascade direction, which we do in §5.

In appendix C, we present a full convergence study of the collision integral on general power-
law spectra, allowing us to see the KZ spectra in their full context. The results of this convergence
study are shown in figure 2b.
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5. Flux directions on power-law spectra
For the sake of completeness, we present in this section a general diagrammatic argument [2]
that determines the directions of both the energy flux P and the waveaction flux Q, on all
power-law spectra nω = Cω−x (with C> 0). In order to present the argument, we neglect for
a moment the divergence of the collision integral on the KZ waveaction cascade spectrum.
Recall that if the sign of a flux is positive (negative), the invariant flows towards large
(small) ω.

It is natural to assume that for very sharply peaked spectra, the resulting fluxes will flatten the
spectra out. Thus, for x → ∞ (spectrum sharply peaked around ω≈ 0), we expect the associated
fluxes to be strongly positive. Likewise for x → −∞ (spectrum sharply rising), the fluxes will be
strongly negative.

In between these two, the fluxes will both be zero on each of the thermodynamic spectra
x = 0, 1. As for the KZ spectra, by construction the KZ energy cascade spectrum is for the
pure flux of energy, with no waveaction flux. Likewise, the energy flux is zero on the KZ
spectrum for a pure waveaction cascade. In our case, we, respectively, have Q = 0 for x = 1/2,
and P = 0 for x = 1/6 (were the latter to give a convergent collision integral). Assuming that
the fluxes vary continuously with spectral index x forces them to behave qualitatively as shown
in figure 2a.

We see that the ordering of the zero crossings forces P to be negative on the KZ energy cascade
spectrum, as found in §4b(i), and also forces Q to be positive on the KZ waveaction cascade
spectrum. These are both in direct contradiction to the conclusion of the Fjørtoft argument, which
is that P must be positive and Q negative on the stationary spectra that realize the direct and
inverse portions of the dual cascade, see §2c(ii). If the respective flux-carrying solutions are
to be realized by the KZ spectra, the only way to reconcile the two arguments is for the KZ
spectra to have non-positive (i.e. negative or even complex) prefactor constants C, which is clearly
unphysical. Therefore, we conclude once more that the KZ spectra found in §4 cannot realize the
dual cascade in any physically relevant scenario.

As the KZ spectrum must be ruled out, the true solution to realize a steady-state cascade must
be related to the other stationary solution: the RJ spectrum [4]. Indeed, experience with other
wave turbulence systems suggests that the true cascade solution is an RJ spectrum with small
deviations that are nonetheless responsible for carrying the entire flux, see equation (5.1). Such
solutions are termed warm cascade spectra [4,10,12].

We therefore hypothesize that the flux-carrying spectra that realize the dual cascade
are warm spectra in both the direct and inverse inertial ranges. However, anticipating the
results of §6, we will conclude that the inverse cascade of N is not only nonlocal in
character, but is also realized by a warm spectrum with negative thermodynamic potentials
T and μ.

By contrast, the convergence of the KZ energy cascade spectrum found in §4c(i), and the
discussion of §4c, indicate that the true direct cascade of E is local. We, therefore, expect the direct
cascade to be warm, with positive T and μ, and spectrum

ndir
ω = T

μ+ ω +
(ω)
. (5.1)

Here, 
(ω) is the deviation from the RJ spectrum, which remains small in the inertial range, far
from the forcing and dissipation scales. At the end of the inertial range 
(ω) becomes large, until
the spectrum terminates at the dissipation scale ωd+. We sketch the warm direct cascade ndir

ω

qualitatively in red in figure 3.
It is a prediction from the superlocal DAM that the warm spectrum terminates in a logarithmic

compact front, and that the temperature of the cascade spectrum T is determined by the energy
flux P, and small-scale dissipation range ωd+ [12]. We leave it to future work, reinforced by
numerical simulations, to examine these relations for the direct warm cascade realized by the
SLAM.



14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230162

..........................................................

nω
nω

inv

nω
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P > 0
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ωd+ωd– ωf

�

Figure 3. Qualitative sketch of the steady-state dual cascade predicted by the SLAM,which realizes the prediction of the Fjørtoft
argument. Forcing at ωf injects waveaction and energy into the system. The negative waveaction flux Q is realized by the
nonlocal inverse cascade spectrum ninvω (blue), which terminates at the scale ωd− where the majority of the waveaction is
dissipated. The positive energy flux P is realized by the local direct cascade spectrum ndirω (red), which terminates atωd+ where
most of the energy is dissipated. The asymptotic solutions n�ω and n�ω are overlaid in white dashes. (Note that the inverse and
direct cascade spectra meet atωf , which is strictly less than, but of the same order as,ω∗. In a realistic system, the break in
gradient atωf will be regularized by the specific forcing protocol, which we do not attempt to show here.)

6. Nonlocal inverse cascade solution
In this section, we seek the stationary solution of the SLAM that realizes a constant inverse flux
of waveaction, and that is nonlocal in the sense suggested by the divergence of the corresponding
KZ spectrum, see §4c. We also seek to parameterize the solution in terms of quantities that we can
control externally, for example in simulations. These will turn out to be the flux Q, the forcing and
dissipation scales ωf and ωd−, and the temperature of the inverse warm cascade T.

We set Q to be negative in equation (3.6b) to specify an inverse flux, and substitute f (s) = π/s3,
its ω2 �ω limit. Equation (3.6b) becomes

∂nω
∂ω

= Q̂
Aω

+ B
A

n2
ω, (6.1)

where Q̂ = −Q/π2SΛ > 0 and the integrals over ω2 are absorbed into the constants

A =
∫ n2

ω2√
ω2

dω2 and B =
∫

1√
ω2

∂nω2

∂ω2
dω2. (6.2)

Manifestly A> 0. Self-consistency of the asymptotic solutions of equation (6.1) demands that
B> 0 also (see discussion after equation (6.4) below).

(a) Nonlocal inverse cascade: asymptotics
First, we examine the asymptotics of equation (6.1) to extract key characteristics of the full
solution. We denote the frequency at which the two terms on the right-hand side are equal by ωs.

For ω�ωs the first term on the right-hand side of equation (6.1) dominates. The solution to
the resulting asymptotic equation is

n�
ω = Q̂

A
ln
(
ω

ωd−

)
. (6.3)

Here, we have written the constant of integration as the frequency at which the solution
n�
ω vanishes, and interpreted it as the dissipation scale ωd−. Note that the solution finds a

vanishing point naturally, without specifying a dissipation mechanism. This is in common with
warm solutions of superlocal DAMs that contain compact fronts at which the solution vanishes
logarithmically, see e.g. [10,12]. (We expect that if dissipation is not provided, so that the flux is
drained from the system by the time it reaches ωd−, the spectrum would grow in this vicinity
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so that the situation would not be time-independent. Eventually the nonlinearity would become
strong here, so that the wave turbulence assumptions would become violated.)

For ω�ωs, the second term on the right-hand side of equation (6.1) is dominant, and we have
the asymptotic solution

n�
ω = A/B

ω∗ − ω
. (6.4)

Here the constant of integration appears as ω∗, the frequency at which the solution becomes
singular. By hypothesis, ω∗ is greater than any ω in the inverse cascade range. The integral of
n�
ω is weakly (logarithmically) divergent as ω→ω∗, which is consistent with the assumption of

a nonlocal solution that is dominated by interactions with ω2 �ω. Obviously, in any realistic
scenario the solution cannot continue up to ω∗. We, therefore, cut the solution off at ωf where
ωd− �ωf <ω∗. This cutoff represents the end of the inverse cascade inertial range; in a forced-
dissipated setup this is none other than the forcing scale. By choosing ωf in the vicinity of ω∗,
so that ω2 can approach the singularity frequency ω∗, we keep consistency with the nonlocality
assumption ω2 �ω.

If we define the temperature T := −A/B and chemical potential μ := −ω∗, we also see that
n�
ω is actually a thermodynamic spectrum (4.1) with negative T and μ. The interpretation of RJ

equilibria with negative thermodynamic potentials was given in [32] for the case of three sign-
definite invariants. For the present case with two invariants, these are exactly equilibria with
spectra diverging at some nonzero μ (see appendix of Skipp & Nazarenko [32]).

Note that, had we chosen B< 0, we would have obtained the asymptotic solution nB<0
ω =

A/|B|(ω + ω∗). For ω∗ < 0 this is negative in 0<ω< |ω∗|, which is unphysical. For ω∗ ≥ 0, if we
substitute nB<0

ω back into equation (6.1), the first term on the right-hand side dominates for all
ω≥ 0, which is inconsistent with the assumptions for deriving nB<0

ω . We, therefore, rule out the
B< 0 case. Had we chosen B = 0, the full solution n�

ω is the only solution, but then the second
integral in (6.2) gives B �= 0. Hence, we rule out B = 0 as well, and therefore we must have B> 0.

Thus, the full solution of equation (6.1) resembles an RJ spectrum for ω�ωd−, equation (6.4),
but has a deviation that grows towards the infrared, and that terminates at ω=ωd− with a
logarithmic compact front, equation (6.3). This is exactly to say that it is a warm cascade spectrum,
but with negative thermodynamic potentials.

(i) Determination of constants A and B

The integrals in equation (6.2) must be taken over the whole inverse cascade range, from ωd− up
to ωf . Since the inverse cascade spectrum is nonlocal, the dominant contributions to the integrals
occur at large ω. Using the asymptotic spectrum n�

ω , and evaluating equation (6.2) at the upper
limit ωf , we obtain, to leading order, B2/A = 1/√ωf (ω∗ − ωf ). In terms of the temperature T this
gives

A = T2

√
ωf (ω∗ − ωf )

and B = − T
√
ωf (ω∗ − ωf )

, (6.5)

i.e. we have expressed A and B in terms of T,ωf and ω∗.

(b) Nonlocal inverse cascade: full solution
Equation (6.1) can be solved analytically by noting that it is a Ricatti equation. Using standard
techniques [33], its solution is found to be

ninv
ω = −

√
Q̂

Bω

(
Y0(K) + J0(K)c
Y1(K) + J1(K)c

)
, with K = 2

√
BQ̂ω

A
, (6.6)

where Jn(K), Yn(K) are nth order Bessel functions of the first and second kinds, respectively, and c
is the constant of integration.

We can relate c to the integration constants of the asymptotic solutions by noting that ωd−
corresponds to the first zero of the right-hand side of equation (6.6). This will be at the first root
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of the numerator Y0(K) + J0(K)c. Using the asymptotics of the Bessel functions for K � 1 gives, to
leading order,

ωd− = A2

BQ̂
e−2γ−πc, (6.7)

where γ ≈ 0.5772 is the Euler–Mascheroni constant. Likewise, ω∗ corresponds to the first root of
Y1(K) + J1(K) c, the denominator of equation (6.6). To leading order this gives

A2

BQ̂ω∗
+ ln

(
A2

BQ̂ω∗

)
= πc + 2γ − 1. (6.8)

This has solution ω∗ = A2/[BQ̂ W(eπc+2γ−1)], where W(x) is the Lambert-W function.
Firstly, we note that the first term on the right-hand side of equation (6.8) is dominant as we

send c → ∞, while the left-hand side is greater than A2/(BQ̂ω∗). This gives ω−1∗ (c) =O(c), whereas
from equation (6.7),ωd− → 0 exponentially as c → ∞. Thus, the ratioωd−/ω∗ → 0 as c → ∞, and so
by adjusting A, B and Q̂ to set the overall scaling, we can make the inverse inertial range arbitrarily
wide.

Furthermore, we can eliminate c between equations (6.7) and (6.8), and eliminate A and B using
equation (6.5), obtaining

ln
(
ω∗
ωd−

)
= 1 + T3

Q̂√
ωf (ω∗ − ωf ) ω∗

. (6.9)

Equation (6.9) implicitly expresses ω∗ in terms of the control parameters (Q̂, T,ωf ,ωd−). Solving
for ω∗ (for example numerically, or to any desired accuracy by iteration), and substituting into
equation (6.5) allows A and B to be written in terms of the same set of parameters. We can likewise
express c via equation (6.7), and finally obtain the solution nω via equation (6.6), in terms of the
control parameters (Q̂, T,ωf ,ωd−).

Note that, unlike the case for superlocal DAMs, we cannot close the set of control parameters
by writing T as a function of the flux and the forcing and dissipation scales. This is reminiscent
of two-free-parameter stationary solutions of the Leith model [6]. (Closures could be provided by
specific assumptions about the forcing or dissipation, for example that the forcing starts with a
given flux and temperature, but these assumptions would not be universal.)

In figure 3, we sketch the qualitative behaviour of the nonlocal inverse waveaction cascade
spectrum ninv

ω in blue. We also show the asymptotic solutions n�
ω and n�

ω in white dashes, and
the frequency ω∗ where the inverse cascade spectrum becomes singular.

7. Discussion and conclusion

(a) Comparison with the NLSE and SNE limits
Before concluding, we make some remarks about the two limits of the SHE that were mentioned
in §2. The first is the NLSE limit, where we send α,Λ→ ∞, while α/Λ→ const. After rescaling ψ
we obtain equation (2.2). The second is the SNE limit, where we setΛ= 0 to obtain equation (2.3).

In both these limits, the interaction coefficient becomes a homogeneous function, in the
sense that Wμk1,μk2

μk3,μk =μβWk1,k2
k3,k , with β = 0 in the NLSE limit and β = −2 in the SNE limit. This

observation allowed us to heuristically construct superlocal DAMs of the NLSE and SNE in [12].
There, we used the DAMs to examine the respective KZ spectra, and found that in both cases the
flux directions contradicted the Fjørtoft argument. We, therefore, proposed that the flux-carrying
spectra were warm spectra in both the NLSE and SNE. We are now in a position to revisit this
work, in light of the rigorously derived SLAM.

The first thing to note is that in the NLSE limit, the interaction coefficient becomes a constant
across all wavevectors. In particular, this no longer respects the semilocality property: pairs of
wavevectors are no longer picked out by the sharp decay of the interaction coefficient. We,
therefore, cannot approximate the full WKE by the SLAM—to do so would neglect the majority of
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wave interactions, all of which are important in evolving the spectrum. However, we can still use
the DAM for qualitative understanding, e.g. the argument about flux directions and the prediction
of warm cascades [4,12].

By contrast, the SNE are a singular limit of the SHE. We noted in §2 that the SNE are ill-posed,
and that their regularization requires restoring Λ �= 0, i.e. moving to the SHE. To elaborate: in
order to develop the wave turbulence theory and derive the WKE, one starts with a periodic
system [2], but in a periodic system, equation (2.3b) has no non-trivial solutions. Once we derive
the SLAM, this ill-posedness is revealed in equation (3.4): setting Λ= 0 sends SΛ → ∞, i.e. the
SLAM diverges for every spectrum nω. This indicates that one can formally write down the
kinetic equation of the SNE, but the collision integral becomes infinite when any two wavevectors
become equal. Likewise, one can obtain KZ spectra for the SNE based on dimensional arguments,
but these spectra will be invalid because the collision integral will be divergent on these spectra.
Moreover, the KZ spectra will change discontinuously when we regularize the kinetic equation by
settingΛ �= 0. This is indeed what we find when we compare the KZ spectra found in [12] (namely
ω0 for the KZ waveaction cascade spectrum, and ω−1/3 for the KZ energy cascade spectrum, for
the two-dimensional case) to equation (4.6).

Thus, we see that retaining Λ �= 0 in the SHE is necessary in order to regularize the singular
SNE limit. This is a salutary lesson as it highlights the hidden pitfalls of such heuristic derivations
of DAMs: their predictions are misleading if, as in our case, they do not respect essential
properties of the original interaction coefficient. We speculate that a similar derivation of a
semilocal model might be applied to other examples in the literature, e.g. in the theory of
gravitational waves in Einstein’s vacuum field model [34].

(b) Conclusion
Starting from the WKE of the SHE, we have rigorously derived a reduced kinetic equation, the
SLAM, by exploiting the natural locality properties of the interaction coefficient. We believe this
to be the first such derivation of a reduced kinetic equation in which the locality assumption can
be justified self-consistently.

Having derived the SLAM, we use it to obtain the stationary spectra that are responsible for
realizing the dual cascade of energy and waveaction that is predicted by the Fjørtoft argument.
After deriving the formal KZ cascade spectra, and examining their flux directions and locality, we
conclude that neither the direct cascade of energy nor inverse cascade of waveaction are realized
by the respective KZ spectra.

Instead, we predict that the dual cascade is carried by warm spectra. This concurs with our
examination of the limits of the SHE in [12], even though some of that was carried out in the SNE
limit, which is, in fact, singular. Here, though, the SLAM allows us to refine our prediction about
the character of the warm spectra. We predict that the direct energy cascade spectrum will have
positive thermodynamic parameters, and that interactions will be between waves that are local in
frequency. By contrast, the inverse cascade of waveaction will be carried by a nonlocal spectrum,
with interactions at every frequency ω being dominated by the spectrum near the forcing scale
ωf . Accordingly, we derive a nonlocal, warm, inverse cascade spectrum, that is parameterized by
a negative temperature and chemical potential.

Our results on the dual cascade were derived for the forced-dissipated two-dimensional SHE,
which is the setup that leads to the clearest manifestation of the cascades. Results on the inverse
cascade may also apply to the case of turbulence that evolves freely from an initial condition in a
closed system, due to the inverse cascade having finite capacity (the integral of the inverse cascade
spectrum converges when we send ωd− → 0). Experience with finite capacity KZ spectra shows
that an initial condition fills out its respective inertial range in finite time, with the KZ spectrum
establishing after an initial transient [8,35,36]. It remains to be tested whether this phenomenology
carries over to the inverse cascade spectrum of the SHE. By contrast, the direct cascade has infinite
capacity for energy (the integral defining energy diverges as ωd+ → ∞), and so it can absorb
an arbitrary amount of energy that is sent into it, unless there is some small-scale cutoff that
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arrests the direct cascade, e.g. the finite numerical resolution of a simulation. For such systems,
the cascade spectrum typically does not form behind the front that propagates from an initial
condition, unless continuously forced.

The finite-capacity inverse cascade cannot absorb an arbitrary amount of waveaction. If no
large-scale dissipation is provided, waveaction will arrive at the end of the inertial range and
start to accumulate into coherent large-scale structures: condensates and solitons. The dynamics
of these structures are attracting much interest, particularly in astrophysics, where they could
represent galactic dark matter halos [21,37–39], or their one- and two-dimensional analogues in
nonlinear optics [24,40–42]. The dual cascade process is a universal mechanism whereby such
large-scale structures emerge due to the interaction of weakly turbulent small-scale waves, at least
in the initial transient phase where weak waves exist without any coherent structures present.

Our results are, therefore, directly applicable to the two-dimensional case, which may be
accessible in optical experiments. Indeed, experiments modelled by the two-dimensional SHE
have already been conducted, using thermo-optic crystals as the nonlinear medium, particularly
in the context of tabletop analogues of dark matter haloes or boson stars [40,43,44]. One-
dimensional liquid crystal experiments were carried out specifically looking at the wave
turbulence of the SHE [11], and it would be feasible to extend this to a two-dimensional
experiment.

The next step in this work is an extensive numerical comparison of the SHE, its WKE, and
the SLAM, in both the freely evolving and forced-dissipated case. This is currently in progress
by the authors and will be published separately at a later date. Such a comparison was recently
carried out for the NLSE and its WKE [45,46]. Furthermore, we envisage that one could derive a
similar SLAM for the three-dimensional SHE, which will be applicable to the turbulent formation
of galactic dark matter halos, and the one-dimensional SHE, relevant to optical experiments such
as those carried out in [47]. The same methodology should carry over to those cases, with the
technical subtlety in the one-dimensional case, the leading-order wave process is six-wave, rather
than the four-wave case in two and three dimensions.
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Appendix A. Wavevectors relative to k form a right-angle triangle
Waves on the resonant manifold are constrained to have a particular geometric relation. The
frequency and wavevector resonance conditions (2.9) give

ω12
3k = (k1 − k) · (k1 + k) + (k2 − k3) · (k2 + k3)

= 2(k1 − k) · (k − k2) = 0. (A1)

Recalling the definition pi := ki − k, we thus have that p1 is orthogonal to p2. A similar calculation
gives the Pythagorean relation p2

1 + p2
2 = p2

3. We conclude that on the resonant manifold, p1, p2, p3
form a right-angle triangle, see figure 1b.
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Appendix B. Properties of f (s)
In this appendix, we examine the function

f (s) =
∫ 2π

0

sin2(φ)
(1 − 2s cos(φ) + s2)3/2 dφ, (B 1)

where in our application to the SLAM (3.6), s = √
ω2/ω and so 0 ≤ s<∞.

(a) Writing f (s) in terms of complete elliptic integrals
Writing equation (B 1) as a derivative, integrating by parts, using symmetry under φ→ 2π − φ,
and double-angle formulae, we obtain

f (s) = −
∫ 2π

0

sin(φ)
s

∂

∂φ

(
1√

1 − 2s cos(φ) + s2

)
dφ

= 2(1 + s)
s2

[
1 + s2

(1 + s)2 K
(

4s
(1 + s)2

)
− E

(
4s

(1 + s)2

)]
, (B 2)

where

K(z) =
∫ π/2

0

1√
1 − z sin2(σ )

dσ and E(z) =
∫ π/2

0

√
1 − z sin2(σ ) dσ

are the complete elliptic integrals of the first and second kind, respectively, and σ = φ/2.

(b) Asymptotics of f (s)
From equation (B 2), and using the asymptotics of K(z) and E(z) around s = 0, 1, ∞, we obtain

f (s) = π + O(s2) as s → 0, (B 3a)

f (s) = −2 ln |s − 1| + O(1) as s → 1 (B 3b)

and f (s) = π

s3 + O
(

1
s5

)
as s → ∞. (B 3c)

The integrand in equation (B 1) is undefined at s = 1 when φ = 0. This behaviour is resolved by
equation (B 3b): we see that f (s) has a logarithmic singularity as s → 1. This singularity is integrable
in equation (3.6b) as long as the rest of the integrand is regular as ω2 →ω. This regularity holds
for all cases presented in this paper.

(c) f (s) with reciprocal argument
Note that from equations (B 1) and (B 2), transforming s → 1/s gives

f
(

1
s

)
= s3f (s). (B 4)

Appendix C. Locality of power-law spectra
In this appendix, we carry out an analysis of the convergence of the collision integral for general
power-law spectra nω = Cω−x. We do this for completeness, and as a demonstration of the ease of
analysis that the SLAM permits.

The integral in equation (4.3) could diverge as ω2 → 0 or ω2 → ∞. The behaviour of f (s) in
these ranges is noted in appendix B(b).

For ω2 → ∞, i.e. s → ∞, we have that f (s) → π/s3, therefore, Q ∝ ∫∞
ω

1−3/2−2x
2 (1 − ωx−1

2 ) dω2,
which is convergent for x>max{1/4, −1/2} = 1/4.
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For ω2 → 0, i.e. s → 0, we have f (s) → π , and so Q ∝ ∫
0 ω

1−2x
2 (1 − ωx−1

2 ) dω2, which is
convergent for x ≤ 1.

For either choice of ω2, the waveaction and energy equipartition spectra lead to convergence
of the collision integral, since the factor (∂ωn−1

ω − ∂ω2 n−1
ω2

) in equation (3.6b) vanishes exactly for
any RJ spectrum (4.1).

Thus, for ω2 → ∞, the SLAM converges for power-law spectra with spectral index x ∈
{(1/4, ∞) ∪ 0}, and for ω2 → 0 it converges for x ∈ (−∞, 1]. Otherwise, the SLAM is divergent.
These convergence (green) and divergence (red) zones are indicated in figure 2b, for the two
choices of ω2 → ∞ or 0, above and below the x-axis, respectively. The thin green (convergence)
strips around the thermodynamic spectra are indicative only, and in reality shrink to the single
points x = 0, 1.

We see that the KZ energy cascade spectrum, with x = 1/2, gives convergence of the SLAM,
whereas the KZ waveaction cascade spectrum, with x = 1/6, gives divergence as ω2 → ∞ (These
results were found in §4b, but now we see them in their full context of convergence or divergence
on general power-law spectra).

Note that analysing the locality of general power-law spectra is made possible in the SLAM
precisely because of the semilocality manifested by the interaction coefficient of the SHE. This
analysis is not possible when working with a DAM, because in order to construct a DAM one
assumes (without proof) from the outset that interacting waves are superlocal.
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