
Received: 17 September 2021 - Revised: 8 April 2022 - Accepted: 19 May 2022 - IET Software
DOI: 10.1049/sfw2.12063

OR I G INAL RE SEARCH

Mutation-inspired symbolic execution for software testing

Kevin J. Valle-Gómez1 | Antonio García-Domínguez2 | Pedro Delgado-Pérez1 |
Inmaculada Medina-Bulo1

1Escuela Superior de Ingeniería, Universidad de
Cádiz, Puerto Real, Spain

2Aston University, Birmingham, West Midlands, UK

Correspondence

Kevin J. Valle-Gómez, Escuela Superior de
Ingeniería, Universidad de Cádiz, Avenida de la
Universidad de Cádiz 10, Puerto Real, 11519, Spain.
Email: kevin.valle@uca.es

Funding information

European Commission (FEDER) and the Spanish
Ministry of Science and Innovation, Grant/Award
Numbers: RED2018-102472-T, RTI2018-093608-
BC33

Abstract
Software testing is a complex and costly stage during the software development lifecycle.
Nowadays, there is a wide variety of solutions to reduce testing costs and improve test
quality. Focussing on test case generation, Dynamic Symbolic Execution (DSE) is used to
generate tests with good structural coverage. Regarding test suite evaluation, Mutation
Testing (MT) assesses the detection capability of the test cases by introducing minor
localised changes that resemble real faults. DSE is however known to produce tests that
do not have good mutation detection capabilities: in this paper, the authors set out to
solve this by combining DSE and MT into a new family of approaches that the authors
call Mutation-Inspired Symbolic Execution (MISE). First, this known result on a set of
open source programs is confirmed: DSE by itself is not good at killing mutants,
detecting only 59.9% out of all mutants. The authors show that a direct combination of
DSE and MT (naive MISE) can produce better results, detecting up to 16% more mu-
tants depending on the programme, though at a high computational cost. To reduce these
costs, the authors set out a roadmap for more efficient versions of MISE, gaining its
advantages while avoiding a large part of its additional costs.

1 | INTRODUCTION

Software testing is an essential part of the software develop-
ment lifecycle. However, testing often requires a great deal of
effort. Due to these high expenses, testing may receive less
attention than required [1]. The cost of fixing a defect increases
exponentially further into the development process. In other
words, a defect that is not detected at an early stage will
considerably increase the detection effort in successive phases.
Eventually, fixing the defect during validation with the client
could increase the cost considerably. As a result, testing takes
on great importance: a high-quality test suite supports evolving
software at a consistent velocity, as defects can be detected
sooner and repaired at a lower cost. In this context, testing
automation can help produce highly effective test cases in a
cost-effective manner.

In the last few years, interest in software testing and its
automation is increasing. This is mainly due to technical ad-
vances and a heightened awareness of the importance of
software testing. The wide variety of software technologies
requires addressing the software testing stage in different ways.

Object-oriented systems, for example, need test cases that
focus on module cohesion and separation of functionalities.
Therefore, testing techniques should be adapted to the par-
ticularities of the system under test. Performing source code
analysis is a common strategy to automatically generate test
cases. The goal is to get enough information from the pro-
gramme to generate a robust test suite. As for analysis, two
popular techniques are static [2] and dynamic code analysis [3].
While the first is based directly on the source code, the second
is based on its execution. Both techniques provide good re-
sults, as shown by previous studies of different authors [4, 5].
In this work, we focus on dynamic analysis of the source code.

One of the most popular techniques for the automated
generation of test cases is Dynamic Symbolic Execution (DSE)
[6]. This technique explores at once several paths of the source
code, using symbolic values instead of concrete ones. Using a
symbolic execution engine makes it possible to efficiently
control which paths of the source code are traversed [7].
Among its applications, we can mention the automatic gener-
ation of unit tests, and the detection of real defects or memory
overflows [8]. To assess the fault detection capability of the

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. IET Software published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Soft. 2022;1–15. wileyonlinelibrary.com/journal/sfw2 - 1

https://doi.org/10.1049/sfw2.12063
https://orcid.org/0000-0001-6066-9441
https://orcid.org/0000-0002-4744-9150
https://orcid.org/0000-0003-1568-9288
https://orcid.org/0000-0002-7543-2671
mailto:kevin.valle@uca.es
https://orcid.org/0000-0001-6066-9441
https://orcid.org/0000-0002-4744-9150
https://orcid.org/0000-0003-1568-9288
https://orcid.org/0000-0002-7543-2671
http://wileyonlinelibrary.com/journal/sfw2

generated tests, Mutation Testing (MT) [9] is acknowledged as
a powerful method to evaluate and improve test quality. MT is
based on the controlled injection of faults into the source code,
known as mutations. The result of this injection is a new
version of the programme, called mutant. A good test suite
should be able to kill (detect) the mutants. In this regard, it uses
mutation coverage, which is a metric that evaluates the ability
of the test suite to kill mutants. It consists of the ratio of
mutants killed over the whole set.

Currently, the procedures for generating test cases auto-
matically via DSE are mainly focussed on traditional coverage
criteria. It is possible to address the generation of test cases in a
way that increases the mutation coverage, which will help to
find more potential defects in software. This involves
combining DSE with MT, so that DSE takes MT notions into
account when generating test cases automatically: we call this
Mutation-Inspired Symbolic Execution (MISE). In its most
straightforward implementation (which we call naive MISE),
this combination implies executing DSE on each mutant.
These new executions can lead to the generation of different
constraints to explore the paths and, therefore, to the gener-
ation of different inputs from those obtained with the original
programme, resulting in new test cases.

Guided by three research questions, we first measure the
mutation score of the test cases generated by DSE, using them
to kill mutants derived from a set of open source utilities.
Then, we see how, by combining DSE and MT, we are able to
generate test cases that detect more mutants. To do so, we
evaluate around 3000 mutants generated by 12 mutation op-
erators in a set of 30 utilities. The results show that DSE is able
to detect 59.9% of mutants, and naive MISE increases the
number of detected mutants by up to 16%. Naive MISE,
despite its benefits, entails a high cost. Thus, we propose a
roadmap to develop more sophisticated variants of MISE that
produce better test cases in terms of mutation coverage, while
reducing the cost of combining DSE and MT. Other studies in
this field also combine DSE with MT. Some improve MT by
using DSE [10–12], while others use DSE to kill certain types
of mutants [13–15]. Although not combining DSE with MT,
DeMillo and Offut [16] lay the foundations to generate test
data meeting fault-based testing criteria (such as MT). They
generate manual constraints and solve them to obtain test data
with better results in their purpose. Our proposal is to use
DSE to perform constraint generation and resolution based on
MT automatically, reducing the effort significantly.

These studies are described in further detail in Section 7.
However, we go a step further, as we analyse the reasons
behind these results: DSE does not take into account threshold
values, does not consider slight variations in conditions, and is
not concerned with variables that impact the output but not
the execution flow. We propose several ways in which to
extend DSE into MISE, with a view to improving the mutation
coverage of the generated test cases.

The rest of this paper has the following structure: Section 2
describes the most relevant topics in this study (MT and
symbolic execution). Then, in Section 3, we present the idea of
combining DSE and MT to improve the automated generation

of test cases. Following this, Section 4 sets out the three
research questions for study. Section 5 details the experimental
setup and Section 6 presents the results together with their
discussion, including threats to validity. Section 7 is a compi-
lation of related work and, finally, Section 8 shows the con-
clusions and future work.

2 | BACKGROUND

At a very abstract level, there are two test design approaches:
black box testing and white box testing [1]. In black box testing,
the programme is tested without regard to its internal structure.
That is, the code is treated as an opaque box, where only the
inputs and outputs are checked for correctness. On the contrary,
white box strategies do consider the source code of the pro-
gramme under test. Among the most popular white box testing
techniques, we can find DSE and MT. While DSE is useful for
generating test cases automatically, MT is used to evaluate their
capability to detect faults. Both techniques, which are key in this
paper, are explained in detail in the following subsections.

2.1 | Mutation testing

MT is a fault-based white box technique [9] to evaluate the
quality of test cases by introducing slight changes, known as
mutations. The programs that result from applying the muta-
tions are called mutants. These changes are implemented
through mutation operators. Each mutation operator is a series
of instructions that describe the change made to the original
programme. Mutation operators are classified by purpose (e.g.
change of class modifiers or replacement of arithmetic oper-
ators). This technique is usually applied with traditional mu-
tation operators. These kinds of mutation operators introduce
simple changes in arithmetic and logical expressions or typical
control structures in structured imperative languages. It aims to
replicate real coding mistakes made by programmers. Listing 1
is an example of a mutant produced by an operator called ARS,
where the arithmetic operator ++ has been replaced by --.

Listing 1: ARS mutation operator example

1 int exampleMT () {
2 int a = 10;
3 //a++;
4 /) ARS)/a- -;
5 return a;
6 }

A successful test suite should be able to detect the faults
that might be present in the code. According to this logic, at
least one test case in the test suite should produce a different
output when run on the mutants that change the semantics of
the original programme. When the test cases detect a mutant, it
is said that the mutant has been killed; otherwise, it is known
as a surviving or alive mutant. The evaluation of the test cases

2 - VALLE‐GÓMEZ ET AL.

is done by means of the mutation score. This metric, which
ranges from 0 to 1, correlates with the ability of the test cases
to kill mutants.

S ¼
K

M − E
ð1Þ

Formula (1) shows how this score is calculated, with S being
the mutation score, K the number of killed mutants,M the total
number of mutants, and E the number of equivalent mutants. A
mutant is equivalent when its behaviour does not differ from
the original programme. It may happen that the mutation af-
fects a piece of code that is never reached, or that the semantics
of the programme remains intact. These are changes that
cannot be detected by test cases. Equivalent mutants can affect
the reliability of the final result [17], so great efforts are made to
identify them before calculating the mutation score. As for
detecting equivalent mutants, one of the best-known techniques
is Trivial Compiler Equivalence (TCE) [18]. This is a technique
that allows detecting equivalent and duplicated mutants through
the source code optimisations provided by the compiler. Two or
more mutants are duplicated when they are equivalent to each
other but not necessarily to the original programme.

A tool that allows the application of MT and is used during
this work is MuCPP [19]. This MT tool for the C and C++
languages implements different types of mutation operators,
some of which are shown in Section 5. MuCPP classifies
mutants generated using git branches, and each mutation
operator has an identifier assigned to it. The format in which
these are named is as follows: m + ID of operator + _ + ID of
location + _ + ID of attribute (selecting the specific replace-
ment, e.g. one among several arithmetic operators) + _ + name
of file (e.g. m31_1_1_basename would represent the ARB
operator at its first location, with the first attribute selected in
the basename file).

2.2 | Symbolic execution

When we put specific values into the execution of a pro-
gramme, generally only one path of the programme is explored.
In order to appropriately analyse the functionality of a pro-
gramme, more than one execution should be performed with
different inputs. Symbolic execution was presented for the first
time in the 70 s [6], being used for debugging and software
testing. Since then, this technique has been extensively studied
in the literature [7]. This technique analyses software to check
which inputs execute each part of the programme. As it uses
symbolic values, it is able to simultaneously explore several
programme paths. Therefore, running the programme with
symbolic rather than concrete values helps check the properties
of a programme. This execution is performed by a symbolic
execution engine, which stores two key elements for each path:

1. A formula that describes the conditions met during the
execution.

2. A dictionary that relates the variables to the symbolic
values.

The formula is updated and validated throughout the
symbolic execution. The validation is done through a solver,
such as Z3 [20]. The solver checks that the properties are not
violated and that the formula has a solution.

Listing 2: Symbolic execution example

1 int exampleSE (int b) {
2 int a;
3 a = b) 10;
4 if (a == 20) {
5 throw Exception(); //Path 1
6 } else return a; //Path 2
7 }

Consider the example of Listing 2 with a piece of code that
throws an exception when a variable has a specific value. As-
sume that we execute the code using concrete execution. The
variable b would be assigned a value, such as for example, 4.
Then, the variable a would receive this value multiplied by 10
(e.g. a = 40) and would pass to the conditional statement in line
4. Since the value is different from 20, the function would
return the value of a (path number 2). To explore the other
path, which throws the exception, we would have to assign the
value 2 to b. Although we can see at first sight that b = 2 would
throw the exception, this is not so clear when we work with
large programs or with complex formulae.

If we execute the code using DSE, then the variable b will
take a symbolic value (from now on Ω). This value is then
multiplied by 10. When line 7 is reached, the constraint solver
will assign a particular constraint for each of the paths. In this
example, the constraints would be ‘Ω) 10 == 20’ for the
first path and ‘Ω) 10 != 20’ for the second. At this point,
both paths can be independently resolved and executed. At
the end of the symbolic execution, after solving all constraints
accumulated during the execution, specific values are returned
for Ω. In this example, they would be 2 and a value different
from 2.

Despite being a powerful technique for purposes such as
test case generation, two limitations undermine the effective-
ness of symbolic execution [7].

1. Unsolvable Constraints: there may be cases where the
solver cannot solve the path constraints. One of the
simplest reasons for this is that the code depends on
external functions whose code is unavailable.

2. Path Explosion: when the number of paths is so large that
the time needed to explore them is too long.

To alleviate both limitations, different heuristics have been
introduced to achieve high coverage without the need to
explore all paths. These include randomised path exploration
and the widely known DSE.

VALLE‐GÓMEZ ET AL. - 3

DSE, also referred to as concolic execution, consists of the
combination of symbolic execution and concrete execution.
This combination allows exploring paths more easily or
maintain certain control, though it could be necessary to
perform more than one execution. With respect to software
testing, different tools have been developed, each one speci-
alised in a particular environment and language. It was first
introduced by DART [21], which is a tool that combines DSE
with random testing and model checking techniques to run as
many paths as possible and to generate unit tests for the C
language. We can also find CUTE [22], which expands DART
to handle multithreaded programs and thus generate, in addi-
tion to unit tests, the programme's thread queue. Other tools
such as KLOVER [23] or MACKE [24] have successfully
applied DSE to real-world projects in different ways.

In recent years, one of the most widely used and supported
tools in the development community is KLEE [25], a DSE-
based tool to generate unit tests for C and C++ projects.
KLEE uses the LLVM bytecode derived from the programme
as the input and requires certain guidance about what inputs
should be symbolic. Using search strategies to guide the
exploration of the code, KLEE can check every conditional
branch. This tool is the main core of other projects that use
DSE [23, 26].

3 | PROPOSAL: INTEGRATING DSE
AND MT

In this work, we start from the idea that the test generation
capabilities of DSE can be improved through MT. The premise
is as follows: when DSE goes through the source code, it
focusses its efforts on exploring as many paths as possible.
This is not a sufficient criterion for MT, so we can find test
suites meeting line coverage but with a low capability to detect
the injected faults. This is because MT requires more specific
input values (or particular combinations of them) to uncover
the subtle changes introduced.

We propose the integration of both techniques to generate
high-quality test cases in terms of mutation score, leading to a
more sophisticated family of techniques that we call MISE.
This integration may take on different forms for specific
techniques within that family. In order to quickly evaluate the
potential of this integration, the rest of this section will present
a technique that can be implemented directly without changing
DSE nor MT, called naive MISE.

This approach involves applying symbolic execution as
many times as needed to try to kill all the non-equivalent
mutants. As a first step, we can evaluate the mutation
coverage of the tests produced by DSE from the original
version of the software under test (SUT), as shown in Figure 1.
DSE produces a set of test cases, and MT generates a number
of mutants. The mutants are run against the DSE-generated
test cases and marked as killed or surviving depending on
whether a different output was detected or not.

Naive MISE (shown in Figure 2) goes a step beyond that
and applies DSE iteratively to the surviving mutants as well,

generating new test cases that are used to test the remaining
surviving mutants. This process is repeated until all mutants
have been killed, or all the surviving mutants have gone
through DSE. At the end of this process, we could achieve a
test suite with a potentially higher mutation coverage than the
one initially achieved.

Please note that this is a direct implementation with a high
cost. This is due to the need to execute DSE independently on
each mutant. The aim of doing so is to check the impact that
MISE can have on the generation of test cases. Further ideas
for more refined MISE techniques are proposed in Section 6.3.

4 | RESEARCH QUESTIONS

The development of this study is driven by three research
questions. With the first one, we want to see to what extent
DSE is capable of killing mutants. With the second one, we can
see how much the procedure proposed above improves the
mutation score of the test suite. Finally, in the third one, we
propose ways to implement a more efficient version of MISE
based on the results obtained in the results of the study for
RQ1 and RQ2.

RQ 1: To what extent does DSE produce test suites that detect
potential defects?

The motivation for this question arises from the fact that
DSE is an effective technique regarding classic coverage
criteria [7, 25]. However, we want to check whether it is as
good in terms of mutation coverage. This is a necessary first
step to later evaluate whether MISE improves this coverage. In
this question, we assess the ability of this technique to detect
different types of defects in a set of utilities of varying
complexity, following the procedure in Figure 1 of Section 3.

RQ 2: Can DSE be combined with MT to produce higher-
quality test suites in terms of mutation score?

This question is motivated by the possibility of increasing the
mutation coverage of tests generated automatically with DSE.
We want to check whether applying DSE to the mutants derived
from the programs under test produces new test cases that leads
to an increase in the mutation score. The idea is to apply the
naive MISE procedure proposed in Figure 2 of Section 3.

RQ 3: How can current DSE solutions be improved to address
the mutation coverage criterion without significantly
increasing the costs?

The motivation for this research question is to explore
possible ways to improve this process by addressing complex
coverage criteria such as MT. After the results obtained from
the study for answering RQ1 and RQ2, it is interesting to see if
DSE is prepared to generate test cases considering mutation
coverage as a quality criterion. In this research question, we
analyse the results in depth to see which aspects of the

4 - VALLE‐GÓMEZ ET AL.

symbolic execution process could be improved to reach a more
cost-effective solution than the naive MISE procedure.

5 | EXPERIMENTAL SETUP

In order to check whether DSE is capable of finding potential
defects, we use GNU Coreutils1 as a set of utilities to analyse.
These utilities, typically used in other studies involving KLEE
[13, 25], are in charge of manipulating different elements of the
GNU operating system, such as system properties (logname or
hostname), the file system (e.g. ls, chmod or cp), processing
files (e.g. sort), and so on. These utilities are included by default
in most Unix systems, so they represent the main core of the
tools used by millions of users. This means that they have been
in active development for decades and have been extensively
tested. The utilities vary in complexity. For example, we have a
few small utilities with no more than 100 lines of code (e.g.
false, sync or whoami). Most of the utilities in Coreutils are of
medium size: between 200 and 500 lines (e.g. chcon, chgrp, sum
or touch). Finally, we can find some more complex tools with

over 500 lines of code (e.g. expr, md5sum or wc), exceeding
1000 lines in the case of numfmt. Given the variety of func-
tions of this set and their complexity, it is often used in
experimental studies, so we can obtain results that are easier to
compare with other studies in the literature [13, 25]. As we
execute the test cases against the mutants and the original
utilities, the outputs are dumped into text files, and then they
are cleaned up. Specifically, we filter elements which differ in
each execution, such as processes IDs. Finally, the resulting
outputs are compared to classify mutants into killed or alive.

We have narrowed down to 30 utilities from the GNU
Coreutils set (see Table 2). Although this toolkit includes more
utilities, it is reasonable to use a subset of these to make the
study more manageable. In the selection, we have discarded
some utilities for the following reasons.

� Long output: when running the test cases, some of the
utilities produce considerably long outputs (more than
1 GB), which quickly exhausts the available disk space. This
includes base64, tee, users, printf and factor.

� Variable-dependent utilities: some utilities extensively
depend on variables that change over time or some external
properties. This includes the current date and time or
available hard disk space, such as uptime, df and date.

Software Under
Test (SUT)

Generate mutants
using MT

Generate test cases
using DSE

Test cases

Mutants

Run test cases over
the mutants and the

original program

Test cases output
(of the mutant)

Test cases output
(original program)

Compare outputs
Is there any
difference?

no

yes

Mark mutant
as surviving

Mark mutant
as killed

Mutant execution and classification

F I GURE 1 Evaluating mutation coverage from Dynamic Symbolic Execution (DSE) execution on the original SUT

Software Under
Test (SUT)

Generate mutants
using MT

Generate test cases
using DSE

Test cases

Mutants

Run test cases over
the surviving mutants

Mutant execution
and classification

End of list of
surviving
 mutants?

no

yes

Run DSE over the
first surviving mutant

Push new test cases
(if any) in the set

F I GURE 2 Naive MISE: combining Dynamic Symbolic Execution (DSE) and Mutation Testing (MT) for improved mutation coverage

1
https://www.gnu.org/software/coreutils/.

VALLE‐GÓMEZ ET AL. - 5

https://www.gnu.org/software/coreutils/

� Large number of mutants: although generating the mutants
with MuCPP is a quick task, the time of compilation,
execution and test case generation phase of the mutants
depends on the tested programme. In our experiments, each
mutant may take up to 1 h just to be symbolically executed.
Some utilities generate a large number of mutants (between
500 and 2000) and take an unfeasible time in their execution.
This includes join and ls.

� Modification of permissions or system properties: some
utilities, when used with specific inputs, can modify the
parameters or permissions of the underlying system, leaving
the virtual machine in an unstable state. This includes
chmod, chgrp, rm, cp and mv.

The sleep programme is a special case. Even though the
number of mutants is acceptable, we cannot kill a mutant
through its text output. In this case, the execution time is
crucial. However, as it is a programme that pauses the
execution during a given time, the execution time of the test
cases is too high to be considered in these experiments. Some
of the utilities mentioned here, such as chgrp and sleep, have
been tested on RQ1 but have been discarded on RQ2 due to
the limitations of running test cases on each mutant.

In order to apply DSE and generate test cases, we use
KLEE [25]. We have used similar configurations as the authors
of KLEE in previous work with GNU Coreutils [25]. For the
main options, we have made some minor adjustments ac-
cording to our context. We left a memory space of 4 GB, since
the applications we analyse do not usually exceed this limit and,
moreover, it fits well with the configuration of our virtual
machines in the cloud. As for the symbolic execution time, a
small preliminary study has been conducted to find out how
much time the Coreutils applications consume individually.
After running for 30 min, 1, 2 and 3 h, we found that after 1 h
most applications consume the entire time budget, but the
results do not vary enough to observe a significant difference.
For this reason, it has been decided to keep the symbolic

execution time threshold at 1 h for all applications. Finally, we
used the Breadth-First Search (BFS) search strategy. This
technique, used in other similar studies [13], focusses its efforts
on exploring the paths affected by the inputs. As we are ulti-
mately looking for test cases that will act as test inputs, it
strongly fits with our study.

There are several options for applying MT depending on
the language or the code environment [27, 28]. Given that
GNU Coreutils utilities are written in the C language, we have
chosen MuCPP [19], a MT tool for C and C++ projects which
introduces different categories of mutation operators, such as
class-level operators and traditional ones. This tool applies
strong mutation at the source-code level. In strong mutation,
the mutant is considered killed when there is an observable
difference between its output and the output of the original
version (this is different to weak mutation, where the state of
the programme is checked to see if it changed right after
executing its mutation). We apply a set of 12 traditional mu-
tation operators included in MuCPP, which are described in
Table 1 along with their ID of operator to help in their
identification later on. Further details on their specific behav-
iour can be found in the paper in Ref. [19]. In this paper, we
apply first-order mutation, that is, unlike higher-order muta-
tion, we only introduce a single change in each mutant. We also
apply TCE [18] to eliminate both equivalent and duplicate
mutants.

Everything described in this study has been performed in
virtual machines hosted on the Google Cloud platform.2 The
work has been distributed across VM instances of the e2-
medium machine type (dual-core machines with 4 GB of
RAM and Ubuntu 18.04 LTS).

Finally, we should note that we did not use other related
techniques as a baseline, either because they target a different
goal (e.g. equivalent mutant identification in Ref. [11] or seed
generation in Ref. [12], whereas we target increasing the mu-
tation score) or programing language (e.g. Java in Ref. [10, 14]
or FORTRAN in Ref. [16], whereas we target C), and/or
because they apply different tools (e.g. JPF-SE in Ref. [10] or
MuClipse and a SCWR algorithm in Ref. [11], as opposed to
our use of KLEE and MuCPP), a different mutant injection
technique (e.g. bytecode-level mutants in Ref. [13], as opposed
to our source code-level mutants), or a different mutant killing
criteria (e.g. weak mutation in Ref. [13, 15], unlike our appli-
cation of strong mutation), making the results hardly compa-
rable. Nevertheless, the obtained results will be contrasted with
related studies later on in Section 7 when possible.

6 | RESULTS AND DISCUSSION

In this paper, we conducted two main experiments: one to
check the effectiveness of DSE in terms of mutation
coverage and another one to evaluate the impact on the re-
sults when combining DSE and MT. In this section, we show

TABLE 1 Traditional mutation operators included in MuCPP

Operator (ID) Description

ARB (31) Arithmetic operator replacement (binary, unary and short-
cut)

ARU (32)

ARS (33)

AIU (34) Arithmetic operator insertion (unary and short-cut)

AIS (35)

ADS (36) Arithmetic operator deletion (short-cut)

ROR (37) Relational operator replacement

COR (38) Conditional operators (replacement, insertion and
deletion)

COI (39)

COD (40)

LOR (41) Logical operator replacement

ASR (42) Short-cut assignment operator replacement

2
https://cloud.google.com/.

6 - VALLE‐GÓMEZ ET AL.

https://cloud.google.com/

and discuss the results, with the purpose of answering the
three research questions.

6.1 | To what extent does DSE produce test
suites that detect potential defects?

In this experiment, we test the initial ability of DSE to kill
mutants by using the test cases obtained from the non-mutated
versions of the utilities. Table 2 shows the total number of

mutants together with the number of mutants killed by DSE.
We initially get a large number of mutants. However, at this
point, equivalent or duplicate mutants are not considered
because we apply TCE to eliminate as many of those mutants
as possible. The number of mutants is considerably reduced, as
we can see in Table 2. Although this does not exactly ensure
that there are no equivalent or duplicate mutants left, it does
allow us to eliminate a large number of them, so the results will
be more reliable.

Within the set of utilities, we find varied results. There are
some utilities such as chcon, chgrp or uname where the
number of killed mutants is above 70%. There are other util-
ities where the mutation coverage is under 50% because DSE
only killed a few mutants. There are different reasons why
those test cases are unable to detect some mutants. As
mentioned before, although TCE is a reliable technique, it is
not able to detect 100% of the cases, so there are still some
undetected equivalent mutants. In fact, a manual review of
surviving mutants shows us that there are certain mutants that
can be actually killed. These mutants cannot be detected in any
way by a test case. We also found mutations affecting threshold
values in conditional evaluations. Threshold values can be
defined as those values used to determine whether a condition
evaluates to true or false when they are compared to other
variables; therefore, a slight difference in these variables
around the threshold values can decide whether to go through
one branch or another. For example, the mutant
m37_3_1_basename affects a condition of a while loop in line
93, so the evaluation ‘sp > suffix’ is transformed into ‘sp >=
suffix’. In this case, suffix will act as a threshold value. When
the value of suffix is strictly less than sp, the condition is
evaluated to true both in the original version and the mutant.
Therefore, to observe a difference between them, we need a
test case where the variables suffix and sp take the same value.
Only in that case, the mutant will take another path.

Answer to RQ1: DSE is able to produce test suites capable
of detecting potential defects. However, it has limitations in this
regard, due to its focus on traditional coverage criteria. In our
setup, we managed to kill 59.9% of the mutants after applying
TCE, sowe can assume that the set of surviving mutants (40.1%)
still contains plenty of mutants that can be killed.

6.2 | Can DSE be combined with MT to
produce higher-quality test suites in terms of
mutation score?

In the previous question, we were just interested in the
effectiveness of these test cases in killing mutants. We have
seen how there is still a percentage of surviving mutants. The
goal of this experiment is to see if, by applying DSE on the
mutants, this will lead to the generation of test cases to kill
them.

In this section, we show the results obtained after
following the procedure proposed at Section 3. Table 3 shows
how the results have improved. Naive MISE managed to

TABLE 2 Killed mutants per programme in RQ1

Programme LOC
Mutants
before TCE

Mutants
after TCE

Mutants
killed

Mutants
killed (%)

basename 132 36 29 14 48.2

chcon 446 41 18 16 88.8

chgrp 249 23 22 22 100.0

chown 258 12 12 9 75.0

chroot 197 49 35 8 22.8

cksum 225 120 110 67 60.9

dirname 98 12 11 8 72.7

echo 213 29 21 7 33.3

expr 790 257 254 135 53.2

false 2 5 5 3 60.0

link 60 12 11 8 72.7

logname 56 12 11 8 72.7

md5sum 657 280 216 25 11.6

mkdir 224 111 63 27 42.9

nproc 94 12 11 8 72.7

numfmt 1110 1071 795 254 31.9

pathchk 297 38 21 18 85.7

pwd 263 268 260 18 6.9

realpath 221 25 24 17 70.8

rmdir 171 70 43 24 55.8

sleep 105 33 23 17 73.9

stdbuf 278 103 68 39 56.5

sum 200 157 146 83 56.9

sync 45 12 11 8 72.7

touch 313 111 78 49 62.8

truncate 335 165 164 65 53.2

tty 80 12 11 8 72.7

uname 281 116 57 42 73.7

wc 624 688 546 338 61.9

whoami 63 12 11 8 72.7

Total 8087 3892 3087 1353 59.9

VALLE‐GÓMEZ ET AL. - 7

improve the mutation score in 9 utilities. In several of them,
such as md5sum, the improvement is significant, as it increases
the mutation coverage by 16%.

Note that the number of utilities in Table 3 is lower than in
Table 2 because we only show those utilities in which this
solution increased the number of killed mutants. We should
also notice that there were some utilities with little room for
improvement, such as those with only 2 or 3 alive mutants
(chcon, chown, dirname, link, logname, nproc, pathchk, sync,
tty and whoami). As can be seen, there are still some mutants
that could not be detected, either because they are equivalent
or because the necessary test case was still not found. A large
number of mutants makes it impractical to analyse each indi-
vidual case, but non-equivalent mutants that remain undetected
have been identified in most of the utilities discussed in this
section. A good example is the basename utility, where there
are almost no equivalent mutants left but only one is killed at
this stage.

We also found the existence of crossfire mutants. This refers
to surviving mutants that are killed by test cases designed to kill
other mutants [29]. Thus, it may not be necessary to apply DSE
to all surviving mutants. This has happened in three cases:
cksum, sum andmd5sum. For example, in cksum, the test cases
associated with one of the mutants (m34_1_2_cksum) have
killed six other mutants (m33_1_2_cksum, m33_2_1_cksum,
m33_2_2_cksum, m34_10_1_cksum, m34_16_1_cksum and
m34_17_1_cksum). The same happens with sum, where the test
cases generated for onemutant (m35_11_3_sum) kill three other
mutants (m34_11_1_sum, m34_24_1_sum and m34_30_1
_sum).

At this point, it is appropriate to study the reason why
some mutants that survived the experiments of RQ1 are killed
at this stage. A manual analysis of the newly killed mutants has
led us to identify several reasons for this, which are described
below. These reasons are shown in Table 4 along with the
name of some exemplary mutants found and their respective
mutation operators. As there are 241 mutants, we only show
the most significant ones, where the described situations can be
seen.

R1: The point of mutation is not analysed in the first
symbolic execution: by analysing the line coverage as an
auxiliary measure, we see which lines are covered in each
symbolic execution. We found some mutation locations that
were not reached in the execution of DSE on the original
programme but are later covered in the executions of DSE on
the mutants. In our case of study, this usually happens when
the execution finishes without evaluating certain conditions. It
is also possible that the generated constraint is too complicated
to be resolved in the first place. Other factors, such as those
described in Section 6.4, may limit the generation of test cases
for certain cases and somehow be addressed by the mutant. It
is convenient to carry out an extensive empirical study specific
to this case. This causes the generation of new test cases which
can kill the mutant.

R2: The initial test case values are far from the conditional
thresholds: some mutation operators, such as ROR, affect the
comparisons. Often, the symbolic execution engine assigns
values that are far from the threshold values in those com-
parisons. When applying DSE on the mutant, this value is used
to create a new test case.

R3: The mutation is not directly applied to the conditions,
but it does indirectly impact their evaluation. For instance, the
mutation may impact the handling of a variable that one of the
condition variables depends upon (e.g. the condition variable

TABLE 3 Mutants killed by percentage

Programme Mutants killed (initial tests) (%) New mutants killed Mutants killed by % (RQ2)

basename 48.2 +1 51.7

cksum 60.9 +18 77.3

expr 53.2 +6 55.5

md5sum 11.6 +35 27.7

numfmt 31.9 +3 32.3

realpath 70.8 +1 75.0

stdbuf 56.5 +4 63.2

sum 56.9 +14 66.4

Touch 62.8 +10 75.6

TABLE 4 Reasons identified for the presence of surviving mutants,
accompanied by illustrative mutants generated by different operators in
diverse programs

Reason Programme Mutant Operator

R1 Numfmt m37_10_1_numfmt ROR

Cksum m34_18_1_cksum AIU

R2 Basename m37_3_1_basename ROR

Touch m35_4_3_touch AIS

m35_6_1_touch AIS

R3 Sum m31_3_1_sum ARB

8 - VALLE‐GÓMEZ ET AL.

may be calculated from it). This case is slightly more complex,
as it directly affects the way restriction queries are built up in
DSE.

These cases could be reduced if the test cases had been
generated with mutation coverage in mind. When the point of
mutation is not analysed in the first symbolic execution (R1) it
seems certain variables are not considered during the analysis,
since others provide enough influence to go one path or
another. However, when the mutation operator is applied, the
relative importance of the variables changes, which is why in
the experiments of Section 6.2 a new test case is generated that
kills the mutant. R2 and R3 are closely related. However, it is
easier to solve R2, since it is simple to know the threshold
values in the conditions, being useful for mutation coverage.
R3 is a case that deserves further analysis since it would be
necessary to take into account the changes in the values before
reaching the conditions.

One point to note is that most of the new killed mutants
belong to the operators AIU, AIS and ROR. We have found
that they are the mutation operators that generate most of the
mutants. Still, it makes sense if we compare the changes made
by these operators with the reasons given in this section. The
operators AIU and AIS introduce arithmetic operators (-, ++
and --). This causes small changes that can be difficult to
detect, entering the above case for R2 and R3. On the other
hand, ROR replaces arithmetic operators. This situation causes
changes in the conditions, fitting in the case exposed for R1
and R2.

As for the mutants that remain alive, these three operators
reappear, due to the number of mutants they generate. How-
ever, the appearance of the COI operator is remarkable, where
this method rarely kills any mutant. This mutation operator
negates a condition. When DSE goes through the paths in the
code, the negation of the condition will not affect it, since it
will still access both paths with the same data. This means that
the same test cases will be generated, only in a different order.
Therefore, when generating test cases for this type of mutants,
a new one is rarely obtained using DSE.

Answer to RQ2: The combination of DSE with MT
makes it possible to generate new test cases capable of killing
more mutants. Even on some occasions, the influence of
crossfire mutants allows new test cases to kill other mutants.
The proposed implementation of MISE, although it incurs
high expenses, gives evidence of the potential of this family of
techniques.

6.3 | How can current DSE solutions be
improved to address the mutation coverage
criterion without significantly increasing the
costs?

The experiments carried out to answer RQ2 show that the
combination of DSE with MT is promising. However, both
techniques present a high cost in terms of time and re-
sources, and the expenses of executing DSE are multiplied

by the number of mutants when applying naive MISE. To
address this issue, an alternative approach is to directly
improve the internal mechanics of DSE with the knowledge
extracted from mutants, thereby saving the high cost of their
execution. At this point, we have identified three opportu-
nities to enhance the test cases generated by DSE to
improve the mutation coverage without significantly
increasing the costs: considering threshold values, altering
constraints and considering variables that impact programme
output when generating test cases. These three opportunities
for improvement are described in further detail below. Please
note that, for the sake of clarity, from now on we resort to
simple examples or simplified fragments of code to better
illustrate the proposed improvements instead of using the
real source code of the utilities where we detected similar
situations.

6.3.1 | Considering threshold values

When analysing the test cases manually, we have noticed that
the values generated by DSE are often very far from the
threshold values, such as 16,843,009 or −2,147,483,648. While
it is true that these values suffice to cover paths or meet
traditional coverage criteria, they are not sufficient in terms of
mutation coverage. As DeMillo and Offut comment [16],
mutant-killing requires test data with the ability to detect faults.
This includes branch coverage, domain analysis and extreme/
threshold values. The latter is essential for certain types of
mutants and although the values proposed by KLEE are
certainly extreme, they are not for the conditions that may be
encountered during source code evaluation. By reapplying
DSE on living mutants, there are many cases where that
threshold is considered as a new value in the test cases, and
therefore the mutant is killed.

This was the case of the mutant generated by ROR in the
utility numfmt in line 477, where the operator < is changed
to <=. To understand what this involves, let us go back to
Listing 2 in Section 2.2. As we saw earlier, two are the con-
straints that should be handled by the solver at line 7: ‘Ω)

10 == 20’ and ‘Ω) 10 != 20’. Therefore, the test cases ‘Ω = 2’
and ‘Ω = 3’ would be able to cover both paths by meeting the
first and second constraint, respectively. Now suppose we
apply a mutation operator that changes the ‘==’ operator to
‘<=’. With these two test cases, we would not be able to
appreciate the change in the code, so this mutant would not be
killed, even though it is not equivalent. The value ‘Ω = 1’,
however, would allow exploring the second path in the original
programme but the first in the mutant, thus detecting the
difference modelled by this mutant. These values are listed in
Table 5, where we can see which path would be taken
depending on the value.

The incorporation of MT-specific elements when gener-
ating test data input can solve this issue. The process should
explore the values surrounding the threshold value. For this
reason, it is convenient to generate test cases that contemplate

VALLE‐GÓMEZ ET AL. - 9

three elements: the threshold value, a lower one and a higher
one. Not only that but also consider other variations that
mutation operators may introduce, such as small variations in
text strings. It would be necessary to generate more data for
the same test cases that DSE generates in the current state.
More options would then be considered, which could help to
kill more mutants without incurring the costs of applying DSE
to the mutants as in naive MISE.

6.3.2 | Altering constraints

A way to improve the test cases is by taking advantage of the
generation of test data after the symbolic execution. For this
step, we propose the modification of the restrictions of the
queries through the KQuery language, a textual representation
of the constraints in KLEE.3 The solver obtains the inputs for
the programme through these expressions, which serve as the
input values for the test cases.

Let us see an illustrative example. Listing 3 shows a small
piece of code from one of the examples provided by KLEE.
There are two checks in this method: ‘x == 0’ and ‘x < 0’. As a
result, three test cases are generated, each with a different value
for x: 0, less than 0 and greater than 0.

Listing 3: Get Sign example

1 int get_sign (int x) {
2 if (x == 0) return 0; //Path 1
3
4 if (x < 0) return -1; //Path 2
5 else return 1; //Path 3
6 }

Listing 4 shows the query which is solved for one of the
test cases. This query generates a value focussed on reaching
the path 3. In this example, we can assume that N0 repre-
sents the variable x, which is given a symbolic value in line
4. First, to avoid exploring the path 1, the query imposes
that the value of N0 has to be different from 0 (see lines 2
and 3). Then, to reach path 3, the query requires the value
of N0 to be greater than 0 (Slt stands for Signed less than).
The result of solving this query will be 16,843,009, which is
greater than 0.

Given the KQuery shown in Listing 4, we propose a
strategy to explore other paths of the same piece of code
apart from path 3. In this example, this strategy would allow
exploring path 2 by reusing the query built to explore path
3—without having to run DSE again. In line 5 of Listing 4,
as we have pointed out before, the query requires that the
value of N0 is greater than 0 (N0 could not be 0, since it
would then have taken path 1). By removing Eq false (see
line 5 marked in red of Listing 5), the query changes the
condition, now requiring the value of N0 to be less than 0.
The result of solving the mutated query is −2,147,483,648, a
value which effectively is less than 0 and therefore useful to
explore path 2.

Listing 4: KQuery of a test case

1 array a[4]: w32 -> w8 = symbolic
2 (query [(Eq false
3 (Eq 0
4 N0:(ReadLSB w32 0 a)))
5 (Eq false (Slt N0 0))]
6 false [] [a])

Listing 5: Modified KQuery

1 array a[4]: w32 -> w8 = symbolic
2 (query [(Eq false
3 (Eq 0
4 N0:(ReadLSB w32 0 a)))
5 (Slt N0 0)]
6 false [] [a])

According to this example, it is possible to introduce small
modifications to the queries to obtain new test data input
(following the same logic of mutation operators). The cost of
solving these queries is usually much lower than that of
generating them. Therefore, after a single DSE run, we can
take advantage of existing queries to generate new test data
inputs that may increase the mutation coverage, avoiding the
high cost of running DSE multiple times.

6.3.3 | Considering variables that impact
programme output

Dynamic Symbolic Execution is designed to generate test cases
that maximise structural coverage and does not consider mu-
tation coverage by itself. This can mean that it will ignore
variables that do not impact the execution flow, even if they
impact the output.

Consider Listing 6 from the sum programme, which shows
the mutated part of m31_3_1_sum. In this mutant, the ARB
mutation operator replaced the + in the original version of line
2 with a -. This mutant survived the test suite generated by
KLEE from the original program.

TABLE 5 Paths explored in Listing 2 with different values for the test
cases

Test cases

Version ‘Ω = 2’ ‘Ω = 3’ ‘Ω = 1’

Original Path 1 Path 2 Path 2

Mutant (== by <=) Path 1 Path 2 Path 1

3
https://klee.github.io/docs/kquery/.

10 - VALLE‐GÓMEZ ET AL.

https://klee.github.io/docs/kquery/

Listing 6: Sum example of variable

1 …
2 checksum = (r & 0xffff)/) ARB)/- (r » 16);
3
4 printf ("%d %s", checksum,
5 human_readable (total_bytes, hbuf,
6 human_ceiling, 1, 512));
7 …

In this fragment, the value of the variable r eventually
propagates to the programme output through checksum, but
it does not impact the execution flow of the programme. The
same lines will always be executed regardless of the value of r,
so KLEE will not consider it for its restrictions unless there are
other conditions outside this fragment. For instance, r = 0
would work just as well if we only want to cover those two
lines. However, r = 0 would not help detect the mutation from
+ to – done by ARB, as we would be adding or subtracting 0 in
either case. We would need r ≪ 16 to produce a non-zero
result in order to be able to tell the difference between the
original and the mutant.

As it is, KLEE does not have the ability to detect
variables that are relevant to the output and consider various
conditions that would impact their values. In a way, KLEE
would have to be extended to be mutation-aware: this in-
volves several challenges. One challenge is to detect the
variables themselves that should be made symbolic, and the
other is to generate values that will produce different out-
puts from the mutants.

Regarding the first challenge, beyond manual annotation by
the developer, one option could be to have KLEE aware of a
number of functions that ‘produce output’ and have it follow
data dependencies backwards from their arguments. As a first
approximation, the appropriate C standard library functions
could be annotated in this way: printf would be an obvious
choice for a function that produces output. Looking at the
arguments, checksum would be found and following its data
dependencies backwards would reveal r. This new capability
would need to be limited to certain thresholds to be set by the
user, however, in order to keep computational costs under
control.

In relation to how to produce values relevant to the
mutants, one first approximation would be to generate a
random set of values for r rather than a single value. With
multiple values, there is a higher chance the mutant will be
killed, but it still would not be guaranteed. A better way
would be to look at the subexpressions that involve r (such
as r & 0xffff or r ≫ 16) and set out conditions to
produce different results from them (e.g. zero/non-zero). For
instance, if we had one test case where r ≫ 16 produced a
non-zero value, we would be able to kill the highlighted
mutant. Other authors have also considered various ways to
make KLEE smarter at generating specific values, such as
strings (Yoshida et al. [23]), or arrays and bit vectors
(Dustmann et al. [30]): our proposal would be a new source
of constraints for KLEE.

Answer to RQ3: There are multiple ways to implement
MISE in order to automatically generate test cases. In addition
to the naive implementation shown in this paper, current tools
can be adapted to alter constraints, to consider also variables
that impact the output and not just the execution flow, and to
select values that can kill more mutants through threshold
values and subexpressions. In this way, DSE tools could
leverage MT to potentially achieve a similar mutation coverage
than that of naive MISE but maintaining a single run and
reducing the costs significantly. Designing and implementing
these extensions (e.g. by implementing dedicated solvers or
performing additional analyses) is part of our future work.

6.4 | Threats to validity

As far as construct validity is concerned, we find two main
threats: equivalent mutants and search strategy. The existence
of equivalent mutants is a typical limitation of any work with
MT. Sometimes, when the number of mutants that remain alive
is not too high and there is an in-depth knowledge of the
subjects under test, they can be reviewed to detect them
manually. In our study, however, we had to resort to an
automated method such as TCE. As mentioned before, this
technique significantly reduces the number of duplicate and
equivalent mutants. However, its effectiveness is limited, so
there is no guarantee that all of them have been detected. The
search strategy used in DSE is also important in this respect.
We have set the BFS search strategy for all the executions with
KLEE. This is a popular strategy in this kind of studies [13].
However, KLEE is compatible with other strategies, such as
Depth-First Search, Random Path Selection or Non-uniform
Random Search. The choice of other search strategies may
lead to different results and should be considered according to
the nature of the experiment being run. In this work, we
constantly compare the outputs of two runs (i.e. the one of the
original programme and the one of a mutant), so we consid-
ered BFS appropriate to avoid as many random elements as
possible.

We also take into account external validation, finding three
main threats: the high cost of DSE, the configuration of the
experimental setup and the use of GNU Coreutils. As we have
seen before, one of the limitations of DSE is the path explo-
sion. The number of possible paths increases with the size of
the programme, which usually ends up consuming most of the
available resources. To avoid this, we allowed a maximum time
span of 1 h for each execution, as in other DSE studies. We
believe this is sufficient with the utilities of GNU Coreutils, as
many of these utilities do not consume the entire time budget.
Regarding the experimental setup, the configuration of MuCPP
and KLEE may affect the final outcome of the experiments.
We have applied the set of traditional mutation operators
included in MuCPP, as the utilities we tested are developed in
C. On the other hand, KLEE presents a large number of
configurable options, including time budget, different search
strategies or the number of symbolic arguments. In this study,
we have applied the same configuration proposed by its

VALLE‐GÓMEZ ET AL. - 11

authors in their initial study; however, we believe that it is
possible for certain mutants to be killed by configuring KLEE
for each individual case. Although it is feasible in theory, in
practice it may be too resource-intensive compared to the
possible benefits. This possibility will be further investigated in
future experiments. Finally, despite the benefits of using GNU
Coreutils in this research, it also poses some threats to external
validity. The size of the utilities is not very large (see Table 2)
and, as such, it is unclear whether the results from this study
can generalise to other large-scale programs. Nevertheless,
KLEE is typically applied to unit tests dedicated to specific
system modules, rather than the entire system; therefore, the
approach only needs to scale to handle the largest module in
the system. Further studies and adaptations that include
different tools (apart from KLEE and MuCPP) and pro-
graming languages (apart from C) are required in the future,
both as test subjects and test generation tools.

7 | RELATED WORK

7.1 | Software testing automation

Automatic test generation is a diverse and active topic in the
research community. In this field, some tools have shown a
remarkable ability to automatise the generation of test cases
following different approaches. For example, two well-known
tools are EvoSuite and Randoop. EvoSuite [31] generates
test cases specifically designed for object-oriented programing.
During the test construction process, this tool uses a Search-
Based Software Engineering approach by applying a genetic
algorithm. Randoop [32], on the other hand, is a tool for the
generation of unit tests through feedback-oriented random
testing. This technique consists of running tests with random
or semi-random data. These are generated taking into
consideration some knowledge of the programme under test.
As an example of their effectiveness, Randoop has been used
to find bugs in Microsoft.NET code [33], while Evosuite has
also been used to find real bugs in financial software [34]. The
latter has also obtained the best score in recent tool compe-
titions [35].

Another popular technique for automatic test case gener-
ation is symbolic execution. This technique has been exten-
sively studied in the literature [7]. As we have seen before, this
technique presents two open challenges: path explosion and
code coverage. Different authors work to overcome them and
maximise the benefits of the results [23, 36, 37]. Yoshida et al.
propose KLOVER [23], a framework for automatic test gen-
eration on industrial software systems. It is based on three
tools, including a modified version of KLEE. This approach
addresses the scalability challenge by only exploring the paths
that can lead to new test cases as well as by minimising the
resulting test suite. Another study introduces Munch [36], a
framework that combines symbolic execution with fuzzing
[38], a technique that covers numerous test cases using invalid
data as input. In doing so, the authors manage to alleviate the
problem of path explosion, thus achieving better function

coverage than both techniques separately. To maximise code
coverage, Mossberg et al. propose Manticore [37], a Symbolic
Execution framework tailored to analyse binaries and smart
contracts. In addition, Manticore features a user-friendly
interface that allows customising the analysis. Furthermore,
there are a wide variety of tools dedicated to software testing
via symbolic execution, such as DeepState [39] for C and C++
programs and mCute [40] for UML state machines.

7.2 | Combining DSE with MT

The combination of DSE with MT is an area of active research
in recent years. Although not using the DSE technique to
generate or solve constraints, DeMillo and Offut [16] are one
of the first authors to explore the idea of generating test data
by combining MT with algebraic constraint solving, with the
aim of finding certain types of mutants. They thus lay the
foundations for the work that has been published since then in
this line of research. Similar to our research, the authors
recognise that fault-based testing techniques, such as MT, are
more effective than traditional coverage criteria for finding real
defects in source code. However, the cost of generating test
cases in these situations entails a high cost. In their proposal,
the authors introduce mutations into a set of Fortran and C
programs and then generate an algebraic constraint that must
be satisfied in order to kill the mutant. By solving the
constraint, they obtain test data which produces different re-
sults in the mutant when used from the test cases. The dis-
tinctions with our work are also notable, as they do not use
DSE, so they rely on an external programme (Godzilla) to
satisfy the constraints they generate in their proposal. In
addition, they apply a different set of mutation operators than
ours, although including a few traditional operators (AOR, LCR
and ROR). The main advantage of our work is that, by using
DSE, the whole process of constraint generation and resolu-
tion is automated. Our proposal is also applicable to C and C+
+ programs, which together with the most current MuCPP
mutation operators, we obtain results that are more compa-
rable with the rest of the current work on this subject.

Some studies manage to improve MT with the help of DSE
[10]. In that paper, the authors use different techniques,
including DSE, in order to introduce certain mutations in the
programs. During their experiments, they check the mutation
score of the test cases generated by three different test tools. It
is shown how the tools are effective in terms of branch
coverage but not so effective in killing mutants, which is in line
with the initial experiments in our study. By introducing mu-
tants into the test case generation process, mutation coverage is
significantly increased. Although they combine different tech-
niques, we can see that the inclusion of MT improves the re-
sults similarly to what is proposed in our study. In another
related work, Ahmed et al. propose a strategy known as
Detecting Equivalent Mutants using Dynamic Symbolic
Execution [11]. With DSE they are able to classify mutants and
detect the equivalent ones. Their set of mutation operators is
very similar to that of our study and they obtain good results in

12 - VALLE‐GÓMEZ ET AL.

detecting equivalent mutants. However, in our work, we dis-
carded a subset of the equivalent mutants using TCE, so the
results are not comparable. Although both studies combine
DSE with MT, their approach is focussed on improving MT
through DSE. Contrarily, our goal in this work is to improve
DSE through MT.

There are some approaches that aim to improve the
automatic generation of test cases by combining DSE with
MT. Papadakis and Malevris [14] propose an extension to DSE
to automatically generate test data based on MT. Incorporating
their approach in an automated framework for producing
mutation-based test cases, they are able to kill most of the non-
equivalent mutants. The process they developed uses mutant
schemata and control flow graphs and uses DSE to produce
conditions to reach the mutation, infect the programme state
and propagate the state to the output. In their case study, they
manage to achieve a mutation coverage of more than 85% over
the mutants identified as killable. In our work, with naive MISE
we killed 75% of all mutants in the utilities cksum, realpath and
touch. However, these values are not comparable. While the
authors of that study select five tools in the small-medium size
range (varying from 40 to 500 lines of code), we analyse the
GNU Coreutils set of utilities, which is composed of dozens of
independent utilities (altogether, they reach thousands of lines
of code). Our purpose is to verify the mutation score of naive
MISE in an environment similar to what we find in a real
development, so it seems appropriate to apply it to this widely
used toolkit. In addition, we have not manually identified the
equivalent mutants in our study, but we estimate that our actual
mutation coverage would be higher after removing the
remaining equivalent mutants. They also highlight the high cost
associated with applying both techniques.

Zhang et al. [15] propose PexMutator, a test generation
tool for MT using DSE. They generate a meta-programme
from the SUT and embed the mutations in specific con-
straints. By doing so, DSE can generate test cases which target
the constraints and kill the mutants in most cases. This tool, in
its case study, is capable of killing up to 80% of non-equivalent
mutants, which is close to the 75% of all mutants that naive
MISE is capable of killing in our best-case scenario. Again, the
percentage of killed mutants in both studies is not comparable.
On the one hand, the authors use a set of five mutation op-
erators (ABS, AOR, LCR, ROR and UOI), while in our study
we apply a total of twelve mutation operators, as detailed in
Table 1. Please note that the acronyms of the mutation oper-
ators may vary between the mutation tools used. On the other
hand, the authors of PexMutator use a limited set of 5 small-
sized utilities taken from a real library (containing between 1
and 12 methods). Unlike these studies, we do not contemplate
the use of meta-mutations: our long-term aim is to extend
DSE with the idea underlying MT (as discussed in Section 6.3)
to have it run on the original programme and still produce
better test suites in terms of mutation coverage, without
incurring the significant costs that generating and executing
mutants can introduce.

A recent tool that stands out for its good results combining
DSE with MT for software testing is SEMu [13]. The authors

also seek to benefit from mutants that remain alive (i.e. stub-
born mutants) to improve DSE but at a more reduced cost than
that of exhaustive exploration. To that end, they implemented
SEMu as an extension of KLEE, which combines different
strategies to make the process more efficient, mainly the use of
meta-mutation and a family of heuristics to reduce the number
of paths to explore. Thanks to the meta-mutation, the paths
shared by the original programme and the mutant are not
explored again in each mutant. The optimisation of the heuristic
search allows for a better use of the available search budget to
explore the paths affected by the mutation. Since they do not
perform an exhaustive exploration, this increases the chances of
finding an infected state that also propagates to the outputs.
There are some differences between their work and ours. For
example, SEMu mutates code at the bytecode level, unlike our
MuCPP tool which works at the source code level, and the
authors use test cases manually developed by the authors of
GNU Coreutils as a seed in the execution of the tool. The au-
thors reported better results than KLEE when killing stubborn
mutants in a selection of Coreutils programs. Similarly to us,
they reported high costs and had to discard a number of Cor-
eutils programs due to those costs. While their approach im-
proves the performance of the technique, the general time is still
bounded by the number of existing stubborn mutants. Also, the
more exhaustive the configuration for the heuristic search, the
more the paths explored and the higher the required compu-
tational cost. As such, there is still room for improvement if we
could take advantage of the information provided by mutants
without executing DSE for each mutant (the naive MISE
approach discussed in Section 3).

Another testing tool that combines DSE with MT is SAFL
[12]. In this approach, DSE is first used to generate some initial
seeds, which will later serve to feed a mutation-based fuzzing
process. SAFL proves to be an efficient tool that is able to
explore deep paths easier and earlier thanks to both its fuzzing
algorithm and the classification of seeds according to the path
coverage. However, the data is fuzzed without being aware of
the exact mutations injected in the programme, so the
approach is in principle limited when it comes to killing some
more sophisticated mutants, especially in complex software
systems (e.g. those that require some specific values for
different variables before reaching the mutation). As with
previous work, it is difficult to compare the set of tools used.
We should note, however, that they use DSE to obtain an
initial set of qualified seeds instead of random ones for the
later fuzzing process, while we aim to employ DSE as the main
technique to generate test cases able to detect faults.

All these studies are successful in demonstrating how DSE
and MT are techniques that, when combined, are of great
benefit and serve as a motivation and complement to further
develop this family of techniques. This paper is the consoli-
dation of an idea initially outlined as a short 4-page conference
paper, written in Spanish [41]. In that outline paper, the hy-
pothesis that combining DSE and MT could potentially lead to
a mutation coverage increase was introduced, and a pilot study
was carried out considering a small set of utilities. These pre-
liminary results motivated further research in this line, leading

VALLE‐GÓMEZ ET AL. - 13

to the comprehensive study presented in this paper. More
specifically, this paper expands the idea further by introducing
three research questions (see Section 4) and conducting an
experimental study based on the diagrams shown in Figures 1
and 2. Additionally, in this paper, we propose possible im-
provements of the mechanics of DSE based on the obtained
results (shown in Tables 2 and 3).

8 | CONCLUSIONS

The contribution of this paper is a study of the effect of
combining DSE and MT, introducing the idea of MISE. Its
purpose is to incorporate MT into the automatic generation of
test cases with symbolic execution in order to increase the
mutation coverage. First, there is a study performed on the
GNU Coreutils utilities set where we check the initial mutation
coverage of the test cases generated with DSE. Second, we
exploit the information provided by surviving mutants by
applying naive MISE, running DSE on each of these mutants
to generate new test cases not contemplated in the initial
execution on the original programme. Finally, we analyse the
situations in which MISE is able to kill mutants that survived
the initial execution in order to find out the reasons behind this
outcome.

In our setup, where we use KLEE to detect the mutants
produced by 12 mutation operators included in MuCPP, DSE
is able to kill 59.9% of them on average in the tested programs.
As we have seen in the results, the distribution of surviving-
killed mutants varies in each programme, being very low in
some cases and close to 100% in others. About one third of
mutants survive, so a good number of plausible defects would
be left uncovered. It is desirable to improve the way DSE
generates test cases to increase the initial percentage of killed
mutants.

We have found that naive MISE increases the number of
mutants killed in some of the utilities by up to 16%. The test
cases generated with a surviving mutant sometimes kill other
mutants, such as in the case of sum, cksum and md5sum. This
allows for automatically generating a set of test cases with a
higher mutation coverage while reducing the required effort
since it is not always necessary to apply DSE to every surviving
mutant. In conclusion, MISE can produce higher-quality test
suites regarding mutation score. However, the direct combi-
nation of DSE and MT in naive MISE implies a high cost, and
there are still some mutants that remain undetected. To reduce
costs, we propose three approaches in Section 6.3: considering
threshold values, modifying path constraints and considering
variables that impact programme output. One solution is to
develop a new solver that generates more test cases by taking
into account the current limitations related to mutation
coverage. The conclusion is that there is room for improve-
ment and that it is necessary to find an approach adapted to the
needs of DSE and the different software projects. This
perspective presents new research opportunities to be
considered in the development of this technique.

The procedure can be extrapolated to all sorts of software
systems, so we intend to start applying it in real environments,
such as the one presented in a previous work [42]. In this sense,
although it can help the industry to find defects by reducing
testing effort, there are different risks than those found in
traditional projects. For example, it could be the case that we
find unreachable dependencies, or that the symbolic execution
needs much more time than usual to generate a set of test cases.
In any case, it is convenient to see how it behaves in this type of
systems and to measure the benefits of its application.

ACKNOWLEDGEMENTS
The work was partially funded by the European Commission
(FEDER) and the Spanish Ministry of Science and Innovation
(projects RTI2018-093608-BC33 and RED2018-102472-T).

CONFLICT OF INTEREST
The author declares no conflict of interest.

DATA AVAILABILITY STATEMENT
Data available on request from the authors: the data that
support the findings of this study are available from the cor-
responding author upon reasonable request.

ORCID
Kevin J. Valle-Gómez https://orcid.org/0000-0001-6066-
9441
Antonio García-Domínguez https://orcid.org/0000-0002-
4744-9150
Pedro Delgado-Pérez https://orcid.org/0000-0003-1568-
9288
Inmaculada Medina-Bulo https://orcid.org/0000-0002-
7543-2671

REFERENCES
1. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. John

Wiley & Sons, New York (2011)
2. Louridas, P.: Static code analysis. IEEE Softw. 23(4), 58–61 (2006).

https://doi.org/10.1109/ms.2006.114
3. Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29(3),

155–163 (1988). https://doi.org/10.1016/0020-0190(88)90054-3
4. Kirchmayr, W., et al.: Integration of static and dynamic code analysis for

understanding legacy source code. In: IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 543–552 (2016)

5. Tzermias, Z., et al.: Combining static and dynamic analysis for the
detection of malicious documents. In: Proceedings of the Fourth Eu-
ropean Workshop on System Security, pp. 1–6 (2011)

6. King, J.C.: Symbolic execution and program testing. Commun. ACM
19(7), 385–394 (1976). https://doi.org/10.1145/360248.360252

7. Baldoni, R., et al.: A survey of symbolic execution techniques. ACM
Comput. Surv. 51(3), 1–39 (2018). https://doi.org/10.1145/3182657

8. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades
later. Commun. ACM 56(2), 82–90 (2013). https://doi.org/10.1145/
2408776.2408795

9. Papadakis, M., et al.: Mutation testing advances: an analysis and survey.
Adv. Comput. 112, 275–378 (2019). https://doi.org/10.1016/bs.adcom.
2018.03.015

10. Papadakis, M., Malevris, N.: Automatically performing weak mutation
with the aid of symbolic execution, concolic testing and search-based

14 - VALLE‐GÓMEZ ET AL.

https://orcid.org/0000-0001-6066-9441
https://orcid.org/0000-0001-6066-9441
https://orcid.org/0000-0001-6066-9441
https://orcid.org/0000-0002-4744-9150
https://orcid.org/0000-0002-4744-9150
https://orcid.org/0000-0002-4744-9150
https://orcid.org/0000-0003-1568-9288
https://orcid.org/0000-0003-1568-9288
https://orcid.org/0000-0003-1568-9288
https://orcid.org/0000-0002-7543-2671
https://orcid.org/0000-0002-7543-2671
https://orcid.org/0000-0002-7543-2671
https://doi.org/10.1109/ms.2006.114
https://doi.org/10.1016/0020-0190(88)90054-3
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/3182657
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
https://orcid.org/0000-0001-6066-9441
https://orcid.org/0000-0002-4744-9150
https://orcid.org/0000-0003-1568-9288
https://orcid.org/0000-0002-7543-2671

testing. Softw. Qual. J. 19(4), 691–723 (2011). https://doi.org/10.1007/
s11219-011-9142-y

11. Ghiduk, A.S., Girgis, M.R., Shehata, M.H.: Employing dynamic symbolic
execution for equivalent mutant detection. IEEE Access 7, 163767–-
163777 (2019). https://doi.org/10.1109/access.2019.2952246

12. Wang, M., et al.: SAFL: increasing and accelerating testing coverage with
symbolic execution and guided fuzzing. In: Proceedings of the 40th In-
ternational Conference on Software Engineering: Companion Pro-
ceeedings, pp. 61–64 (2018)

13. Chekam, T.T., et al.: Killing stubborn mutants with symbolic execution.
ACM Trans. Softw. Eng. Methodol. 30(2), 1–23 (2021). https://doi.org/
10.1145/3425497

14. Papadakis, M., Malevris, N.: Automatic mutation test case generation via
dynamic symbolic execution. In: IEEE 21st International Symposium on
Software Reliability Engineering, pp. 121–130 (2010)

15. Zhang, L., et al.: Test generation via dynamic symbolic execution for
mutation testing. In: IEEE International Conference on Software
Maintenance, pp. 1–10 (2010)

16. DeMillo, R.A., Offutt, A.J.: Others: constraint-cased automatic test data
generation. IEEE Trans. Softw. Eng. 17(9), 900–910 (1991)

17. Grün, B.J., Schuler, D., Zeller, A.: The impact of equivalent mutants. In:
International Conference on Software Testing, Verification, and Valida-
tion Workshops, pp. 192–199 (2009)

18. Papadakis, M., et al.: Trivial compiler equivalence: a large scale empirical
study of a simple, fast and effective equivalent mutant detection tech-
nique. In: IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1, pp. 936–946 (2015)

19. Delgado.Pérez, P., et al.: Assessment of class mutation operators for C++
with the MuCPP mutation system. Inf. Softw. Technol. 81, 169–184
(2017)

20. Moura, D., et al.: An efficient SMT solver. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pp. 337–340 (2008)

21. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random
testing. In: Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 213–223

22. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit
path model-checking tools. In: International Conference on Computer
Aided Verification, pp. 419–423 (2006)

23. Yoshida, H., et al.: KLOVER: automatic test generation for C and C++
programs, using symbolic execution. IEEE Softw. 34(5), 30–37 (2017).
https://doi.org/10.1109/ms.2017.3571576

24. Ognawala, S., et al.: Compositional analysis of low-level vulnerabilities
with symbolic execution. In: Proceedings of the 31st IEEE/ACM In-
ternational Conference on Automated Software Engineering, pp.
780–785 (2016)

25. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In:
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, pp. 209–224 (2008)

26. Li, G., et al.: GKLEE: concolic verification and test generation for
GPUs. In: Proceedings of the 17th ACM Symposium on Principles and
Practice of Parallel Programming, pp. 215–224 (2012)

27. Chekam, T.T., Papadakis, M., Le.Traon, Y.: Mart: a mutant generation tool
for LLVM. In: Proceedings of the 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), pp. 1080–1084 (2019)

28. Coles, H., et al.: Pit: a practical mutation testing tool for Java. In: Pro-
ceedings of the 25th International Symposium on Software Testing and
Analysis, pp. 449–452 (2016)

29. Smith, B.H., Williams, L.: An empirical evaluation of the MuJava muta-
tion operators. In: Testing: Academic and Industrial Conference Practice
and Research Techniques-Mutation (TAICPART-MUTATION), pp.
193–202 (2007)

30. Dustmann, O.S., Wehrle, K., Cadar, C.: PARTI: a multi-interval theory
solver for symbolic execution. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pp.
430–440 (2018)

31. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for
object-oriented software. In: SIGSOFT/FSE 2011 - Proceedings of the
19th ACM SIGSOFT Symposium on Foundations of Software Engi-
neering, pp. 416–419 (2011)

32. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing for
Java, pp. 815–816 (2007)

33. Pacheco, C., Lahiri, S.K., Ball, T.: Finding errors in .NET with feedback-
directed random testing, pp. 87–95

34. Almasi, M.M., et al.: An industrial evaluation of unit test generation:
finding real faults in a financial application. In: Proceedings - IEEE/
ACM 39th International Conference on Software Engineering: Software
Engineering in Practice Track, pp. 263–272. ICSE-SEIP (2017). https://
doi.org/10.1109/icse-seip.2017.27

35. Campos, J., Panichella, A., Fraser, G.: EvoSuite at the SBST 2019 tool
competition. In: Proceedings of the IEEE/ACM 12th International
Workshop on Search-Based Software Testing, pp. 29–32. SBST (2019).
https://doi.org/10.1109/sbst.2019.00017

36. Ognawala, S., et al.: Improving function coverage with Munch: a hybrid
fuzzing and directed symbolic execution approach. In: Proceedings of the
33rd Annual ACM Symposium on Applied Computing, pp. 1475–1482
(2018)

37. Mossberg, M., et al.: Manticore: a user-friendly symbolic execution
framework for binaries and smart contracts, pp. 1186–1189 (2019)

38. Liang, H., et al.: Fuzzing: state of the art. IEEE Trans. Reliab. 67(3),
1199–1218 (2018). https://doi.org/10.1109/tr.2018.2834476

39. Goodman, P., Groce, A.: DeepState: symbolic unit testing for C and
C++. In: NDSS Workshop on Binary Analysis Research (2018)

40. Ahmadi, R., Jahed, K., Dingel, J.: MCUTE: a model-level concolic unit
testing engine for UML state machines. In: 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pp.
1182–1185 (2019)

41. Valle-Gómez, K.J., et al.: Ejecución Simbólica y Prueba de Mutaciones:
mejora de la generación automática de casos de prueba. In: Abrahão.
Gonzales, S. (ed.) JISBD2021 (2021). http://hdl.handle.net/11705/
JISBD/2021/040

42. Valle-Gómez, K.J., et al.: Software testing: cost reduction in industry 4.0.
In: 2019 IEEE/ACM 14th International Workshop on Automation of
Software Test (AST), pp. 69–70 (2019)

How to cite this article: Valle-Gómez, K.J., et al.:
Mutation-inspired symbolic execution for software
testing. IET Soft. 1–15 (2022). https://doi.org/10.
1049/sfw2.12063

VALLE‐GÓMEZ ET AL. - 15

https://doi.org/10.1007/s11219-011-9142-y
https://doi.org/10.1007/s11219-011-9142-y
https://doi.org/10.1109/access.2019.2952246
https://doi.org/10.1145/3425497
https://doi.org/10.1145/3425497
https://doi.org/10.1109/ms.2017.3571576
https://doi.org/10.1109/icse-seip.2017.27
https://doi.org/10.1109/icse-seip.2017.27
https://doi.org/10.1109/sbst.2019.00017
https://doi.org/10.1109/tr.2018.2834476
http://hdl.handle.net/11705/JISBD/2021/040
http://hdl.handle.net/11705/JISBD/2021/040
https://doi.org/10.1049/sfw2.12063
https://doi.org/10.1049/sfw2.12063

	Mutation‐inspired symbolic execution for software testing
	1 | INTRODUCTION
	2 | BACKGROUND
	2.1 | Mutation testing
	2.2 | Symbolic execution

	3 | PROPOSAL: INTEGRATING DSE AND MT
	4 | RESEARCH QUESTIONS
	5 | EXPERIMENTAL SETUP
	6 | RESULTS AND DISCUSSION
	6.1 | To what extent does DSE produce test suites that detect potential defects?
	6.2 | Can DSE be combined with MT to produce higher‐quality test suites in terms of mutation score?
	6.3 | How can current DSE solutions be improved to address the mutation coverage criterion without significantly increasing ...
	6.3.1 | Considering threshold values
	6.3.2 | Altering constraints
	6.3.3 | Considering variables that impact programme output

	6.4 | Threats to validity

	7 | RELATED WORK
	7.1 | Software testing automation
	7.2 | Combining DSE with MT

	8 | CONCLUSIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

