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Abstract.  A novel implementation of the de Broglie-Bohm mechanics is presented.  The method 

employs the use of n-dimensional Delaunay tesselation for the purpose of computing the quantum 

potential term and is fully generalizable for the multidimensional case.  We simulate the scattering of a 

Gaussian wavepacket from an Eckart barrier in two- and three-dimensions and compare our results 

against the dynamics obtained using a numerically exact propagation scheme. 

 

An alternative interpretation of quantum mechanics, different from the conventional “Copenhagen” 

view, was introduced by de Broglie in 1927 [1] and later developed into a complete theory by Bohm 

[2], but has been largely ignored since then.  Only recently have workers begun to employ the theory to 

simulate the dynamics of systems of chemical interest [3-6].  These recent efforts indicate that the de 

Broglie-Bohm approach is both intuitively attractive in its “causal interpretation” of quantum events 

[7] and computationally promising.  The key reason for this is that quantum phenomena can be 

described in the framework of hydrodynamic formalism and the time evolution of a system becomes 

the propagation of “quantum particles” in the Lagrangian representation.  
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The postulates of the de Broglie-Bohm theory can be found in original works [2] and in an excellent 

monograph [7].  The formulas essential for the numerical implementation are outlined here.  After 

representing the wave function in a polar form /eiSRψ =  , substituting it into the time-dependent 

Schrödinger equation (TDSE), 
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Here R  represents the amplitude of the wave function, S  represents its phase, and V  is a classical 

potential acting on the system of the mass m .  Eq. 1 can be thought of as a generalized Hamilton-

Jacobi equation describing the movement of the particle under the influence of a combined potential 

Q V+  [7], where 
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is an effective “quantum potential”. 

The particle’s equation of motion is then  

 ( )
2

2

1d Q V
dt m

= − ∇ +
v ,  (4) 

where S
m
∇

=v  is the velocity of the particle and d
dt t

∂
= + ⋅∇
∂

v  is the Lagrangian time derivative.  

Eq. 2 is a continuity equation that defines the equation of motion for the quantum density 2Rρ = .   
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The “quantum potential” Q  is a feature that makes the particles’ behavior different from the classical 

one.  This time evolving potential is determined by the wave function and expressed through the 

Laplacian of its amplitude.  Computing the latter constitutes the main difficulty in numerical 

implementations of Bohmian mechanics. 

In the Lagrangian formalism the time-dependent wave function can be represented by a set of particle-

trajectories whose positions define a multidimensional grid. The movement of these particle-

trajectories causes the grid to be irregular and calculation of the quantum potential Q  becomes a 

challenging task.  Most numerical implementations utilize a polynomial interpolation of the grid that 

can be used for subsequent calculation of the derivatives necessary to calculate Q .  The use of 

interpolation makes these methods difficult to extend to higher dimensions.  For example, in order to 

fit a set of points in five dimensions using a third-order polynomial, 54 terms are required.  Such a 

polynomial fit is required at each time step and for higher dimensional problems the size of the 

polynomial becomes substantially larger.  To overcome this difficulty we propose a new numerical 

method for calculating the derivatives of a function defined on irregular grid.  In this method the only 

limitation on the dimensionality is the intrinsic requirement for any higher-dimensional problem, 

namely, the number of argument points required to adequately represent the wave function. 

 

When propagating n  quantum particles in a d -dimensional space we numerically solve the following 

set of ( )2 1d n+  ordinary differential equations: 
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where jx  are the particles’ coordinates and  

  ( )j Q V= −∇ +F  (6) 

are forces acting on the particles. 

Note that the phase of the wave function S  enters into the equations of motion only through its 

gradient, that is, the velocity of the particles.  To obtain the velocity, one must compute the gradient of 

the potential in order to determine the forces acting on the particle.  Hence, we need to calculate 

numerical derivatives three times: in formulas 3, 5c, and 6.  This situation turns out to be very 

unfavorable computationally, generally leading to an exponentially rapid accumulation of errors.  It is 

possible, however, to reduce the number of numerical derivatives to two.  Assuming a weak time-

dependence of ∇v , Eq. 5c can be explicitly integrated providing an analytical equation of motion for 

the quantum density: 

  ( ) ( ) dtt dt t eρ ρ −∇+ = v . (7) 

Thus, using (4) and (7), a recurrence relation for the velocity gradient [ ]−∇v  gives: 

  ( ) ( ) ( ) ( ) ( )1 1expt dt t t dt V t dt Q t dt dt
m m

ρ ρ  + = −∇ − + ∆ + ∆  
v . (8) 

One may address the problem of evaluating F  by interpolating between the particles trajectories to 

construct a rectangular grid representation of ψ .  Our algorithm differs from this standard approach by 

utilizing the irregular mesh of trajectory points directly.  “Delaunay triangulation” (“Delaunay 

tesselation” for higher dimensionality) [8] is then used to organize this irregular grid for the purpose of 

computing F .  Once the triangulation is built, the points of intersection of the line parallel to the 

derivative axis with the edges of the triangles constituting the mesh can be found (Fig. 1).  With the 

help of such a procedure we thus construct points lying approximately on the surface of the function.  
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The points can then be fitted by a one-dimensional third-order polynomial that can be used for 

calculating derivatives of the function. 

A simplex in d-dimensional space is a structure formed by joining by segments all possible 

combinations of d+1 points.  This is the “simplest” combination of points in d-dimensional space 

enclosing a finite volume.  In 2D this is a triangle, in 3D a tetrahedron.  Planar triangulation is a 

division of a set of points into adjacent triangles with vertices from this set.  Triangulation can be done 

in many ways, with some ways being more useful for numerical analysis that others. The Delaunay 

triangulation has the following important property: inside the circumference of any triangle there are 

no other points of this set.  Therefore such a triangulation is "natural" and optimal in many respects. It 

is relatively easy to construct and there are many known algorithms which can be used to efficiently 

construct such a triangulation (mostly developed for low-dimensional cases, however).  This concept 

can easily be generalized to a d-dimensional set. 

The algorithm can be described by the following steps. 

1. Construct Delaunay tesselation using the particle trajectory points; 

2. For each point compile a list of simplices to which the point belongs; 

3. For each degree of freedom find the intersections of the line passing through the point and parallel 

to the coordinate axes (derivative line) with the edges of two simplices lying on the opposite sites 

of the point (Fig. 1); 

4. Map these intersection points up to the approximated function surface (Fig. 1); 

5. Repeat this procedure in both directions until a desired number of intersection points (normally up 

to 10) is found; 
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6. The points of intersection form an approximated function cut in the direction of derivative - fit 

this one-dimensional cut by a third-order polynomial; 

7. Calculate the necessary derivatives from the polynomial. 

There are two essential, but time-consuming steps in this scheme.  The first is the procedure of finding 

which simplex edges are intersected by the derivative line (step 3).  This is, in fact, the general problem 

of a segment – polygon intersection.  The solution for the 3D intersection of a segment and a triangle is 

based on the concept of the signed volume of a tetrahedron and can be straightforwardly generalized 

for d-dimensional space [9].  The whole algorithm for 3D reduces to the calculation of five fourth-

order determinants.  Note that both this step and the tesselation can be very effectively accomplished 

using exact arithmetic.  Specifically, we used the algorithm by Clarkson [11] for the Delaunay 

tesselation. 

The second important step is the calculation of the cut of the function along the derivative line that 

passes through the point at which the derivative value is needed.  In fact, we have to calculate the 

coordinates of the point of intersection of a plane passing through the point ( ),...,, 000 zyx  and parallel 

to the derivative axes and the edge of the simplex (Fig. 2).  For the 3D case, this will be the intersection 

of the plane defined by the equation 0yy =  and the line passing through the points ( )111 ,, zyx  and 

( )222 ,, zyx  (Fig. 2a).  The equation describing the latter line can be represented by a vector 

12 rra −=  that passes through the point 1r : tarr =− 1 , where the vectors are defined by 

( )iiii zyx ,,=r .  Solving the set of linear equations  
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the coordinates of the desired point ( )zyx ,,  are obtained. 

For a 4D problem this point is defined by intersection of the hyperplane 


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=
=

0

0

zz
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 and a plane passing 

through three points ( )111 ,, zyx , ( )222 ,, zyx , and ( )333 ,, zyx  (Fig. 2b).  This plane is defined by 

parametric equations connecting two arbitrary vectors lying in the plane 12 rra −=  and 13 rrb −= , 

and the point ( )111 ,, zyx : vw barr +=− 1 .  The set of equations defining the point of intersection is  
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For the general d -dimensional case, after substituting ,..., 00 zy  into the last three ( 1d − ) equations, 

the set becomes 
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where j
ir  is the j coordinate of the vector ir  and ia  - the parameter. 
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Solution of this set of linear equations gives 2d −  coefficients a and two coordinates of the point of 

intersection: 1r  and dr  (the other 2d −  coordinates are equal to the corresponding coordinates of the 

0r  point). 

Another serious problem arises in the treatment of boundary points, especially those that are at the 

“corners” of the argument space.  In the worst cases the derivative lines do not intersect any simplex.  

To handle these situations the derivative line is set not exactly parallel to the derivative axis but slightly 

turned in such a way as to intersect some boundary simplices.  The angle of turning then can be varied 

and statistics accumulated in order to improve the accuracy.  Despite these technical challenges, the 

present approach makes the calculation of derivatives of high dimensional functions feasible since it 

does not involve prohibitively large polynomial fitting for the construction of a regular mesh. 

The scattering of a Gaussian wavepacket from an Eckart barrier in two- and three-dimensional space is 

chosen as a representative example of an event with strong quantum character that cannot be modeled 

by purely classical methods.  The model potential surface is an Eckart potential along the x axis with a 

harmonic oscillator in the y- and z-directions: 

  ( ) ( ) ( ) ( )2 22
0, sech b b bV x y V a x x b y y b z z= − + − + −    (9) 

In the two-dimensional model, we omit the z-coordinate dependence. 

Fig. 3 presents snapshots of the propagation of two-dimensional system using 386 particles of unit 

mass with initial kinetic energy 20 a.u.  The time propagation is carried out for a total time of 1.1 a.u. 

using time steps of 0.01 a.u.  The barrier is defined by 0V = 20, a = 1 and bx =6.  The wavepacket is 

initially placed at the point (2,2) and has initial momentum directed towards the barrier along the x-

axis. The resulting behavior of the system exhibits the expected quantum effects: the wavepacket is 

split by the barrier and part of the quantum density transmits through the barrier even though the initial 
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kinetic energy of the particles and the barrier height are equal.  The reliability of the simulation is 

tested by comparing to a numerically exact propagation using FFT/grid method [10] which is shown on 

the left of Fig. 3.  Despite minor differences at longer times the overall behavior of the wavepacket, 

including the ratio of the heights of reflected and transmitted peaks is represented well by the present  

method. 

It is worth noting that the number of particles used in the present approach (386) is much lower than 

that used in the FFT/grid method (128 by 128 grid makes 16384 nodes).  This partly accounts for the 

difference in quality of the simulations.  The effect is particularly noticeable after the splitting of the 

wavepacket.  After spreading the particles and pushing the quantum density to the wings of the 

wavepacket, one is left with only a few particles in the vicinity of the peak maxima (Fig. 3 IIc).  These 

few particles are not sufficient for an accurate calculation of the derivatives and the behavior of the 

system quickly accumulates errors.  Nevertheless, even with such a small number of points the 

agreement can be considered very good, at least at times before and shortly after splitting. 

Another visible discrepancy between the present and the exact methods is in the shape of the 

transmitted part.  In the present method this part is less elongated, though of approximately the same 

height as the numerically exact packet.  This effect is likely due to the assumption of constant ∇v  and 

the use of Eq. (7) in place of the exact Eq. (2).  The resulting approximate dynamics introduces 

systematic errors that are not eliminated by increasing the number of particles used.  Using the exact 

set of equations (5) fixes this problem, but at the expense of allowing a much faster accumulation of 

errors. 

This last discrepancy also explains the differences in the transmission probability for both methods, 

shown in Fig. 4.  Here, the probability is computed as a ratio of the integrals calculated under two areas 

on left and right sides of the line drawn through the barrier center.  Although the final transmitted 
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probability is well-approximated by the present method, this probability accumulates more slowly 

and peaks later than exact result. 

The present method has also been applied to a three-dimensional Eckart barrier transmission.  The 

shape of the barrier is the same as in the two-dimensional case, the only difference being an additional 

harmonic term along the z axis.  The number of particles used, 6270, is approximately equal to the 

number of particles per degree of freedom for the two-dimensional case and the results are presented in 

Fig. 5.  In order to display the quantum density the diameters of the three-dimensional points were 

chosen to be proportional to the value of the quantum density carried by the particles.  In fact, only the 

points located in the proximity of the peak maximum are visible.  This way of plotting reveals the 

behavior of the quantum particles with time.  The distribution is spherical at the start, then flattens in 

front of the barrier plane, soon followed by some of the particles breaking through the barrier and 

forming the transmitted distribution, of smaller height.  The reflected part reverses direction and even 

exhibits self-interference in exact accordance with quantum theory (the self-interference of the 

reflected part was also observed in 2D simulation).  

Summarizing, a novel method for simulating the dynamics of a fully quantum system in the framework 

of de Broglie-Bohm mechanics is presented and has been used to simulate barrier transmission 

dynamics in comparison with exact results.  The method has several intrinsic advantages, primarily: (i) 

it is totally generalizable arbitrary dimensions; and (ii) computational expenses are expected to grow 

slower than exponential with number of degrees of freedom.  There are also several ways one might 

improve the effectiveness of the algorithm, for example, by using alternative algorithms from well-

developed areas of computational geometry (for building Delaunay tesselation), classical molecular 

dynamics, and hydrodynamics (for propagating trajectories).  Also the approach naturally incorporates 

the possibility of constructing various mixed quantum-classical methods.  We are presently engaged in 

pursuing these avenues of investigation. 
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Figure captions 

1. Delaunay tesselation of the argument points and mapping the line along the derivative axis onto the 

tesselation structure.  The points of intersection of the upper line and edges of the triangles are used 

to approximate the cut of the surface. 

2. Calculation of the coordinates of the point of intersection of the derivative line with the edge of a 

simplex in 2D and 3D case.  The point ( )( )0 0 0 0, , ,x y f x y  [ ( )( )0 0 0 0 0 0, , , , ,x y z f x y z ] is a point at 

which the derivative is calculated, ( )( ), , ,x y f x y  [ ( )( ), , , , ,x y z f x y z ] is the intersection point, 

( )( ), , ,i i i ix y f x y  [ ( )( ), , , , ,i i i i i ix y z f x y z ] i=1..3 are the vertices of the intersected simplex’s face. 

3. Propagation of the quantum density ρ  of 2D Gaussian wavepacket on the Eckart barrier-harmonic 

potential surface by a numerically exact method (left column - I) and by the present method (right 

column - II).  Snapshots at 0 (a), 0.8 (b), and 0.95 (c) a.u. are shown.  The system consists of 386 

particles of 1 a.u. mass.  The initial velocity of the particles was directed along the x axes and their 

initial kinetic energy was equal to the height of the barrier (20 a.u.).  The continuous surfaces and 

their contour lines drawn on the right plots are for visualization purpose only.  They are an artificial 

interpolation of the real particles shown above the surfaces. 

4. Time-dependence of the probability of the transmission of quantum density through the Eckart 

barrier for 2D case.  Circles correspond to the exact propagation, squares represent the present 

method. 

5. Propagation of 3D Gaussian wavepacket on the Eckart barrier-harmonic potential surface.  

Snapshots at 0 (a), 108 (b), and 173 (c) a.u. are shown.  The radii of the points are proportional to 

the quantum density carried by the particles. The system consists of 6270 particles of 2000 a.u. 

mass.  The initial velocity of the particles was directed along the x axes and their initial kinetic 

energy, 3.31 a.u., was slightly below the height of the barrier (3.65 a.u.). 
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Fig. 1.  Delaunay tesselation of the argument points and mapping the line along the derivative 
axis onto the tesselation structure.  The points of intersection of the upper line and edges of the 
triangles are used to approximate the cut of the surface. 
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Fig. 2.  Calculation of the coordinates of the point of intersection of the derivative line with the edge of a simplex in 2D and 3D case.  The point 

( )( )0 0 0 0, , ,x y f x y  [ ( )( )0 0 0 0 0 0, , , , ,x y z f x y z ] is a point at which the derivative is calculated, ( )( ), , ,x y f x y  [ ( )( ), , , , ,x y z f x y z ] is the intersection point, 

( )( ), , ,i i i ix y f x y  [ ( )( ), , , , ,i i i i i ix y z f x y z ] i=1..3 are the vertices of the intersected simplex’s face. 
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Fig. 3a. Propagation of the quantum density ρ  of 2D Gaussian wavepacket on the Eckart barrier-harmonic potential surface by a numerically 
exact method (left column - I) and by the present method (right column - II).  Snapshots at 0 (a), 0.8 (b), and 0.95 (c) a.u. are shown.  
The system consists of 386 particles of 1 a.u. mass.  The initial velocity of the particles was directed along the x axes and their initial 
kinetic energy was equal to the height of the barrier (20 a.u.).  The continuous surfaces and their contour lines drawn on the right 
plots are for visualization purpose only.  They are an artificial interpolation of the real particles shown above the surfaces. 
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Fig. 3b. Propagation of the quantum density ρ  of 2D Gaussian wavepacket on the Eckart barrier-harmonic potential surface by a numerically 
exact method (left column - I) and by the present method (right column - II).  Snapshots at 0 (a), 0.8 (b), and 0.95 (c) a.u. are shown.  
The system consists of 386 particles of 1 a.u. mass.  The initial velocity of the particles was directed along the x axes and their initial 
kinetic energy was equal to the height of the barrier (20 a.u.).  The continuous surfaces and their contour lines drawn on the right 
plots are for visualization purpose only.  They are an artificial interpolation of the real particles shown above the surfaces. 
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time: 0.8 au 
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Fig. 3c. Propagation of the quantum density ρ  of 2D Gaussian wavepacket on the Eckart barrier-harmonic potential surface by a numerically 
exact method (left column - I) and by the present method (right column - II).  Snapshots at 0 (a), 0.8 (b), and 0.95 (c) a.u. are shown.  
The system consists of 386 particles of 1 a.u. mass.  The initial velocity of the particles was directed along the x axes and their initial 
kinetic energy was equal to the height of the barrier (20 a.u.).  The continuous surfaces and their contour lines drawn on the right 
plots are for visualization purpose only.  They are an artificial interpolation of the real particles shown above the surfaces. 
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Fig. 4. Time-dependence of the probability of the transmission of quantum density through the Eckart 
barrier for 2D case.  Circles correspond to the exact propagation, squares represent the present method. 
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Fig. 5a.  Propagation of 3D Gaussian wavepacket on the Eckart barrier-harmonic potential surface.  Snapshots at 0 (a), 108 (b), and 173 (c) a.u. are shown.  
The radii of the points are proportional to the quantum density carried by the particles. The system consists of 6270 particles of 2000 a.u. mass.  
The initial velocity of the particles was directed along the x axes and their initial kinetic energy, 3.31 a.u., was slightly below the height of the 
barrier (3.65 a.u.). 
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Fig. 5b.  Propagation of 3D Gaussian wavepacket on the Eckart barrier-harmonic potential surface.  Snapshots at 0 (a), 108 (b), and 173 (c) a.u. are shown.  
The radii of the points are proportional to the quantum density carried by the particles. The system consists of 6270 particles of 2000 a.u. mass.  
The initial velocity of the particles was directed along the x axes and their initial kinetic energy, 3.31 a.u., was slightly below the height of the 
barrier (3.65 a.u.). 

b) 

time: 108 au 
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Fig. 5c.  Propagation of 3D Gaussian wavepacket on the Eckart barrier-harmonic potential surface.  Snapshots at 0 (a), 108 (b), and 173 (c) a.u. are shown.  
The radii of the points are proportional to the quantum density carried by the particles. The system consists of 6270 particles of 2000 a.u. mass.  
The initial velocity of the particles was directed along the x axes and their initial kinetic energy, 3.31 a.u., was slightly below the height of the 
barrier (3.65 a.u.). 

c) 

time: 173 au 
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