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Abstract
Recently, the photonics-radar technology comes out as an attractive candidate in the arena of smart autonomous trans-

portation, surveillance, and navigation-related applications owing to provide wide-spectra to attain improved and precise

radar-resolutions. On the other hand, microwave radars, due to limited bandwidth, are incapable of coping with the

demands of next-generation radar technology. Moreover, the atmospheric fluctuations become more prominent at higher

frequencies and affect the radar’s performance significantly. Subsequently, the authors develop a 2 9 2 multi-input multi-

output (MIMO) employed linear frequency-modulated continuous-wave coherent photonic-radar system (MIMO-Co-

PHRAD) using OptiSystemTM and MATLABTM to attain a prolonged detection-range with an enhanced visibility. The

developed MIMO-Co-PHRAD is investigated with heterodyne- and homodyne-detection approaches under weak-to-strong

regimes of the atmospheric fluctuations like Rain and Fog. A comparison is also drawn for both the demonstrated MIMO-

equipped laser-driven coherent photonic-radar systems. The performance of both the developed MIMO-Co-PHRAD sys-

tems is evaluated by measuring the intensity of reflected-echoes, signal-to-noise ratio, and range-Doppler patterns. A

contrast with the single-input single-output coherent photonic-radar (SISO-Co-PHRAD) is also established to validate the

robustness of the demonstrated MIMO-Co-PHRAD.
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1 Introduction

According to the latest World Health Organization (WHO)

report, about 1.24 million people around the world lost

their lives, and & 20–50 million people survive critical

damages due to road accidents [1]. Therefore, the autono-

mous vehicle (AV)-related industries are employing their

self-driving vehicles with Advanced Driver Assistance

Systems (DAS), including Automotive Collision-Avoid-

ance System (ACAS), Lane Departure Warning System

(LDWS), and Brake Assistance System (BAS) [2]. How-

ever, the limited range-detection with marginal resolutions

provided by the available surveillance and navigation

systems makes them comparatively inappropriate for the

intelligent automotive industry [3, 4]. Additionally, the

state-of-the-art AV-related industries demand high range-

and imagery-resolution of the illuminated targets to iden-

tify and characterize them with high accuracy. As most of

the driving-functions of the self-driving vehicles depend

upon the incorporated radar system, the radar needs to be

robust enough to provide an accurate range-detection over

an extended visibility range with minimal power require-

ments (� 20 W) to avoid any road-hazard [5]. Moreover,

the existing microwave radar systems provide marginal

detection-range and range-resolution due to limited band-

width [6]. Therefore, for the last few years, the radar

manufacturers have moved towards the 77 GHz frequency

band as it offers higher bandwidth (& 4 GHz) in contrast

to the 24 GHz band (& 200 MHz). This wide-bandwidth

increases the range- and velocity-resolution along with

imagery resolution to identify the closely spaced targets

and improves the radar-accuracy [7, 8]. However, the

propagation characteristics of the radar signals, especially

in the 77 GHz frequency-band experience a significant

attenuation [9] when exposed to severe atmospheric
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situations. Alternatively, the linear frequency-modulated

continuous-wave photonic-radar upturns significantly and

is growing in intelligent autonomous transportation-related

industries rapidly [10–12].

The author’s recent work also claims a significant

influence of rain, fog, and haze over the coherent and non-

coherent configured PHRAD system [13]. However, this

work is only demonstrated for a single immobile target.

This work is extended further to improve the detection-

range in the presence of atmospheric variations by incor-

porating the spatial-diversity technique to realize a MIMO-

Co-PHRAD system, considering immobile and mobile

targets. As the 77–81 GHz frequency band offers twenty-

time better range-resolution and three-time better velocity-

resolution with improved accuracy as compared to the

24–27 GHz frequency band. Subsequently, MIMO-Co-

PHRAD is developed at 77 GHz in this work by estab-

lishing several traffic-and weathers-scenarios, including

several environmental factors (fog and rain) at different

severity levels. This work is further extended by modeling

a real-time traffic scenario consisting of three automotive

targets, including Car, Truck, and Bike, traveling at dif-

ferent speeds before a photonic-radar-equipped vehicle at

different distances. The photonic-radar-equipped vehicle is

modeled at 100 km/h, assuming all the target-objects are

moving towards it. The demonstrated LFMCW-PHRAD

computes the target-range and velocity measurements

simultaneously for the defined multiple automotive targets.

Furthermore, a comparison of the demonstrated MIMO-Co-

PHRAD is also established with the SISO-Co-PHRAD to

validate its robustness.

The demonstrated MIMO-Co-PHRAD is developed via

co-simulation of a well-known photonic software, i.e.

OptiSystemTM, and the mathematical programming plat-

form, i.e. MATLABTM. In this work, both the demonstrated

coherent configured PHRAD systems are modeled in Op-

tiSystemTM photonic-module, while the narrowband LOS

channel, target model, and traffic-scenario are developed in

the MATLABTM environment. OptiSystemTM software

incorporates a MATLAB component tool that can integrate

several modules of MATLABTM software to design differ-

ent components or models or systems. Accordingly, the

modeled LOS link and target scenario are integrated using

this MATLAB component-tool in the photonic environment

of the OptiSystemTM to demonstrate the photonic-radar. For

making the overall scenario simple, a static target is

developed initially in this work, which is further extended

to track three different mobile targets in a traffic scenario,

modeled using MATLABTM.

This work is presented in six different sections. Sec-

tion 1 discusses the current developments of photonic-

radar and its challenges with the highlights of the demon-

strated radar-system. Section 2 discusses the earlier work

of MIMO-Co-PHRAD reported in the last few years. Sec-

tions 3 and 4 describes the modeling of the MIMO-Co-

PHRAD system and the free-space channel. Section 5

discusses the results and discussions of the demonstrated

photonic-radar systems considering several traffic-and

weather-scenarios. A conclusion based upon the observa-

tions is drawn in Sect. 6.

2 Related work

Generally, the laser-driven radar modulates the linear fre-

quency-modulated (LFM) radio-frequency signals using an

external modulator to attain spectrally broadened signals.

These optical treated pulses are transmitted over the free

space via a beam-collimator module towards the illumi-

nated-targets. The beating of target-echoes using pho-

todetector with a suitable detection approach needs

additional attention to receive the weakest echo signal with

low phase-fluctuations. Due to a high receiver-sensitivity

and low phase-noise, the coherent detection outperforms

contrast to the non-coherent detection configuration but at

the cost of system-complexity [13, 14]. The coherent

detection can be implemented in two configurations, i.e.

heterodyne-and homodyne mixing, as the latter is more

vulnerable to the phase-noise of the optical-carrier. An

electro-optic modulator is mostly preferred for coherent

heterodyne photonic-radar to attain unprecedented range-

resolution [8, 15].

Some recent work has been carried out to measure the

impact of environmental factors over the radar perfor-

mance in RF-and optical-domain. The atmospheric

absorption of light pulses at 1550 nm due to CO2 and

water-molecules is demonstrated and reported a significant

degradation of radar’s performance [16] with limited

detection-range. The effect of dust, smoke [17], and gases

[18] over the detection-range of laser-driven radar is also

observed recently. Furthermore, the signal-fading due to

rain, fog, and snow during the propagation of light-treated

radar signals cannot be ignored [19–21], which validates

the influence of atmospheric fluctuations. However, these

works are either investigated for single immobile targets or

in simple traffic scenarios, considering the impact of

individual environmental factors. The situation becomes

more complicated under complex traffic-and weather-situ-

ations, especially in highly dense traffic-scenes and

industrial-dominant areas. For achieving high azimuth-

resolution, an accurate direction of arrival (DOA), and

multiple target tracking, the photonics radar incorporated

with the radar-array technology is an attractive candidate.

Recently, a multiple-input-multiple-output (MIMO) radar

is considered a promising radar-array, including many

comparable transceiver-arrays with minimum hardware
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requirements. Due to its orthogonal property between dif-

ferent channels, a MIMO radar has the flexibility to realize

multiple beamforming, DOA estimation, multiple target

tracking, and 2D/3D imaging [22–25]. Besides, a MIMO

radar can achieve a precise target positioning and param-

eter estimation [26, 27]. A photonics-based 2 9 2 MIMO

radar is experimentally demonstrated to estimate the DOA

and target positioning [28, 29]. In these approaches, the

optically widened radar signals are reconverted into RF

signals at the transmitter site and then transmitted towards

the targets wirelessly. Alternatively, light-treated LFM

radar signals are sent directly towards the targets in the

optical domain as light pulses experience low attenuation

due to atmospheric variations and safe to the human-eyes

as well [8, 13, 15]. However, the MIMO-equipped pho-

tonic-radar in optical domain has not been reported com-

prehensively so far, especially under several weather

situations, and is at its initial phases of development.

3 System description

The demonstrated MIMO-Co-PHRAD is employed in

heterodyne- and homodyne-mixing configurations using

linear frequency-modulated continuous-wave (LFMCW)

technique as the automotive radars prefer LFMCW tech-

nology due to its compact size and economical installation

with low power-needs [10]. Accordingly, for realizing

MIMO-Co-PHRAD, an LFM is generated at f c ¼ 77 GHz

with sweep-bandwidth, Bsweep in both the coherent con-

figurations, as shown in Fig. 1. If R is the target-range and

Tm is sweep-time, then the range-frequency, f r is calcu-

lated [8, 13, 15] as

fr ¼
2� R� Bsweep

Tm � c
ð1Þ

Further, the LFM signal is modulated over a continuous-

wave (CW) laser of 1550 nm with an optical power of

16 dBm and linewidth of 100 kHz using DAMZM modu-

lator. DAMZM is biased at the null transmission-point to

attain coherent detection. The suppression of higher-order

sidebands is achieved by controlling the bias-voltages of

the optical modulator. Accordingly, the switching-and

bias-voltage is set to 4 V and – 4 V respectively of the

modulator in this work. Moreover, the bias-1 of 2 V and

bias-2 of - 2 V are applied to arm-1 and arm-2 of the

modulator, respectively.

For MIMO-incorporated coherent-configuration with

heterodyning mixing, one part of the generated optical

signal is split into two different orthogonal signals after

optical modulation and applied to two telescopic lenses, i.e.

Tx1 and Tx2 with an aperture diameter of 5 cm each as

shown in Fig. 1. Generally, if M, N are the independent

orthogonal transmitters and receivers, respectively, then

MN be the return-routes from the kth target. Therefore, the

generic received signal is computed as [26, 30]

yn nð Þ ¼
XK

k¼1

a hkð Þ �
XM

m¼1

e�jxcsmn hkð Þ � Sm nð Þ ð2Þ

where a is the complex amplitude of the kth return signal

from a target located at an angle hk, Sm is the baseband

samples of the mth transmitted signal, smn hkð Þ is the total

phase delay between the mth transmitting element, the kth

target, and the nth receiver, xc is the carrier frequency, n is

the time index. To develop a model of 2 9 2 MIMO-Co-

PHRAD, M = N = 2 are taken in this work. These

orthogonal signals are transmitted over the free-space

channel towards the aiming targets. The reflected echoes

from the illuminated target are captured by the receiving

telescopic lenses, i.e. Rx1 and Rx2 of an aperture diameter

of 15 cm each.

For realizing MIMO-Co-PHRAD with heterodyne-mix-

ing, all the captured echoes by each receiving optical lens

are combined by an optical combiner to retrieve a single

echo. The detected echo-signal is mixed with the same

laser-carrier source used as an input source of light-carrier

(CWL) to attain heterodyning-mixing as shown in Fig. 1(a).

These optically mixed signals are applied to a balanced

photodetector module employed with two PIN diodes in

parallel-configuration to accomplish the balance-detection.

Each PIN photodetector is sampled at 4 GHz. The ASE-

ASE noise, thermal noise, and shot-noise are included for

the detection-measurements.

After optical-to-electrical conversion, the de-chirp sig-

nal is amplified, filtered out, and beat at FM carrier-fre-

quency to recover the beat signal as [31–34]

Ehet ¼ Alo:RPD:
ffiffiffiffiffiffiffiffiffi
Pt:P

p
r: cos

2:p:fc:s�
p:Bsweep

Tm
:s2

þ2:p:fr:t

0

@

1

A:

sin xd tð Þ þ ðho þ hloð Þ
ð3Þ

For MIMO-Co-PHRAD with homodyne mixing, the

modulated LFM signal is transmitted over the free-space

channel towards the aiming target-objects under observa-

tion using the beam collimator module in the same way as

described in the case of heterodyne mixing. After com-

bining all the echoes captured by the receiving telescopic

lenses, the collected echoes are mixed with the optically

modulated radar signals using an optical mixer, as shown in

Fig. 1(b). The optically mixed de-chirp-signals are recon-

verted into electrical signals using a balanced photodetec-

tor module. The down-converted electrical signals are

passed through an LPF after proper electric amplification

to recover the beat-signal as [34, 35]
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Ehom ¼ Alo � m � RPD �
ffiffiffiffiffiffiffiffiffiffiffi
Pt � P

p
r

� cos 2 � p � fc � s�
p � BWsweep

Tm
� s2

þ2 � p � fr � t

 !

� sin xd tð Þ þ ðho þ hloð Þ ð4Þ

The retrieved beat-signals for both the demonstrated

PHRAD system are then analyzed with the help of an RF

spectrum analyzer of resolution 1 MHz. Where Pr is the

received power of the captured echo, Pt is the power of the

optical pulse after optical amplification, m is modulation

index = p:A0

Vpdc
� 1, Bsweep = 300 MHz, Alo = optical-carrier

amplitude, A0 ¼ RF-carrier amplitude, Vpdc = bias-voltage

of the modulator, RPD = Responsivity of each photo-de-

tector (PIN) = 0.8 AW-1, s is propagation delay.

4 Channel-modeling

The range-visibility\ 100 m is considered as a zero-visi-

bility in the AV-related applications and thus, enhances the

possibilities of unfortunate road-hazards. Moreover, the

Fig. 1 LFMCW-driven MIMO-Co-PHRAD with a heterodyne-detec-

tion and b homodyne-detection. LFM linear frequency modulated,

DAMZM dual-arm Mach–Zehnder modulator, CWL continuous-wave

laser, PD photodetector, LPF low pass filter, OA optical amplifier, EA
electrical amplifier
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atmospheric fluctuations due to fog, rain, and haze, and

snow makes the situation more challenging for self-driving

vehicles. It has been reported that fog and rain are the main

environmental factors that deteriorate the radar perfor-

mance severely at higher frequencies, i.e. in the mmW

band. Subsequently, in this section, a free-space channel

model is developed using the phased-array system toolbox

of MATLABTM, including the influence of fog and rain at

different severity levels. Therefore, for both the demon-

strated PHRAD systems, an investigation is carried out in

the presence of rain varying from the weak-to-severe

regime. Specifically, the rain attenuation, Aatt dB/kmð Þ at

rainfall rate, R0(mm/h) is calculated [36, 37] as

Aatt dB/kmð Þ ¼ k � Ra
0 ð5Þ

where k and a are power-law parameters depending upon

the used mmW-band, raindrop-size, and temperature. By

computing the values of power-law parameters as per the

Marshall–Palmer distribution [37], the Aatt dB/kmð Þ is

measured as & 24 dB/km for heavy-rain at R0 = 50 mm/h,

& 14.25 dB/km for mild-rain at R0 = 25 mm/h, and

& 4 dB/km for low-rain at R0 = 5 mm/h respectively.

Fog is another dominant degrading environmental factor

parameter that deteriorates the visibility range due to its

dependence on water–vapor density and particle-size dis-

tribution [38]. The specific attenuation due to fog computed

by an empirical model for Mie scattering is given [39] as

b kð Þ ¼ 3:91

V

k
550

� ��p

ð6Þ

where V (km) = visibility range, k nmð Þ = Laser’s operat-

ing wavelength, and p is the size distribution-coefficient of

scattering, which can be measured by the Kim model [40]

as

p ¼

1:6 V [ 50

1:3 6\V\50

0:16V þ 0:34 1\V\6

V � 0:5 0:5\V\1

0 V\0:5

2

66664
ð7Þ

According to the Kim model, the specific attenuation for

heavy-, mild-, low-fog scenarios are calculated as

84.90 dB/Km, 33.96 dB/Km, and 14.55 dB/Km respec-

tively [37, 38]. Further, all the measurements are carried

out by considering the weak-atmospheric turbulence fluc-

tuations with a refraction-index structure of air of 10–17

throughout the work. The receiver threshold is set as

16.5 dB, measured according to Neyman–Pearson (NP)

decision-rule [20].

5 Results and discussions

This section presents a comprehensive discussion on the

outcomes computed for the established model of 2 2

MIMO-Co-PHRAD by measuring the captured echoes

reflected from the target. The performance of both the

demonstrated MIMO-Co-PHRAD is measured in terms of

signal-to-noise ratio by considering the weak-to-strong

atmospheric regimes of rain and fog to comprehend the

influence of the weather fluctuations. A comparative

investigation of the demonstrated MIMO-Co-PHRAD and

SISO-Co-PHRAD is also carried out to determine the

impact of the spatial-diversity over radar-performance. The

work is further extended to test the demonstrated MIMO-

Co-PHRAD in a developed traffic-scenario consisting of

three different target-objects.

The observations for the demonstrated MIMO-Co-

PHRAD in contrast with SISO-Co-PHRAD under clear-

weather scenarios are shown in Fig. 2. It is observed that

MIMO-Co-PHRAD captures the strong reflected-echoes in

both the established coherent configurations, in contrast to

the SISO-PHRAD, as shown in Fig. 2. This is due to the

introduction of multiple routes by the spatial-diversity

technique of the MIMO technology, thus, resulting in high

throughput and signal-to-noise ratio. The results show that

heterodyne mixing attains strong return-signals in contrast

with homodyne mixing due to a high frequency-offset,

caused by LO leakages. Subsequently, the demonstrated

work is examined further employed with heterodyne mix-

ing to measure the influence of atmospheric fluctuations.

The outcomes show that fog, at the mild-to-heavy severity-

level, influences the detection-range significantly by

imposing an apparent power-loss of the reflected-echoes.

For SISO-Co-PHRAD with heterodyne mixing, the visi-

bility-range of & 300 m and & 500 m under heavy-fog

and mild-fog scenarios is attained, respectively, as shown

in Figs. 3(a, c) and 4(a). it is also apparent from the attained

observations that heavy-rain also limits the detection-range

but, its impact is observed comparatively less in contrast to

the mild-to-heavy fog-scenario. The detection-range under

the heavy-rain scenario is measured as & 800 m for SISO-

Co-PHRAD. However, the weak atmospheric regimes

show marginal impact, cannot be ignored in complex real-

time traffic-scenarios consisting of high target-density or in

industrial areas due to the presence of high-density air-

pollutants. For MIMO-Co-PHRAD with heterodyne mix-

ing, a prolonged detection-range is attained in contrast to

SISO-Co-PHRAD under the influence of all the environ-

mental factors as shown in Figs. 3(b) and 4(b). The visi-

bility-range of & 470 m, & 960 m, & 1160 m is

measured under heavy-fog, mild-fog, and heavy-rain sce-

narios, respectively. This shows the impact of the spatial
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diversity over the performance of the LFMCW-PHRAD

under atmospheric variations, which can be utilized to

compensate for the signal-degradation introduced by fog,

and rain factors. Alternatively, the detection-range signifi-

cantly deteriorates in some other complex and environ-

mental situations, including the co-existence of smoke, air-

pollutants, and fog especially, in a smoggy-situation, in

winter season in industry-dominated areas. However, the

smoke, other gasses, and dust particles are not included

while carrying out the measurements in this work.

It is worth mentioning here that it is difficult to identify

the illuminated targets under adverse weather-and traffic-

situations, which can be done by measuring the intensity of

the echoes that depend upon the reflectance characteristics

of the target-materials. The reflectance characteristics of a

particular target can be measured by computing the Bidi-

rectional reflectance distribution function using the Tor-

rance–Sparrow model to retrieve its dimensions [8].

Moreover, with an improved signal-to-noise ratio due to

the implementation of MIMO technology, as observed in

Fig. 2 Received Echo measurements under clear-weather at fr ¼ 150 MHz with a MIMO-Co-PHRAD vs SISO-Co-PHRAD with heterodyne

mixing and b MIMO-Co-PHRAD vs SISO-Co-PHRAD with homodyne mixing at R = 750 m

Fig. 3 Received Echo measurements under diverse weather conditions for a, c SISO-Co-PHRAD with heterodyne- and homodyne-mixing

respectively at R = 1000 m, b, d MIMO-Co-PHRAD with heterodyne- and homodyne-mixing respectively at R = 2000 m
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the demonstrated work, the photonic-radar has high pos-

sibilities to realize state-of-the-art self-driving vehicles to

work satisfactorily under adverse weather- and traffic-

situations.

This work is further extended by developing a real-time

traffic scenario, including three mobile-targets (Car, Truck,

and Bike) under the influence of fog and rain. The target-

vehicles are moving at 96 km/h (Car), 90 km/h (Truck),

70 km/h (Bike) at a distance of 400 m, 450 m, and 250 m,

respectively from a radar-equipped vehicle, which is

moving at 100 km/h. Figure 5 shows the range-Doppler

measurements showing the detection of the targets with

their exact location. The power-spectrum density (PDF)

are measured as & - 98.063 dBm/Hz, & - 93.127 dBm/

Hz, & - 86.516 dBm/Hz for Car, Truck, and Bike,

respectively, under the heavy-rain scenario. Under heavy-

fog scenario, it is measured as & - 116.166 dBm/Hz,

& - 111.721 dBm/Hz, & - 101.118 dBm/Hz. A differ-

ence in PSD measurements for the Car, Truck, and Bike is

also observed, which is due to the different radar-cross

section of the modeled targets. An improvement in PSD

measurements is recorded as 15.5%, 16.2%, 17.3% for

cars, trucks, and Bikes under both the examined environ-

mental factors, which reveals out that fog is a more detri-

mental factor than that of rain. The results show the

concurrent measurements of range and velocity of the

targets unambiguously and successfully for the developed

MIMO-Co-PHRAD under the influence of fog and rain.

Moreover, the demonstrated MIMO-Co-PHRAD shows a

marginal Total Harmonic distortion (THD), high Signal-to-

Noise and Distortion Ratio (SINAD), and small Spurious-

free dynamic (SFDR) ratio at the receiving end.

The demonstrated work is limited to a simulative envi-

ronment using the co-simulation of OptiSystemTM and

MATLABTM. Moreover, the authors believe that there may

be some variations in real-time experiments in contrast to

the numerical simulation measurements. However, the

demonstrated work will be helpful for the researchers in

developing MIMO-employed laser-driven radar systems

experimentally to realize the state-of-the-art self-driving

vehicles and other surveillance-related applications.

Therefore, we believe that the extension of this work can

Fig. 4 Signal-to-noise (SNR) ratio measurement with heterodyne mixing for a SISO-Co-PHRAD at R = 1000 m and b MIMO-Co-PHRAD at

R = 2000 m under diverse weather conditions

Fig. 5 Range-Doppler measurements for LFMCW-driven MIMO-Co-PHRAD with heterodyne mixing under a heavy-rain, and b heavy-fog
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be accomplished in the future to perform experimental and

field-trials-based measurements.

Secondly, though the traffic-and atmospheric-conditions

are unpredictable, the MIMO-Co-PHRAD has the potential

to detect the aiming targets simultaneously with high pre-

cision [22–29]. However, there are possibilities to optimize

the demonstrated system keeping in mind the unpre-

dictable traffic-and atmospheric-fluctuations. So, an adap-

tive photonic-radar system is realizable by incorporating a

suitable optimization technique. Moreover, Due to an

exponential increase in system-complexity and undesirable

delay at the receiving end with an increase in the number of

transmitting lenses [41], the authors use 2 9 2 beam col-

limator lenses to keep the system-complexity minimum.

Moreover, besides numerous assets of MIMO employed

radar systems, there are some challenges of high imple-

mentation cost with multiple transmission and reception of

radio-frequency channels causes expensive digital signal

processing (DSP) modules which can be compensated

using the Realistic Sparse Fourier transform (RSFT) and

achieve reduced DSP complexity [42]. Therefore, this work

may be extended to realize a MIMO-RSFT incorporated

photonic-radar system.

6 Conclusion

This work demonstrated an LFMCW-driven MIMO-Co-

PHRAD radar in the presence of weak-to-strong atmo-

spheric variations using two different coherent detection

configurations. This work is further extended to measure

the range and speed of three automotive mobile targets

concurrently in a modeled traffic-scenario under the indi-

vidual influence of the fog and rain. The outcomes validate

that by incorporating the spatial-diversity, an extended

target-range can be accomplished with MIMO-Co-PHRAD

in contrast with the SISO-Co-PHRAD. The observations

show that spatial-diversity can play a significant role in

attaining better radar-performance by reducing the impact

of environmental fluctuations for AV-related applications.

Our results achieve an improvement in detection-range of

& 56%, & 92%, & 45% under heavy-fog, mild-fog, and

heavy-rain respectively for MIMO-Co-PHRAD in contrast

with the SISO-Co-PHRAD. The demonstrated MIMO-Co-

PHRAD can be extended in future work to carry out

experimental demonstrations in more complex traffic-sce-

narios under the influence of adverse atmospheric

fluctuations.
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