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Abstract. Social navigation datasets are necessary to assess social nav-
igation algorithms and train machine learning algorithms. Most of the
currently available datasets target pedestrians’ movements as a pattern
to be replicated by robots. It can be argued that one of the main rea-
sons for this to happen is that compiling datasets where real robots are
manually controlled, as they would be expected to behave when moving,
is a very resource-intensive task. Another aspect that is often missing
in datasets is symbolic information that could be relevant, such as hu-
man activities, relationships or interactions. Unfortunately, the available
datasets targeting robots and supporting symbolic information are re-
stricted to static scenes. This paper argues that simulation can be used
to gather social navigation data in an effective and cost-efficient way and
presents a toolkit for this purpose. A use case studying the application of
graph neural networks to create learned control policies using supervised
learning is presented as an example of how it can be used.

Keywords: social navigation, robot simulation, social robotics, naviga-
tion dataset

1 Introduction

To boost robots’ prevalence in the service industry, health and home settings,
their efficiency and social acceptance must be improved. This lack of social ac-
ceptance requires a seamless interaction with humans that cannot be achieved
without considering humans’ goals, emotions, and predicting their future be-
haviour. These skills are essential to successfully work with humans and avoid
user rejection [1].

? These authors contributed equally to this work.
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Social acceptance is particularly important for mobile robots. For instance,
while moving, robots should estimate human trajectories to avoid getting in
their way. Robots should gather information about the subjects’ current activity,
emotions, and intentions to provide an efficient and natural interaction while
offering them help. Let us consider a scenario where a guest arrives at the robot’s
owner’s apartment, and they start having a heated argument just after that.
Should the robot approach the guest to offer a cup of tea as it would usually do?
Approaching humans in those conditions is probably something that roboticists
would like to avoid. The problem in this scenario is that the robot might not
be able to interpret the social context correctly and assess which actions are
acceptable. The general challenge while programming robots with some degree
of ability to understand humans is to cope with the complexity and breadth of
factors involved.

The algorithms in charge of controlling robots and those estimating humans’
emotions and aims are usually manually programmed, but they can also be based
on Machine Learning (ML) models or a combination of both approaches. Hand-
crafted algorithms require a considerable amount of time and are hard to debug,
expensive to develop, and even expert developers might disregard variables that
could be of use. ML models are very often able to consider factors that go be-
yond experts’ intuition. However, until recently, we lacked ML algorithms to
work with structured data such as graphs, so most ML-based algorithms tend to
discard structural information or make poor use of it. Recent non-Euclidean ML
techniques such as Graph Neural Networks (GNNs) [2] can work with arbitrar-
ily complex structured data in the form of graphs, as opposed to the Euclidean
structures that conventional ML approaches are limited to.

In social navigation, datasets are crucial to a) assess algorithms’ appropri-
ateness and; b) to train ML models for social navigation. Although this holds
regardless of whether structured or conventional ML models are used, the toolkit
presented in this paper focuses on -but is not limited to- structured (i.e., graph-
like) data. The motivation is that structured data can naturally be represented
as a graph [2], but the opposite does not always hold.

Given the subjective and highly-interactive nature of social navigation inter-
actions and Human-Robot Interaction (HRI), generating large datasets for so-
cial navigation in real-life scenarios would be prohibitively expensive and time-
consuming. Previous works have used a tool to generate a social navigation
dataset, SocNav1. The dataset, presented in [3], was designed to be used to
train and benchmark models to assess the social compliance of robots in a given
scenario. Although SocNav1 is limited in many aspects (covered in the next sec-
tion), it is one of the few datasets considering not only metric properties but
also relationships, which can be of high importance and most datasets neglect.

The contributions of the paper at hand are a new open-source modular toolkit
based on CoppeliaSim and PyRep [4,5] to generate social navigation datasets,
and a use-case where the toolkit is applied to create a dataset. The tool aims
to enable third-party researchers to develop their datasets while reducing the
time spent developing the required tools. The use-case provided demonstrates
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that the data generated using the toolkit can be used to train robots in social
navigation tasks.

2 Navigation datasets

There are many publicly available datasets and tools that can be used for so-
cial navigation. These datasets can be classified as video recordings, geometric
data, symbolic data, audio, or multimodal data -or a combination of them. Video
datasets, which are the most common type, can be divided into real or simulated.
EIPD [6], a video dataset, was used to learn the behaviour of pedestrians in [7].
The video datasets ETH [8] and UCY [9] were used in [10] to train a social at-
tention model. ETH contains two sets of videos that were obtained from a bird’s
eye view and were manually annotated. It has a total of 650 human trajectory
tracks of over 25 minutes. A dataset for public space surveillance tasks was also
presented in [11]. It consists of 28 videos from 6 in different scenarios. Another
dataset of videos from CCTV cameras involving pedestrians is presented in [12].
In addition to pedestrians, [13] contains videos of other agents in a social scenario
such as bicyclists, cars, buses, and even skateboarders. Hence, [6,8,9,11,12,13] be-
long to the category of video datasets. Recording videos is relatively easy and
inexpensive, but the videos need to be annotated, and even if there is some form
of person detector to generate the annotations, these need to be supervised by
humans. Similarly, videos have no semantic features per se (e.g., who is talking
to whom), so this kind of information is missing or has to be added by hand.

The Carnegie Mellon University (CMU) dataset [14] is a 3D dataset which
was used in [15] to encode the context-dependent spatio-temporal interactions
into social-maps. This dataset contains 2605 pre-recorded action sequences, and
55 of these sequences correspond to social interactions between two subjects.
It involves two subjects, whereas in real-life, the social scenarios contain more
entities and are more complex in nature. A multimodal dataset with 64 minutes
of multimodal sensor data is presented in [16]. It includes omnidirectional and
regular RGB video streams, 3D point cloud data from a LIDAR sensor, audio
signals, and encoder values from a robot’s wheels.

Simulators are also a useful tool while collecting data as they are cost-
effective, and because the state of the world is fully observable, there is no
need for manual annotations. On the other hand, one of the main drawbacks
of simulations is that they will always yield approximations to real data, and
that might introduce biases. Pedestrian simulations were used in [17] to fit a
social force model where the model parameters were learned using thousands
of simulations. The UCY dataset [9], which was mentioned in video datasets,
could also fall in this category because it introduces a data-driven simulation
approach where agents’ behaviour is based on thousands of previous examples
in the database. The SocNav1 dataset [3] combines geometric and semantic rela-
tions. Instead of containing subjects moving, SocNav1 provides a series of scenes
with humans and a robot. The labelled information corresponds to the social
score of the robot in that given position. One of the advantages of SocNav1 is
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that it combines geometric with symbolic information, so social relations can
be considered to estimate the score. The dataset’s main limitation is that the
scenes are static, so it does not consider human movement.

From the reviewed datasets, only SocNav1 provides information related to
how humans want robots to behave. Instead, most datasets provide human move-
ment information, expecting that robots should mimic their behaviour. Mimick-
ing human navigation is not a bad alternative but in some cases robots are
expected to behave differently. For instance, it could be interesting to make
robots especially careful regarding social distances (e.g., ”when moving around
older people or people handling fragile objects”), or make them extra cautious
when it comes to causing interruptions (e.g., ”be extra careful not to go in the
way of people walking or having a conversation”). However, SocNav1 is limited
to static scenes, which neglects the importance of the robots’ trajectories and the
people around them. The gap identified during the review is the lack of datasets
targeting how people would like robots to move, which might differ from how
pedestrians move. The next section describes our proposal, whose aim is not to
provide a dataset but a tool to create them according to the users’ needs.

3 Proposal

No one-size-fits-all approach will suffice for generating datasets, as different
datasets will work with different kinds of data. Therefore, instead of creating
an off-the-shelf solution, our SOcial NAvigation Toolkit for data Acquisition
(SONATA) provides software components that can be used as scaffolding to im-
plement different dataset generation tools. The general structure of the toolkit is
shown in Fig. 1. It is composed of three software components (rounded squares)
and a Python module. The module is built on top of PyRep [5], which is in
turn used to communicate with CoppeliaSim [4]. The module’s goal is twofold:
a) to provide a high-level API to create manual or randomly-generated social
navigation scenes, and b) to control the simulation and record data.

The toolkit architecture has been designed as a network of components to
reduce software coupling and ensure that the computational load can be dis-
tributed among different cores or even different computers. The simulator com-
ponent instantiates the CoppeliaSim simulation, publishes the information about
the simulated entities (people, walls, objects, and goals), and acts as an interface
with the simulator, handling robot control and scene regeneration commands
from a controller component. The event-publisher component receives events
from a joystick or mouse and publishes the corresponding data. These two soft-
ware elements are common to every specific dataset generation tool built using
SONATA. The only problem-specific component is the controller, so the toolkit
has been designed to facilitate forking the project and modifying the controller
component.

The controller is subscribed to the event publisher and the simulator feed-
back. It is therefore in charge of gathering data from the simulation and the
user input, as well as controlling what happens in the simulation by sending
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Fig. 1. General structure of the proposed toolkit for dataset generation.

commands to the simulator component (e.g., moving the robot, the humans,
restarting the simulation once a sample has been acquired). Its default GUI con-
tains a view of the simulation and options related to the generation of scenarios
(see Fig. 2). The controller obtains data related to the simulation from the sub-
scription to different topics provided by the simulator component. Specifically,
in a given scene, the simulator publishes geometrical attributes of each entity in-
cluded in it (e.g., humans, objects, walls) as well as semantic information about
relationships between entities (e.g., two humans talking, two humans walking
together). Besides this information, the simulator component publishes an im-
age of the scene captured by a virtual camera, which provides a third-person
view of the robot. This image, which is shown in the main GUI of the controller,
provides a general view of the scene to help the user label it or provide feedback
according to the specific problem. The controller also interacts with the simu-
lation using two additional interfaces implemented in the simulator component,
which is accessible through proxy objects. One of these interfaces provides an
operation to regenerate the scenario. For each type of entity (objects and re-
lations), the user can set a minimum and maximum number of instances and
randomly generate a new scenario according to the specified ranges. The second
interface is used to control the base of the simulated robot. This control can be
used as part of the labelling process or to change the user’s point of view. Fig. 3
summarises the topics that the controller component has access to.
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Fig. 2. GUI example for the controller component.

Along with the simulation data, the controller may access the user input to
assign a label to each scene. The user input reaches the controller through its
subscription to a topic published by the event-publisher component. The received
device events can be transformed into labels for a particular dataset. Thus, to
name some examples, an event can be associated to a binary (true/false) user
response to a given question about the scene, a degree of acceptance of the user
to a particular situation, or an action performed by the robot.

The main control loop of the default controller component periodically as-
sociates the current state of the scene with the label specified by the user and
updates a list containing labelled data of the scenario. The list is stored in a
JSON file on user demand. By default, the name of the file contains a user iden-
tifier and the timestamp to identify the file uniquely. The choice of using JSON
over other formats is motivated by its readability and ease to export to other
formats. Nevertheless, using other formats is possible and only depends on the
developer’s preferences for the dataset generation tool.
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variable name variable type

id integer
x, y, angle float

ix, iy, iangle float

(a) human sequence topic

variable name variable type

wall id integer
x1, y1 float
x2, y2 float

(b) wall sequence topic

variable name variable type

identifier integer
x, y float

(c) goal topic

variable name variable type

axis id integer
value float

(d) joystick event topic

variable name variable type

id integer
x, y, angle float

sideX, sideY float

(e) object sequence topic

variable name variable type

entity1 id integer
entity2 id integer

interaction type string

(f) interactions topic

Fig. 3. Topics provided by the simulator and the event-publisher components

4 Use case

A use case is presented to help readers understand how the toolkit is used and
provide evidence of its usefulness. The use case, which is accompanied by brief
experimental results, covers the design and implementation of a dataset gener-
ation tool and how the data was gathered.

4.1 Use case description

The application of the dataset obtained from the use case is to train a super-
vised social navigation machine learning model to move a robot. The particular
model described later in this section is a Relational Graph Neural Network (R-
GCN) [18]. The implementation details and the model’s experimental results are
not deeply described as the aim of the use case is only to provide an example
of use. However, the model serves the purpose of studying the limitations of
supervised learning for robot control.

Given that the model developed is used to control a robot using supervised
learning, the model’s output is the control commands that are meant to move
the robot. Thus, the desired outputs in the dataset are such control commands.
The input data are sequences of the different states of the environment where
the robot is asked to move and the goal and the robot itself. Given that the
goal would be to achieve social navigation, the users providing the input-output
relation (i.e., the sequence of robot commands for a given scenario) were asked
to make the robot move towards the goal according to the following guidelines:
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a) avoid invading people’s personal space; b) avoid getting in the way of people
when they walk; c) avoid getting in the interaction area of people when they
are interacting with an object (e.g., looking at a computer screen) or another
person; and d) adjust the speed not to have a big impact on people’s comfort.
Examples of these situations to avoid are shown in Fig. 4.

(a) Invading the people’s personal space. (b) Getting in the way of people walking.

(c) Interrupting people’s interactions. (d) Situation where the robot would have
to move slowly.

Fig. 4. Examples of robot behaviour that should be avoided.

The dataset scenarios are rectangular and L-shaped rooms, with a ran-
domised number of humans, tables, laptops, and plants (the numbers and types
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of objects do not have a significant impact on this task). Some humans are
static, while the rest randomly walk to places in the room. Static humans might
or might not be looking at one of the laptops in the scenario or talking to each
other. Moving humans might or might not be walking, accompanied by other
fellow humans.

The subjects contributing to the datasets have a third-person view of the
robot and the environment, such as the one shown in Fig. 2.

4.2 Use case design and implementation

As discussed in section 3, developers only need to modify the controller compo-
nent. It has to be adapted to perform two main tasks: a) save the data of interest,
and b) control the simulation. To make the above tasks as easy as possible, the
controller is subscribed by default to the topics described in 3, and the data is
accessible as instance variables. To control the simulation, the users can access
operations available through different proxies charged with synchronous commu-
nication with the simulator component. Every call to a method of a proxy invokes
a remote operation in a remote component. Thus, all the communication-related
subjects are transparent for the developer.

For every scenario in this specific use case, users are asked to move the robot
following social conventions from a random location in the scene to a particular
position using a joystick or mouse. The controller of this use case is designed
to interpret device events as velocity commands of the robot, but the joystick
events could be used for any other purpose if necessary (e.g., provide rewards).
In this case, the controller sends movement commands to the simulated robot
through the corresponding simulator’s proxy. Also, the command is also stored
as the desired output for the current state of the scenario. For each time step, the
description of the world’s current state and the robot command are appended
to a list which is serialised into a JSON file at the end of each sequence (i.e.,
a JSON file is generated for each goal met). Once the robot reaches the goal
position, the controller stops the simulation, and the user decides whether or not
the data should be kept or discarded. After that, a new scenario is generated.
Additionally, the user can regenerate the scenario by using the corresponding
GUI button.

4.3 Experimental results

To test the data acquisition process, a set of 3092 sampled trajectories (6184
including their corresponding mirrored versions) generated by the authors of the
paper were stored, and an R-GCN was trained to control the robot. The R-GCN
has 5 layers with 40, 30, 20, 15, and 3 units, respectively. The 3 units’ output
in the last layer is used to control the robot as advance, lateral, and rotation
speed.

The graphs used as input are composed of room representations for several
consecutive time frames. This is done to let the network gather information about
how the room’s entities evolve through time. Therefore, the creation of the final
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graph is done in three steps: Firstly, graphs representing the room are created
for two or three frames in a row. Secondly, these graphs are bonded, creating
temporal edges from one node to the same one in the next time frame. Finally,
a feature vector is associated with each node adding valuable information for
training the network.

The graphs have 5 different types of nodes, one for each element in the scenes:
people, objects, walls, the goal, and the room node acting as a global node.
Thus, there are bidirectional edges from the room node to every other node in
the graph. Additionally, edges are also used for describing interactions between
entities (e.g., a human talking to another human, a human interacting with an
object). All feature vectors have the same dimensions since it is a limitation of
the network architecture. They are composed of different fields concatenated one
after the other making a total of 42 elements. The following equation shows the
structure of the feature vector for node number i in layer 0 (the input layer):

h
(0)
i = (OHti |OHfi |tsi|pi|oi|ri|wi|gi)

The first two fields (OHti and OHfi) are one-hot encodings. The first one is for
the type of nodes, so it has 5 elements (one for each type of node). The second
one encodes the time frame, which has a length of 3, given that the graphs
are composed of a maximum of 3 frames. tsi encodes the time passed since
the beginning of the sequence, and has a dimension of 2. The remaining fields
store normalised geometric information for each of the entities of the graph. For
instance, if the node is a person, the pi field will store its coordinates, velocity,
orientation. The rest of the geometric feature fields will be filled with zeros. All
the geometric features are computed from the robot’s reference frame.

The hyperparameters of the R-GCN were:

– Number of layers: 5
– Hidden units: 50 (first hidden layer), 40, 30 and 15 (last hidden layer)
– Output units: 3 (velocity components of the robot)
– Activation functions: leaky ReLU for the hidden layers and tanh for the

output layer
– Learning rate: 0.0005
– Weight decay: 10−9

– Batch size: 40

We obtained an MSE of 0.0230 for the training set, and 0.0328 and 0.0331
for the development and test sets. Results of the execution of the robot using
the network output in different scenarios can be found in the following link:
http://shorturl.at/etLOW. Figures 5, 6 and 7 show some snapshots of three
of these executions. Each sequence is ordered from top to bottom and left to
right. The model trained can reach the goal of 76.6% of the times (46 out of
60). Given the limited number of samples and the complexity of some scenarios,
this percentage can be considered reasonable. Nevertheless, the behaviour of the
robot is not always the most appropriate. Sometimes the robot gets too close
to humans and objects (Fig. 6). Besides, in some scenarios, the robot interrupts

http://shorturl.at/etLOW
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people’s interactions even though it would be possible to find an alternative path
to reach the goal position (Fig. 7). These results are in line with the literature,
which does not recommend using supervised learning for robot control because
the samples’ distribution tends to be biased towards safe situations. This bias
makes robots unreliable in unexpected situations. Besides showing an example
of data gathering using the proposed toolkit, reproducing these results was one
of the purposes of the use case. The analysis of the influence of larger datasets in
supervised learning and exploring alternative approaches to this problem, such
as inverse reinforcement learning, is left for future research and lie out of the
scope of the paper.

Fig. 5. Execution of the robot using the trained model (first scenario). The robot
correctly orients its body to avoid a standing human on the way to the goal position.

5 Conclusions

The experience working with the toolkit to gather data for the use case is deemed
satisfactory, as 3092 samples were gathered by only 6 subjects who spent less
than 31 hours in total. Although satisfactory, some limitations and desirable
features that will be addressed in future works were highlighted:
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Fig. 6. Execution of the robot using the trained model (second scenario). The robot
avoids a human walking in the opposite direction but gets too close to a human when
it reaches the goal.

– Absence of a HUD-like display to provide information on top of the image.
For instance, this could be used to point subjects to the goal’s location when
it is not visible.

– The meshes of the simulated humans sometimes intersect and go through
walls that are meant to be solid.

– The orientation of the head of the simulated humans cannot be controlled.
Controlling the head orientation could be useful to hint subjects about the
future trajectory of the simulated humans.

The first feature could be implemented by the user drawing on top of the
image acquired from the camera. However, the API of SONATA will be extended
to make the task easier.

The humans’ behaviour, which is related both to the collision detection and
the lack of ability to move their heads, depends on how they are simulated in
CoppeliaSim. Enforcing collision detection could be solved by adding a control
layer. To solve the second issue, it would be necessary to implement a new
controllable simulated human in CoppeliaSim as an extension of the current
”path planning Bill” model.
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Fig. 7. Execution of the robot using the trained model (third scenario). The robot
changes its trajectory to avoid a group of humans on the way to the target. It gets into
an interaction area to finally reach the goal position.

As a final remark, it must be noted that any simulation will differ from real
life to some extent. Even if they are very realistic, subjects will know that they
are in a simulation that might impact their behaviour.

The software has been published in https://github.com/ljmanso/sonata un-
der a permissive license.
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