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Abstract. Surface cracks can be the bellwether of the failure of a road. Hence, crack detection is indispensable
for the condition monitoring and quality control of road surfaces. Pavement images have high levels of intensity
variation and texture content; hence, the crack detection is generally difficult. Moreover, shallow cracks are very
low contrast, making their detection difficult. Therefore, studies on pavement crack detection are active even
after years of research. The fuzzy Hough transform is employed, for the first time, to detect cracks from pavement
images. A careful consideration is given to the fact that cracks consist of near straight segments embedded in a
surface of considerable texture. In this regard, the fuzzy part of the algorithm tackles the segments that are not
perfectly straight. Moreover, tiled detection helps reduce the contribution of texture and noise pixels to the accu-
mulator array. The proposed algorithm is compared against a state-of-the-art algorithm for a number of crack
datasets, demonstrating its strengths. Precision and recall values of more than 75% are obtained, on different
image sets of varying textures and other effects, captured by industrial pavement imagers. The paper also rec-
ommends numerical values for parameters used in the proposed method. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI
.26.5.053008]
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1 Introduction
The planet had about 64 million kilometers of roads in 2013,1

and about 65% of these were paved.2 Maintaining the paved
roads, of around 40 million kilometers, is a herculean task for
road authorities all over the world. Condition monitoring is
the key for road maintenance, and frequent health monitoring
surveys are conducted to gather information about the state
of pavement. Maintenance decisions are taken based on the
evaluated severity, of paved roads, that are obtained via the
surveys. The inspection surveys have been performed man-
ually for a great deal of the 20th century. However, manual
surveys are not feasible anymore due to the sheer volume of
roads that need to be inspected. Furthermore, the difficulty is
manifold these days, given that the capacity of every road in
a network is used to the full. This utilization leads to an ever
faster degradation, necessitating more frequent inspections.
This higher inspection frequency is impossible to be tackled
manually, and the picture is further complicated by the short-
age of skilled inspectors. In addition, manual highway sur-
veys are also prone to human subjectivity. On the other hand,
an automated survey, when designed and validated aptly, can

be fast, accurate, and precise. In the coming decades, road
inspections will be automated to a very high degree.

There are numerous types of pavement defects: potholes,
raveling, spalling, and cracking, to name a few. For an
exhaustive list of pavement distresses, please refer to the US
Federal Highway Administration Distress Identification
Manual.3 Among the defects, potholes and cracks are the
most common. Cracks are one of the earliest to occur on
a newly paved road surface and are known to lead to
potholes.4 This fact makes the early detection of cracking
in roads very critical for their maintenance and upkeep.
Roads are mainly paved with either asphalt or concrete.
Both types of paved surfaces undergo structural degradation
during their usage. This degradation frequently leads to
cracking. The cracks cause a loss in the load-spreading
and water-resistant capacity of the roads. These detrimental
effects then speed up the deterioration process of a pavement
surface. If these cracks are untreated, the consequences
become more severe and these cracks transform into pot-
holes, deform the road, and sometimes even produce differ-
ential settlement of the road, making the ride bumpy.5

Crack detection in pavement images, such as the one
shown in Fig. 1, has been an active area of research for
almost the last two decades. The pavement image in
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Fig. 1 is obtained from the multifunctional vehicle (MFV), a
mobile road inspection platform available from Dynatest.6

The pavement image in Fig. 1 is a good example highlighting
the difficulties involved in crack detection. In this figure,
there are two different underlying surfaces with dissimilar
textures, as the annotation shows. Additionally, the intensity
of the image is varying across the width of the road, mainly
due to tire wear and due to this wheel track areas tend to
accumulate dark particulate rubber. Often, parts of a crack
are found to be unconnected segments, as also see in Fig. 1.

Moreover, cracks are often very faint and thin in pave-
ment images and often are embedded in a heavily textured
and nonuniformly illuminated background. The problem is
severe when the texture contrast is almost equal to that of
usually dark cracks, making the latter’s detection very diffi-
cult. Complicating the picture further, cracks are randomized
structures, not fitting any analytical descriptions, hence
detecting them is challenging. Due to these reasons, highway
authorities exercise a high level of caution in adopting any of
the proposed crack detection methodologies, and as such the
research is very active to date.7,8

This paper presents a methodology for crack detection by
the use of the fuzzy Hough transform. The work extends the
earlier work of Vaheesan et al.9 by a considerable amount. In
this regard, the line detection capability of the Hough trans-
form is utilized. Additional flexibility is provided by the fuz-
zified version of the Hough transform, which allows for
nonstraight line sections to be picked out still. This aspect
is essential for detection, because crack segments are

never perfectly straight. To reduce the influence of noise pix-
els, the Hough transform is performed over smaller image
tiles, thereby increasing the robustness. As many crack
detection algorithms concentrate on a specific type of
image, a number of different image sets, with varying levels
of surface texture, crack sizes, and crack contrasts, are used
in this work. Some of the considered image sets are captured
under controlled and uncontrolled conditions.

The paper is arranged as follows. Section 2 reviews the
relevant literature. Section 3 presents the theory required
for the work and the methodology adopted. In Sec. 4, the
data that are used for the analysis are introduced. Results
are presented in Sec. 4. Section 5 covers future develop-
ments. The paper ends with conclusions.

2 Related Works
The history of the automated detection of road cracks goes
back as early as the 1990s.10 In the 25 years since, there have
been numerous publications outlining a variety of methods
for detecting pavement cracks. Hence, it is difficult to pro-
vide an exhaustive overview of the methods that have been
used hitherto. Here, only the important developments in this
research area will be outlined together with literature relevant
to this work. For a better overview of different methods used
for road crack detection, refer to the review paper of
Chambon and Moliard11 or Koch et al.12 Chambon and
Moliard11 classify the different detection methodologies,
proposed so far, into the following categories: histogram-
based, morphological, machine learning-aided, and filter-
ing-based models. Here, a brief review about some of
these techniques is provided followed by a detailed review
of methods that have been used to detect cracks using the
identification of line segments.

Crack pixels, as shown in Fig. 1, are darker than their
background. Hence, a local histogram is expected to be
bimodal, with crack pixels belonging to a mode. Any tech-
nique to demarcate the two modes effectively leads to crack
segmentation. In this regard, Teomete et al.13 use an extended
technique, based on projected histograms in the vertical and
horizontal directions, of 4 × 4 pixel areas for crack detection
in pavement images. Metrics obtained from the two histo-
grams are used to calculate a shape measure that not only
detects crack segments but also characterizes their directions.
However, the test results are provided for images with a con-
sistent, continuous crack width of 3 to 4 pixels only, and this
continuity and consistency in width are not particularly chal-
lenging for many crack detection algorithms. The shown
images3 have good contrast crack segments as well, once
again presenting the algorithm with the best-case scenario.

Based on the fact that cracks are very thin across their
width, and that there can be a number of segments that are
separated by small gaps (i.e., presented as segments), mor-
phology is often employed for crack detection. Adhikari
et al.14 apply different morphological operators, such as
dilation to close the gaps between different crack parts,
for overall crack detection. The used images are devoid of
background texture, removing a challenging aspect of
real-world pavement images. In the presence of compara-
tively strong surface texture, which cannot be removed by
preprocessing alone, the morphological operators are also
bound to work on the texture, and this will lower the detec-
tion accuracy. In an example employing a learning-based

Fig. 1 A pavement image obtained from a road monitoring equipment
consisting of two different surface types (Courtesy: Dynatest UK, Ltd.).
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approach, Oliveira and Correia15 use an unsupervised learn-
ing scheme to identify crack tiles from images of flexible
pavements.

Out of these different groups of methods, as outlined in
Chambon and Moliard,11 the most effective method that
appears to handle some serious amount of background sur-
face texture uses a hybrid approach to combine histograms
and morphology.16 In this work, images are split into
75 × 75 pixel tiles. The window, based on its mean intensity,
is normalized. Then morphological erosion and dilation are
applied successively to reduce any intensity variances. The
morphologically operated images are then thresholded,
dynamically, using a procedure based on Otsu’s method.
The obtained binary image is divided, once more, into
75 × 75 pixel nonoverlapping tiles, and for each tile, entropy
is calculated. Using the histogram of entropy for each tile in
the image and using a thresholding procedure based on
Otsu’s method, each tile is identified as containing a
crack segment or not. A point to note is that their images
neither involve more than one type of background surface
texture within a single image, as shown in Fig. 1, nor any
lighting intensity changes across any given images.16

Cracks, being a byproduct of material fracture, are near
straight-line segments, of various lengths, connected in a
pseudorandom manner.17 Hence, many line detection strate-
gies have been experimented for crack detection. In this
regard, Zalama et al.18 use features generated by Gabor filters
to detect cracks from images with considerable intensity var-
iations and texture. The images are obtained from a custom-
made vehicle for pavements imaging, and they outline a pro-
cedure to choose the filter parameters. In a similar work,
Salman et al.19 use a Gabor filter bank to segment cracks
from images obtained from the laser road imaging system
(LRIS) pavement imager. In another work, circular Radon
transform is used for orientation analysis of cracks.20

Two-dimensional (2-D) matched filters are employed to
detect line segments representing cracks.21 In this work,
by a comparison with standard edge detection techniques,
a claim of robustness is made on the use of predefined filter
masks derived from the matched filter algorithm.

In a later work, Amhaz et al.22 have applied a minimal
path algorithm for the localization of pavement cracks. It
is a cost minimization procedure. In this regard, the path
is defined as a set of contiguous pixels, and the cost function
is defined as the sum of the intensities of pixels in a path.
Here, the idea is that crack pixels are usually dark in
color; hence, the cost-minimized path between any two
points in an image will run through crack pixels. The results
presented in the paper, obtained on actual and synthetic crack
images, definitely show good promise, especially for low-
contrast cracks. However, one major drawback of the opti-
mization procedure appears to be in the heavy times involved
for the processing, which run in the order of 400 to 1000 s. In
another recent research, adopting the current trend, a deep
convolutional neural network has been employed by
Zhang et al.23 for crack detection. A lot of color images
obtained by a smartphone have been used to train a deep neu-
ral network in a supervised manner. The method appears to
perform well under changing illumination conditions, as
there was no lighting control with a smartphone, for highly
textured pavement images, with both precision and recall
staying above 85%. However, low-contrast cracking has

not been tackled. In addition, no time performance of the
algorithms is given, provided that deep neural networks
can be computationally expensive. In another work, crack
detection has been performed with a coarse-to-fine
approach,24 where pixels are initially grouped into clusters
based on the intensities, followed by performing adaptive
image segmentation. The so-called “region of belief”
takes into its account some geometric properties of detected
regions, such as its length and area properties, to determine
the best crack hypotheses. Despite a great deal of challenges
present in the analyzed images, such as heavy background
texture and low crack contrast, the results are very promising
with detection accuracy figures as high as 95%. Processing
times are not provided, but briefly analyzing the methods and
algorithms used, the times cannot be really high, making this
a very promising method.

There have been a number of papers advocating the use of
the Hough transform for detecting cracks. Sohn et al.25 use a
modified iterative Hough transform (MIHT) for image regis-
tration to track cracks, in concrete pavement, between suc-
cessive frames of a video sequence. However, the actual
crack detection itself, in the textureless images, is performed
by a combination of techniques, such as image enhancement,
noise removal, histogram thresholding, and thinning, and not
by MIHT.25 In another work, the genetic-based inverse vot-
ing Hough transform has been applied to detect cracks from
the ultrasonic B-scan images of subsurface cracks.26

However, these cracks appear as parabola in ultrasonic
images, thus the main target of this work is parabola detec-
tion, and hence is not much related to the current research. A
similar work uses the randomized Hough transform to look
for arc-like patterns, representing cracks, in ultrasonic
images.27 Gavilan et al.28 in their work on crack detection
in pavement images, use the Hough transform to detect
straight-lines, such as joints. Using this scheme, they reduce
the false positives (FPs) in their detection. However, they do
not use the Hough transform to directly detect cracks as such.
In a similar manner, Nguyen et al.29 use probabilistic Hough
transform to detect lane markings in their crack detection
algorithm; hence, the application of the Hough transform
is not crack detection directly. Although Vivekanandreddy
et al.30 have considered the Hough transform for crack detec-
tion, their application is the direct use of the basic transform,
and hence they could detect only straight line crack seg-
ments, with the detection accuracy on the very low side.
Rababah31 considers tiled Hough transform for crack detec-
tion, but only to reduce crack images to a representative
form, from which they construct certain features and utilize
these in conjunction with other features. All the generated
features are used with a number of classifier types. Due
to the composite nature of the features, the detection pos-
sibilities with the Hough transform-based detection only
are not explored in this study.

In summary, the literature review shows that the Hough
transform for straight lines has not been comprehensively
studied for crack detection yet. In addition, this work exploits
the capabilities of the Hough transform by combining two
different extensions of the transform in an innovative man-
ner. While the fuzzy Hough transform has been used to
detect near-straight crack segments, the effects of surface
texture and noise on the detection are reduced by the tiled
version of the Hough transform.
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3 Proposed Methodology
The Hough transform is one of the methods used to find
shapes from a set of points in a given space.32 Hence, this
is frequently used to find arbitrary shapes in an image.
The detection is performed by a voting procedure. A binary
image (the Hough concept is also applicable to grayscale
images) will be the result of some processing operation,
such as thresholding, where the foreground and the back-
ground will be of contrasting values in the original image.
Then, the aforesaid voting procedure will be applied to
the binary image leading to the detection, or nondetection,
of an object of specific shape. In this work, edge detection
is used to find candidate pixels for cracks. The resulting
binary images from the edge detection are then subject to
the Hough procedure to detect cracks differentiating them
from other artifacts, such as texture and noise.

3.1 Edge Detection Using Second Derivatives
Grayscale images of pavements are to be used in this
research. If raw images are in color, they must be converted
to grayscale to start with. The Hough transform and its var-
iants, as explained later in this section, are proposed to be
applied on binary images that consist of crack segments
and any other artifacts, such as texture signatures. As the
algorithm is expected to handle images of varying intensity,
thresholding for usually darker than background cracks is not
preferred. Edge detection is chosen to detect potential crack
segments in an image. Especially, the second derivative in
the gradient direction (SDGD) filter is found to be very effec-
tive. The mathematical basis of the filter is as follows. The
2-D Gaussian function is

EQ-TARGET;temp:intralink-;e001;63;404Gðx; yÞ ¼ 1

2πσ2
e−

x2þy2

2σ2 ; (1)

where σ is the standard deviation. The first derivatives of the
Gaussian, in the x- and y-directions, respectively, are

EQ-TARGET;temp:intralink-;e002;63;341

dGxðx; yÞ ¼ −
x

2πσ4
e−

x2þy2

2σ2

dGyðx; yÞ ¼ −
y

2πσ4
e−

x2þy2

2σ2 : (2)

These continuous filters are implemented in the discrete
form as square matrices. The second derivatives are defined
in the following manner:

EQ-TARGET;temp:intralink-;e003;63;241

dGxx ¼ dGx ⊗ dGx

dGyy ¼ dGy ⊗ dGy

dGxy ¼ dGxy ¼ dGx ⊗ dGy; (3)

where⊗; stands for the convolution operation of the discrete
matrices. In Eq. (3), the pixel indices x and y are dropped for
the sake of simplicity. The image, Iðx; yÞ, is then convolved
with the first and second derivatives. To define the notation,
any convolved image Ii;j is obtained from

EQ-TARGET;temp:intralink-;e004;326;752

Ii ¼ dGi ⊗ I

Iij ¼ dGij ⊗ I: (4)

Once the first and second derivatives of the image are
found, the SDGD operation is defined as33

EQ-TARGET;temp:intralink-;e005;326;689SDGD¼f½IxxðIxÞ2þ2IxyIxIyþ IyyðIyÞ2�∕½ðIxÞ2þðIyÞ2�g:
(5)

The final output (i.e., binary image) is obtained by thresh-
olding the SDGD, in Eq. (5), with a suitable value.

3.2 Hough Transform for Straight Lines
The Hough transform uses the fact that through any given
pixel an infinite number of lines can pass to detect straight
lines in images. So, there is a chance that any of these lines
can be common between a given number of pixels, forming
the basis for line detection. Referring to Fig. 2, for an arbi-
trary pixel with coordinates (x0; y0) in the image plane x-y, a
line that goes through it is shown in green color. The equa-
tion of any straight line, which is generally written in terms
of the gradient of the line with the x-axis and its intercept on
the y-axis, can also be written as a function of the (r; θ) plane
as

EQ-TARGET;temp:intralink-;e006;326;474y0 ¼
�
− cos θ

sin θ

�
x0 þ

�
r

sin θ

�
: (6)

Rearranging the equation, it can be shown that if θ ϵ
[0;2π)

EQ-TARGET;temp:intralink-;e007;326;408y0 ¼ x0 cos θ þ y0 sin θ; (7)

where r ϵ [0; D] and D is the diagonal length of the image in
number of pixels.

Equation (7) represents all the lines that go through a
given point, (x0; y0), in the image. Moreover, it can be
noted that the expression for r in Eq. (7) represents a sinusoid
in the (r; θ) plane. So, for every pixel detected in the image
plane x-y, there will be a sinusoid in the (r; θ) plane repre-
senting all the lines that pass through it. For implementation
reasons, both the r and θ axes have to be discretized, along
the axes, forming bins. The arrangement of the bins in the
(r; θ) plane itself gives the appearance of an image and is
called the accumulator array.

Fig. 2 Definition of the (r ; θ) pair for a straight line through point
(x0; y0).
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Then for each point in the image, a value of 1 will be
added to the corresponding bins, which form the shape of
a sinusoid. The intersections of the sinusoids of a number
of detected pixels are detected as the straight line through
those points. By finding out the local peaks in the accumu-
lator array, the potential lines will be detected. Usually a
thresholding is performed on the accumulator array to detect
lines that are greater than a given length. An example is
shown in Fig. 3(a), where two lines in an image result in
two distinct peaks in the accumulator array, shown in
Fig. 3(b), highlighted within a bounding box each. It must
be noted here that the standard Hough transform will fail
if points do not lie on a perfect straight line.

3.3 Fuzzy Hough Transform
If the Hough transform for straight-line detection is applied
to an image, the straight line segments in it can be detected.
However, crack segments do not always belong to straight
lines, but most of the times are only nearly straight.
Hence, the limitation of the Hough transform for straight
lines must be overcome before it can be used to detect cracks.
This deficiency is removed by the fuzzy Hough transform.

The fuzzy Hough transform allows for the fact that there
can be pixels slightly away from a given straight line (i.e., a
bin in the r − θ accumulator array) due to sensor noise or due
to any discrepancies in preprocessing operations, such as
intensity thresholding or edge detection.34 The closer the
pixel to any line, hence to the corresponding accumulator
array bin, the more the contribution of it goes to that specific
bin. This capability of the fuzzy Hough transform is utilized
here to detect crack lines that are inherently nonstraight. To
explain further, assume there are a number of noncollinear
crack points detected in an image. An example could be
the black points in Fig. 4. Although not all of them are
on a straight line, using a fuzzy membership function,
they all can claim “right” to the solid line shown in

green, at various degrees of closeness. In this regard, refer-
ring to Fig. 4, the fuzzy version of the Hough transform also
takes into account the points at up to a distance of kwidth dis-
tance away from the straight line, on both sides. The contri-
bution of the points in the area of interest, defined by the
dotted lines in Fig. 4, is determined by fuzzy membership
functions centered around the middle, solid line. Figure 5
shows two such membership functions, triangular and
Gaussian, where a distance of zero from the straight line
under consideration means a membership value of 1. In addi-
tion, the membership value reduces as the distance increases.
The Gaussian membership function is chosen to be used in
this work. In the fuzzy Hough transform, the membership
value of any pixel in the kwidth neighborhood is used as
its contribution to the accumulator array. Hence, a pixel
that is far away from the line considered makes a smaller
contribution to the accumulator array, and the points that
are close to a straight line lead to a large contribution to
the accumulator array.

For a given set of points, several candidate lines will be
tested before the line with the largest accumulated member-
ship of neighboring points is chosen as the best candidate. It
has been shown35 that the easiest way to get the fuzzy con-
tribution of all pixels is to form the accumulator array with
the usual Hough transform and then convolve it with the fol-
lowing one-dimensional kernel in the r direction of the accu-
mulator array

Fig. 3 Hough transform: (a) a binary image consisting of two lines and
(b) its accumulator array with two peaks representing the lines.

Fig. 4 The influence area of fuzzy Hough transform, shown in dotted
lines, also incorporating points away from a solid, straight line through
(x0; y0).

Fig. 5 Two fuzzy membership functions for a kernel width of 5 pixels,
triangular (red) and Gaussian (blue), and negative and positive dis-
tances are on either side of the straight line considered.
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EQ-TARGET;temp:intralink-;e008;63;752

gðdÞ ¼ e
−r2

k2
width if r < kwidth

0 otherwise
; (8)

where r ¼ kwidth defines the width of the kernel. The larger
the width of the kernel, the more nonstraightness in the
points the algorithm can tolerate. However, on the downside,
more noise pixels can also get detected as crack segments.
For smaller kernel widths, noise detections will be reduced at
the expense of detected crack segments. As a general rule,
the fuzzy Hough transform is preferred for noisy images
over the Hough transform.

Dividing the image into a number of tiles reduces the con-
tribution of accumulated noise/texture pixels from the whole
length and breadth of the image to the accumulator array
bins. This way of dividing the image, and making an accu-
mulator array for each of the tiles, is known as the tiled
Hough transform.36 A graphical explanation of the effective-
ness of the tiled Hough transform is provided in Fig. 6. In
Fig. 6, a number of point detections, in black, belonging to
potential straight lines are shown in both the figures, repre-
senting an image. Figure 6(a) shows the standard Hough
transform case where the image is used as a whole to gen-
erate a single accumulator array. As shown in Fig. 6(a), six
noise pixels, aligned along a straight line, will give rise to the
peak detection in the accumulator array. Hence, the noise
response results in a FP, whereas the real line in the
image, consisting of four detected points, does not get
detected. Figure 6(b) shows the same set of detections,
but now in an array of nonoverlapping square tiles, where
an accumulator array each is formed for every tile. As
shown in Fig. 6(b), the division of the image into a number
of tiles increases the chance of detecting the correct crack
segment over the noisy data. In Fig. 6(b), the actual line

segment, consisting of three detected points, stands above
the noise detections that have become separated from
each other by the tiled configurations. Hence, the tiled accu-
mulator array building, on the right, reduces the contribution
of noise on line detections. Therefore, this scheme is used in
the paper to reduce the influence of noise. In a similar man-
ner, the misleading effects of surface texture, which are
present heavily in some pavement images, on crack detection
will also be kept under control. The overall flow of the algo-
rithm is provided in Fig. 7.

In this work, a combination of the fuzzy and tiled variants
of the Hough transform is employed to detect crack segments
in pavement images. By doing this, the chance of detecting
crack segments, which are essentially nonstraight line seg-
ments, embedded in a noisy, highly textured environment
is vastly increased as shown below.

4 Results and Discussion

4.1 Images and Processing
Four different image datasets are used to test the proposed
method. The different datasets are chosen to test the viability
of the proposed crack detector in different imaging contexts
encountered in real-life roads. Out of these four datasets, two
are provided by Dynatest UK Ltd. They are obtained by the
MFVof Dynatest. The MFV is equipped with intensity cam-
eras and laser range imagers.7 One intensity camera on the
vehicle images the road surface perpendicularly capturing
images similar to the one shown in Fig. 1. The image in
Fig. 1 belongs to the dataset named database 1 (DB1).
Nine hundred images make up this set. The physical resolu-
tion of the road captured by the image is about 4 mm∕pixel.
The grayscale images are 1040 × 1250 pixels in size.

Fig. 6 Hough transform (a) considers image as a whole and (b) tiled version performs better in avoiding
the influence of noise.

Fig. 7 The flowchart of the crack detection scheme.
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The MFC of Dynatest is also mounted with a triangula-
tion-based laser scanner at the rear of the vehicle. Range (i.e.,
three-dimensional) images obtained from the scanner are
also made available to the research. One such range
image, rescaled to the intensity range of 0 to 255, i.e.,
8-bit, is shown in Fig. 8(a). Dataset DB2 is formed by
900 such images. The lateral (i.e., on the road surface)
resolution of the image, as with DB1, is 4 mm∕pixel.
DB2 images are also 1040 × 1250 pixels in resolution.
Figure 8(b) has a crack segment, of a vertical crack of
good contrast and a horizontal crack of poor disparity
from the background. This monochrome image set is
obtained by the LRIS system of Pavemetrics Inc., Canada.
LRIS images of a similar nature are included in dataset
DB3 of 25 images. Its resolution is also 4 mm∕pixel,
with 900 × 1080 pixels in size. DB3 images are also gray-
scale images. The last image set, DB4, consists of images
taken by a digital camera. Images are captured using a
Sony Cyber-shot DSC-W180 camera in ambient lighting.
The resolution of these images is 0.33 mm∕pixel. The
image canvass itself is 3264 × 2448 pixels. The road section
is flat, and the camera is held perpendicular to the road sur-
face, and at a constant height, while the images were cap-
tured. This image database incorporates images that have
a strong presence of surface texture, mainly coming from
large aggregates a lot greater than the first five datasets,
in conjunction with cracks of varying contrasts. The images
are taken in direct sunlight, hence shadows are shown and the
images also have very poorly contrasted crack segments, due
to the directional effects of the sun. Two such images from
DB4 are shown in Figs. 9(a) and 9(b). There are 150 images
in this dataset.

For all the images, side borders, etc., consisting of pave-
ment markings are manually cropped out as the cracks that
are found within the lane markings of a road are not the

consideration of the current study. However, the automation
of this cropping itself is not considered, as there are other
standard techniques to detect lane markings, hence their
removal is assumed a straightforward task.

The algorithm is coded in MATLAB®. The different data-
sets necessitated different values for the tile sizes and the
other parameters in the fuzzy Hough transform. These details
are set out in Sec. 4.2.

4.2 Results
For the images of DB1, the edge detection is performed with
a Gaussian kernel size of 6 × 6. In an image that is processed
with the SDGD filter, the dark edges are usually large in
value, and any brighter areas will have low values. The
resulting matrix from the SDGD operation is thresholded
with a value of −0.05. The original image and its edge detec-
tion by SDGD are shown in Fig. 10. The edge image is a
binary image. The detection of texture, especially in the
darker vertical bands toward the left and right edges of
the image, must be noted. Once the edges are detected,
the tiled Hough transform is operated on the binary edge
image. A tile size of 25 × 25 pixels is found to be the
best for this purpose.

A fuzzy kernel width of 1 pixel is used, as at this scale
many edge segments of cracks take a near straight-line form,
reducing the need to incorporate large excursions from the
center-line, which represents the final detection (see
Fig. 4). For the discrete accumulator array, an r resolution
of 1 pixel and a θ resolution of 3 deg are used. The accu-
mulator array of every tile is thresholded with a value of
17. For each tile, the accumulator bins, i.e., the discrete r
and θ values, which consist of bin values greater than the
threshold, are identified. Then, these r and θ values are
used, in conjunction with Eq. (6), to identify the line segment
within that tile. The identified lines are plotted back on the

Fig. 8 Images from two databases: (a) a DB2 range image containing cracks obtained by the MFV and
(b) a DB3 image from the LRIS of Pavemetrics.
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image using red pixels. The image in Fig. 11(a) shows the
detected lines. For the same image, Fig. 11(b) shows all the
tiles analyzed (in green borders), and red tiles are drawn
wherever crack segments are detected. For the pavement
image, tiles of size 25 × 25 pixels are manually analyzed,

and crack tiles are identified. This manual crack tile identi-
fication is assumed as the ground truth, as shown in Fig. 11
(a), and based on this, three quality measures, namely pre-
cision, recall [a.k.a. true positive (TP) rate], and FP rate are
estimated for detections in the following manner:

Fig. 10 Images of DB1 at various processing stages: (a) original image, (b) edges detected by SDGD,
and (c) crack segments detected.

Fig. 9 DB4 dataset: (a and b) two images.

Fig. 11 A DB1 image: (a) tiled-based detections and (b) the ground truth.
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EQ-TARGET;temp:intralink-;e009;63;752Precision ¼ True positives

True positives þ False positives
; (9)

EQ-TARGET;temp:intralink-;e010;63;719Recall ¼ True positives

True positives þ False negatives
; (10)

EQ-TARGET;temp:intralink-;e011;63;681False positive rate ¼ False positives

False positivesþ True negatives
:

(11)

The detection shown at the top, in Fig. 11, when compared
against its ground truth, has 57 tiles that are true positives
(TP), 13 FP tiles, and 16 tiles detected as false negatives
(FNs). There are 806 (i.e., 26 × 31) tiles in total. This
means that true negatives are 720 tiles. Using Eqs. (9)
and (10), this detection corresponds to a precision and recall
of 81.4% and 78.1%, respectively. From Eq. (11), the FP rate
for the detection is 0.0177.

On a closer inspection of the detected image, the unusu-
ally large texture blobs (probably due to aggregates sticking
out due to top layer wear) and a few more regular texture
blobs lie close to each other, hence triggering a high response
in the accumulator array, resulting in FPs. The FNs are
mainly from the extremely low-contrast crack segments,
which can be guessed by the global crack network pattern
for the naked eye, but get a very low Hough transform
response based on the localized tiles.

Now all images in DB1 are manually processed for
ground truth. Then they are processed with the proposed
algorithm, but with varying levels of the accumulator
array threshold between 1 and 55, in the increment of 1.
For each threshold value, the FP and TP rates are calculated,
using Eqs. (10) and (11), and the values are plotted against
each other. The resulting receiver–operator characteristic
(ROC) curve is shown in Fig. 12. Based on the performance,
a threshold value of 13 is selected. The resulting precision
and recall values for database DB1 are 44.4% and 93.2%,

respectively. A similar process is followed for the other data-
bases, and the chosen values are given in Table 1. The ROC
curves themselves are left out for space considerations here.

Although the parameter values reported in Table 1 appear
to be random, a consideration of the image resolutions for
different databases offers a better view from a general param-
eter selection perspective. In this regard, it is said earlier that
DB1, DB2, and DB3 are at 4-mm∕pixel resolution, whereas
DB4 is 0.33 mm∕pixel. Based on this, the following values
can be recommended as good starting points for the param-
eters for crack detection based on the method proposed here.
Hence, to be applicable for any pavement image resolution,
parameters are specified here at the pavement level instead of
in pixels (these can also be easily worked out from Table 1
and image resolutions). The recommended values are all
referring to the actual sizes at road level, a tile size in the
range 50 × 50 to 100 × 100 mm2, a kernel size between 4
and 8 mm, and a threshold value of pixels representing an
area of 200 to 600 mm2.

Images in DB2 are processed with the parameters shown
in Table 1. A sample image is shown in Figs. 13(a)–13(d)
together with processed images and the ground truth of
cracks, identified manually. When tile-based detections are
compared against the ground truth, there are 38 TP tiles
together with 8 FPs and 8 FNs. This results in 82.6% pre-
cision and a recall value of 82.6%.

A sample detection of a DB3 image is shown in
Figs. 14(a)–14(d), together with the original and the tile-
based ground truth. There are 36 TPs, 10 FPs, and 7 FNs
(all in number of tiles). This count results in a 78.2% and
83.7% precision and recall, respectively. Figure 15 shows
an example image from DB4 showing the detections and
the ground truth, respectively.

As the images in DB4 (Fig. 15) are much higher in res-
olution than DB2 (Fig. 13) and DB3 (Fig. 14), dedicating
more pixels to a given area, a larger tile size of
150 × 150 pixels is used. A SDGD threshold value of −0.1
is used. In conjunction with large tile sizes, a kernel width of
17 pixels is used with a threshold value of 1925 for the accu-
mulator array. On the final detection, there are 19 TP, 0 FP,
and 12 FN tiles. The precision and recall values for this
detection are 100% and 61.3%, respectively. The final detec-
tion accuracies for all datasets are provided in Table 2.

4.3 Benchmarking
To benchmark the detection performance of the proposed
method, it is decided to compare it against a well-known
crack detection method in the literature. In this regard, the
method proposed by Oliveira and Correia16 is chosen, dueFig. 12 ROC curve for DB1 for changes in threshold.

Table 1 Processing parameters used for different datasets.

Data
SDGD

threshold
Square tile
size (pix)

Kernel
size (pix)

Accumulator array
threshold (pix)

DB1 −0.05 25 1 13

DB2 −0.05 25 2 24

DB3 0.05 25 2 37

DB4 −0.1 150 17 1925
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to the following reasons: its highly sophisticated nature and
very high values of precision and recall reported (84% to
95% and 95%, respectively), and the clear documentation
that allows an easy reproduction of their algorithm. The tile-
based crack detection algorithm of Oliveira and Correia16

consists of extensive preprocessing, which is reported, in
detail, in Oliveira and Correia.37 The modified-Otsu method
used in the algorithm is clearly detailed in Ref. 37. The
method has been implemented as a MATLAB® toolbox
for road crack detection.38 This tool, named CrackIT, has
been used here to benchmark the results obtained for DB1
to 4.

In CrackIT detection output image files, green crosses
show tiles that are TP. Similarly, yellow crosses represent
FPs and red ones show FNs in Figs. 16 and 17. Figure 16(a)
shows the detections obtained from CrackIT for an image in
DB1. It can be seen that, unlike the detections by the pro-
posed method, shown in Fig. 11(a), the thin, low-contrast
cracks are not detected by CrackIT at all. The intensity

changes of the background seen in Fig. 16(a) could also
have contributed to the lower detection by CrackIT.

However, the FPs of five tiles are smaller than the 7
obtained by the current method for that image. Although
when the whole of DB1 is considered, the proposed method
has a lower percentage of FPs. This is reflected in Table 2,
where the summaries of results, for the two algorithms, are
given for all four image sets. In this regard, the precision
value for the proposed method is 44.4% against 77.9%
from CrackIT. However, when it comes to FNs, the proposed
method outperforms by far. Fig. 16(a) shows that most of the
low-contrast crack segments are not detected, whereas in
Figs. 11(a) and 11(b), a considerable portion is detected.
This is reflected in the considerable performance difference
in recall: 93.2% by the fuzzy Hough method versus 56.1%
by CrackIT.

Figure 16(b) also shows an image from DB2 processed by
CrackIT. Many crack segments in the image are missed (red
crosses), and one tile is detected falsely as crack. Comparing

Fig. 13 A DB2 image: (a) raw image, (b) its detection, (c) ground truth identified by tiles, and (d) the
detections in tiles.
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this against Fig. 13(d) image, it is quite easy to identify that
the proposed method has performed much better than
CrackIT. The overall precision values for the two methods
for DB2, in Table 2, also reinforce the superiority of the cur-
rent method. Moreover, the recall value of 76.0% versus
53.3% shows the advantage gained by using the fuzzy
Hough transform for crack detection.

On DB3, the method of Oliveira and Correia6 performs
slightly better in both the precision and recall aspects.
Figure 17(a) shows that the low-contrast segments are
missed by CrackIT. On these segments, the fuzzy Hough
transform also has not performed very well either, although
it fared better than CrackIT. However, CrackIT’s perfor-
mance on good contrast segments is better than the proposed
algorithm (although detecting high-contrast crack segments
is not usually a challenge). DB4 has the poorest of perfor-
mances obtained via CrackIT. As seen in Fig. 17(b), many
noncracked areas are detected as cracks by CrackIT. Since

this is an over detection, there are no FNs in Fig. 17(b).
Owing to this characteristic also on other images from
DB4, the recall value is very high via CrackIT (about
88.9%). Due to many FPs, the precision is very low at
5.9%. In comparison, the fuzzy Hough transform performs
better, when both the aspects are considered. The random
surface texture, of DB4, in combination with uncontrolled
illumination increases FPs, bringing down the overall preci-
sion values for both the algorithms, and much higher for
CrackIT.

In summary, the proposed algorithm has performed better
than the state of the art, in general. Even in one dataset, i.e.,
DB3, where it performed worse than CrackIT, it detected
low-contrast crack segments better. The low-contrast crack
segments from the other datasets are detected better by
the fuzzy Hough method. In addition, the quality of detection
on highly textured pavements and that under varying illumi-
nation is found to be better with the proposed method.

Fig. 14 DB3 images: (a) raw image, (b) its detection, (c) ground truth identified by tiles, and (d) the detec-
tions in tiles.
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4.4 Issues in Detection
It has been shown that the proposed algorithm consistently
outperforms the one that is proposed by Oliveira and
Correia.16 Cracks, as small as 8 mm in width, are detected

from the databases DB1 and DB2, which consist of images
having a resolution of 4 mm∕pixels. This means that cracks
as small as 2 pixels wide are detected by the proposed algo-
rithm. However, the performance of 44% to 75% precision
and 75% to 95% recall on the Dynatest datasets DB1 and
DB2 still needs improvement. The FPs come from the
fact that the background texture is comparatively similar
in magnitude to the cracks present. In this regard, as
local, tile-based detection is performed, the impact of surface
texture, although small, is still felt. On the other hand, very
low-contrast cracks are still found to be hard to detect. If the
accumulator array threshold is lowered to pick out this low-
contrast cracking, the strong surface texture on other parts of
the image results in increased FPs. A manual selection of the
threshold has been difficult and this is where the ROC analy-
sis (e.g., Fig. 12) is found to be useful.

Dataset DB3 presents even more problems. Especially,
the low-contrast horizontal crack segments, which are lateral
to the length of road, have gone largely undetected, giving
rise to large FNs; the consequence is a lower recall value.
However, the consistent low-contrast of lateral cracks
from LRIS appears to be an issue with its lighting. Many
pavement images have high powered lasers pointing in
the lateral direction of roads, and this lighting will create
a good contrast to longitudinal cracks, whereas with lateral
cracking, the illumination gets to all areas of the trench-like
structure created by these cracks, resulting in low-contrast.
The effect is clearly seen in the image in Fig. 17(a) from
DB3. A similar problem is also present with DB4 images
where the direction of the sun poorly contrasts the segments
of cracks oriented toward it. The extreme levels of texture,
found in the local roads from where the images are captured,
bring down the accuracy figures even below that for DB3.

4.5 Processing Times
The images are processed on a PC with an Intel Core-i7 proc-
essor (2.10 GHz) having an 8-GB RAM. The algorithm is
coded in MATLAB®. The average times consumed to proc-
ess each image in the databases are shown in Table 3.

5 Future Developments
Although the proposed algorithm performs much better than
the state of the art, background texture in DB1 and low-con-
trast cracking in DB3 have been identified to pose fundamen-
tal difficulties in the detection. In this regard, the authors
have recently been experimenting with probabilistic detec-
tion methods for pavement cracks and have had reasonable
success in detecting low-contrast cracking (the results of
which are yet to be published). The idea now is to integrate
the strengths of both fuzzy Hough and probabilistic detec-
tions to advance the detection capabilities further. It also
becomes necessary to test a lot more images with the pro-
posed algorithm to test its robustness. In this regard, images
that also consist of other defects, together with cracking, will
also be tested to evaluate the sensitivity of the proposed
method further.

As seen in Table 3, the times taken for the algorithm,
within MATLAB®, are in the order of tens of seconds.
Even though MATLAB® is not a real-time development
environment, but far from it, the processing times will
have to be drastically reduced. The main algorithmic element
that consumes much time is found to be, unsurprisingly, the

Fig. 15 A DB4 image: (a) detection and (b) the ground truth.

Table 2 A performance comparison of the algorithms.

Dataset

Proposed algorithm
Algorithm of Oliveira

and Correia

Precision (%) Recall (%) Precision (%) Recall (%)

DB1 44.4 93.2 77.9 56.1

DB2 76.8 76.0 49.0 53.3

DB3 66.0 60.5 71.7 63.7

DB4 63.2 57.8 5.9 88.9
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tiled Hough transform. As a number of accumulator arrays
are formed for each of the tiles, the sequential processing
within MATLAB® does not help. In this regard, the algo-
rithm is ported to C++ with OpenCV library functions,
which is better suited for real-time implementations than
MATLAB®, and being tested. Most importantly, the
strengths of parallel computing are being made use of via
graphical processing unit (GPU) usage. The accumulator
array of a tile does not have any dependency on the arrays
of any other tile in the image, making the formulation of
these arrays to be parallelized without any complexities.

An Intel Core-i7 processor has four cores, so a four-way par-
allelism is immediately possible, at least for intermediate
image processing operations, such as accumulators array for-
mulation. In addition, dedicated GPU units, such as nvidia
TEGRA X1, are also considered to massively parallelize
the accumulator array formulation, as they easily consist
of 10s of cores. This is expected to bring the run-time of
the algorithm to real-time requirements.

6 Conclusions
This paper presents a method whereby fuzzy Hough trans-
form is proposed as a technique to detect cracks from pave-
ment images. The proposed algorithm makes use of the
superior capabilities of the Hough transform to detect cracks
from highly textured images. Two added features of the
Hough transform, in terms of fuzzy membership and tiled
detections, are found to reduce the effect of texture pixels
and noise pixels. The resulting method provides accuracies
and precision in the range of 44% to 75% for images cap-
tured with an actual road inspection imager, the MFV of
Dynatest. The recall values are between 75% and 95%. It
has been shown that the proposed algorithm is highly
effective when it comes to detecting low-contrast cracks,
especially among highly textured and nonuniformly

Fig. 16 Detections by the tool of Oliveira and Correia:38 (a) DB1 and (b) DB2 images.

Fig. 17 Detections by the tool of Oliveira and Correia:6 (a) DB3 and (b) DB4 images.

Table 3 Average processing times for per image.

Dataset Time taken (s)

DB1 32.0

DB2 31.5

DB3 80.9

DB4 69.7
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illuminated backgrounds. A comparison with a state-of-
the-art algorithm shows that there is a consistent advantage
in using the proposed algorithm, also for other image
sets, including the one captured under totally uncontrolled
lighting.
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