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Abstract

Free-form surfaces are defined with NURBS (non-uniform rational basis spline) for most computer-aided engineering (CAE)
applications. The NURBS method requires the definition of parameters such as weights, knot vectors and degree of the curves
which make the configuration of the surface computationally expensive and complex. When the control points are randomly
spaced in the point cloud and the topology of the desired surface is unknown, surface configuration with NURBS method
becomes a challenging task. Optimization attempts for such surfaces create enormous amounts of computing data when coupled
with physics solvers such as finite element analysis (FEA) tools and computational fluid dynamics (CFD) tools. In this paper, an
adapted Delaunay triangulation (ADT) method for surface generation from the random points cloud is proposed and compared
with widely used implicit functions based NURBS fitting method. The surface generated from ADT method can be simulta-
neously used with stochastic optimization algorithms (SOA) and CFD applications to search for the optimal results with
minimum computational costs. It was observed while comparing ADT with NURBS-based geometry configuration that the
computation time can be reduced by 3 folds. The corresponding deviation between both geometry configuration methods has
been observed as low as 5% for all optimisation scenarios during the comparison. In addition, ADT method can provide light
weight CFD approach as any instance of design iteration has at least half storage footprint as compared to corresponding NURBS
surface. The proposed approach provides novel methodology towards establishing light weight CFD geometry, absence of which
currently isolates methodologies for optimization and CFD analysis.

Keywords Delaunay - Surface generation - Optimization - NURBS - Three-dimensional surfaces

1 Introduction

Computer-aided engineering (CAE) has become a norm in the
past decades for accelerating product development. Now, we
are equipped to run complex simulations, but are usually lim-
ited while formulating the most effective design of the
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geometry during the design development phase. This is one
of the most time-consuming and creatively demanding phases
in product development as aesthetics, functionality, manufac-
turability and feasibility have to be taken into consideration.
Most structural optimization methods evaluate the most
optimal design from the strain/stress graph (Madsen et al.
2000; Papadrakakis et al. 1998), but it neglects the possibility
of having an entirely new design unrelated to the existing one
as shown in (Linden 2002). When stress/strain graph is taken
as the base for design, only modifications to the existing de-
sign at the selected parameters can be achieved. With this
approach, degrees of freedom for the optimization engine is
constrained, resulting in restricted solutions. Use of large set
of points without fitting techniques allows the optimization
engine to search the unrestricted solution space. This lack of
constraints allows formation of the most unconceivable of
designs as demonstrated by (Linden 2002) when he obtained
a 5 point bent antenna as the optimal compared to the regular
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cylindrical and helical antennas. However, modelling the ge-
ometry during optimisation routine has been a time-
consuming and computationally expensive problem with the
traditional NURBS method because it requires a set of grid
arranged data points, functions, knot vectors and weights of
each of the data points (Xie et al. 2012), and this lays the
foundation for the problem that is addressed in this paper.
The proposed ADT method is able to provide a non-self-
intersecting surface in lesser time as compared to NURBS
method.

This paper critically reviews the previous approaches for
formulating geometry for CFD methods and design optimiza-
tion in section 2, Delaunay Triangulation-based algorithm is
detailed in section 3, adapted Delaunay triangulation (ADT)
Methodology is evaluated and compared with NURBS meth-
od in section 4 while its capabilities are discussed in section 5.
A case study utilizing proposed method is provided in section
6. The conclusion and extended areas of applications are
discussed in section 7.

2 A review on geometry generation
for simulation and optimization

2.1 Optimization methods and CFD

There are various computational methods and tools available
for optimization problems with various constraints and inter-
relationships (Simpson et al. 2008). Such optimisation prob-
lems may have an unexpected solution that completely differs
from the existing design (Linden 2002). The goal of these
optimization methods is to find the global optimal solutions
for satisfying given objective functions. These methods can be
widely classified as traditional interpolation methods and ar-
tificial intelligence methods (Sobieszczanski-Sobieski and
Haftka 1997).

Traditional methods such as metamodeling (Wang and
Shan 2006), Kriging (Simpson et al. 2001), conjugate gradient
methods (Kannan and Kramer 1994) and the neural network
as described by Papadrakakis et al. (Papadrakakis et al. 1998)
and Madsen et al. (Madsen et al. 2000) utilise the gradient
function that relates the objective function to the design vari-
ables and finds the best solution by interpolating the values in
the gradient function. It does not have to carry out the entire
simulation for each change in the design parameter, and hence
provides a faster solution. The gradient function is generated
from earlier experiments and previous data are used to train
the learning engine of these systems. It is unable to extrapolate
from the given set of data for results with the same accuracy.

Although SOA requires more computing effort than gradi-
ent projection methods or other local search methods, it does
not require gradients of the objective function. In addition, it is
not restricted to modify only given design parameters as it can
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use randomly generated parameter values for evaluation.
Various modifications to the population size, mutation proba-
bility and selection of individuals can be made to further im-
prove the efficiency (Guo et al. 2010). Plenty of other mechan-
ical design experiments have been conducted for antenna de-
sign (Linden 2002; Robinson et al. 2002, vehicle suspension
design (Baumal et al. 1998, structural optimisation
(Papadrakakis et al. 1998; Robinson et al. 2002) etc. using
SOA. The downside to this method is the numerous simula-
tions that need to be run for each set of a design conceived.
Such approach has not been evaluated in turbulent and tran-
sient CFD studies. All points of contact between the fluid and
the geometry in CFD application may not be feasible to define
numerically; hence, a rendering of geometry and its transient
simulation is necessary. This gives rise to a problem of a great
number of geometry designs needing to be rendered and
simulated.

2.2 Surface representation methods

Generating surfaces based on unorganized scattered points
have been an interesting area of study as it is difficult to in-
corporate all these points and generate a single continuous 3D
surface without holes or intersections (Attali 1998). One of the
existing methods tries to fit these points into Bezier or B-
Spline surface generating a free-form surface (Leal Narvaez
et al. 2011; Pizo and Motta 2009), usually leaving out a num-
ber of outlier points for achieving C1 continuity. Research has
been made in configuring surfaces from scattered points and is
broadly classified (J.-D. Boissonnat and Cazals 2002) as (a)
local projections, (b) sculpting methods, (c) implicit methods
and (d) deformable models.

Local projections methods described by Boissonnat
(Boissonnat 1984) and Levin (Levin 2004) construct the sur-
face as a function defined in a local reference domain. These
methods are fast but perform poorly with non-uniform and
very sparse datasets. The sculpting methods described in
(Boissonnat 1984) and (Amenta et al. 1998) are based on the
removal of triangles from a spatial arrangement, such as the
Delaunay triangulation. But, reconstructed surface may not
pass through all the sample points and may have additional
holes. The implicit methods studied as basis function in
Ohtake et al. 2003; and NURBS in Leal et al. 2010 and
Hoppe et al. 1992 estimate a tangent plane from the sample
data and use distance to the plane as a distance function. The
zero-set of this function is then sampled at grid points and the
surface is generated from these points. The deformable
models presented in Hong-Kai et al. 2001 and Wang 2003
from an initial shell to which deformations are applied to
minimize a function of energy and reduce deviation. These
methods converge to local minima, and hence could be sig-
nificantly different from the true surface if the initial shell is
not appropriately placed.
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Sculpting and deformable models based methods require
the surface to be smooth and not contain any noise
(Boissonnat and Cazals 2002). These methods fail to be robust
with noisy-randomly spread points and may require prohibi-
tively large amounts of time to generate the output. Hence,
local projections and implicit NURBS-based methods are the
most robust and widely used methods for generation of free-
form surfaces.

While critically reviewing above approaches, it can be in-
ferred that DT method has distinct advantages over other ap-
proaches (Ebeida et al. 2011). Hence, this method has been
adopted for configuring free-form surfaces in the research
work reported in this paper. This novel approach can generate
surface from random points without discounting any point as
an outlier as a part of optimisation routine.

3 Surface preparation
3.1 Generating NURBS surface

NURBS are resolution independent and provide smooth
curves and excellent continuity with fewer control points.
But, there are other parameters that greatly affect the perfor-
mance of NURBS such as weights, knots and the degree of the
curve (Ravi Kumar et al. 2002; Xie et al. 2012). All these
values must be perfectly controlled to achieve the desired
output as NURBS surface. NURBS requires a rectangular grid
of control points that form the individual curves that can be
used as guides to form a surface. This topology cannot be
extended to incorporate different feature but, can be patched
with another such surface to generate complex shapes
(Michalkova and Bastl 2015).

For this study, in order to generate a NURBS surface from a
set of random points, point cloud data was fitted into linearly
interpolated rectangular grid. Then, a required number of
points are taken from this grid to form the NURBS grid. The
NURBS surface is generated using these points as the control
points. For simplicity, the weights of each grid point are taken
as one and the degree of the curve is taken as three. The knot
vectors are defined as zero for the first three and one for the
last three with uniform spacing in the remaining knots at the
centre to ensure the curves pass through the start and end
points.

3.2 The proposed adapted Delaunay triangulation
(ADT) methodology

The Delaunay triangulation is a well-known method used
for surface reconstruction, modelling of terrain and build-
ing meshes for space-discretised solvers such as the finite
element method or finite volume method. This method
maximizes all the angles in the triangle to avoid long,

narrow triangles. The method has been very successful
in regenerating of surfaces applications as it provides the
smallest polygon (only 3 sides) that can be used to define
the surface with higher detailing. Polygons with higher
number of sides are an added constraint as fitting four
or more random points in one plane is tough and gener-
ating a non-overlapping surface by patching these planes
might not always be possible. The ADT method discussed
in our previous work (Bhattarai et al. 2017; Bhattarai
et al. 2018) can be adopted to generate non-overlapping
detailed surfaces from a set of predefined points. As
highlighted in the literature, this method is much faster
and can accommodate all the points in the cloud to form
the surface by patching flat triangular surfaces with CO
continuity, i.e. continuous with sharp edges. This current
paper adds to our previous work by enabling random
points cloud sets and providing performance comparison
with NURBS surface and optimizing the random sets of
points to generate most force on the surface. ADT in this
work refers to adapted Delaunay triangulation which is
dissimilar to adaptive Delaunay tessellation
(Constantiniu et al. 2008). Adaptive Delaunay tessellation
is a meshing technique used to provide triangular mesh to
the surface of a solid geometry.

The proposed ADT method was specifically developed for
CFD applications coupled with mechanical design optimiza-
tion problems as these problems demand highly computation-
ally expensive and time-consuming operations. Although
most response surface optimization problems are for open
free-form surfaces, closed surfaces could also be generated
from this algorithm with the help of user inputs regarding
the presence of closed surface and the plane for split boundary.
This will allow the algorithm to separate the random points
cloud into two sets and generate two different non-
overlapping surfaces which can be patched together to form
the final closed surface. The detailed algorithm for the
Delaunay triangulation-based method can be presented as
follows:

(1) Define space limits for the 3D points cloud suitable for
the problem at hand

Xmin =X =Xmax} Ymin =V=Vmax> Zmin =Z=Zmax (1)

(2) Define the number of points desired to define the surface

] ={1,......... , n} (2)
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(3) Plot the 3D points cloud with aforementioned » points.
(Refer Fig. 1.)

S (x) = random({x : Xmin <X<Xmax }) (3)

S= {f(xivyiﬂi)?Vien} (4)

(4) Evaluate the spread of the coordinates by calculating
their standard deviation

v(x) = stdev({f(x;), Vien}) (5)
V={x),v(y),v(2)} (6)

(5) Use standard deviation to determine the depth axis of
the surface. Higher standard deviation can be chosen
to generate widely spread surface and lower standard
deviation to generate narrow surface. Lower deviation
can be used to design aerodynamic surfaces while
higher deviation can be used to design turbomachin-
ery. The chosen axis is the axis perpendicular to the
generated surface

depth.axix:=axis with min or max {V} (7)

(6) If min or max standard deviation is the same, follow the
priority order of Z-axis first and Y-axis second. (take min
for example)

Fig. 1 Generated points (step 3)
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depth.axis =z axis, if v(x) =v(y) = v(z) (8)
=y—axis, if min{V} = v(x) = v(y)

(7) Create a set of 2D points with the remaining two coordi-
nate axis values. Marked by ‘x” in Fig. 2.

P = {f(Xivyiv zi),Vien}—{f(ui)}

where, wu=z,if depth.axis is z axis
=y, if depth.axis is y axis
=x, if depth.axis is x axis

(8) Apply 2D Delaunay algorithm to the generated set P to
form triangles with the highest area to perimeter ratio
without any intersections as shown in Fig. 3.

(9) Obtain the triangulation information (set of points that
form a triangle) from 2D Delaunay output.

(10) Form a surface with the same triangulations in 3D space

with respective x, y and z coordinates. (Refer Fig. 4.)

This simple yet effective algorithm is the basis of the
method suggested in this paper. This triangulation ap-
proach ensures inclusion of all the points in the random
points cloud without self-intersection of the surface. It
also preserves the sharp features of the randomly spread
points which would otherwise be lost with NURBS based
approaches. A flowchart for the entire optimization cycle
is presented in Fig. 5.

o]

O

Fig. 2 2D projection (step 7)
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Fig. 3 2D triangulation (step 9)

4 Model evaluation and comparison

The outputs generated from the different input values with the
proposed ADT method and the NURBS-based method are
compared in this section. A discretised domain of Euclidean
space was defined where a surface could be configured. A set
of random points from 3-dimensional space was generated as
the input for the surface configuration using both ADT and
NURBS methods. The outputs generated are listed in Table 1
along with their specifications.

The first column in Table 1 shows the surfaces configured
from ADT method and the second column shows the same
from NURBS method. The third column overlaps both these
surfaces to provide a visual comparison of deviation. The first
row comparison was made with 9 data points which shows
that ADT method has a file size of 306 bytes while NURBS
has 1376 bytes. Similarly, the computation time taken is
0.0038 s for ADT and 0.018 s for NURBS. The overlap shows
a wide deviation but the deviation is still under 5% statistically

Z Axis

-1

Y Axis 2 -2 X Axis

Fig. 4 Surface generation (step 10)

START
Define space limits for
the 3D points cloud
v
State the number of
points (n) desired
L

\ 2
Generate 3D points cloud with n points
v

Evaluate spread of coordinates by
calculating standard deviation

v
/ Select the depth axis /
v

Apply 2D Delaunay Triangulation to the
2D points without depth information

+ -~

Form surface with the triangulation
information including the depth
information

v

CFD Solver
v

Optimization Engine

Optima reached?

Fig. 5 Flowchart for ADT algorithm integrated with an optimisation
process

as seen from the Student’s paired ¢ test and Wilcoxon signed-
rank test. The same trend follows for iterations with 45, 100,
169 and 200 points. Although the difference in the file size
and computation time for the two methods does not seem
much at the first iteration, the difference grows with the in-
crease in the number of points. However, the deviation on the
overlapping column has visually reduced with the increase in
number of points.

The similarity of the surfaces generated from the said
methods can be evaluated by using various statistical tools.
The comparison was made on the deviation of the coordinate
points on z-axis between ADT surface and the NURBS sur-
face. This problem can be classified as a paired sample test
because it consists of pair of z-axis coordinate for the same x-
axis and y-axis coordinates. Hence, Student’s paired ¢ test or/
and Wilcoxon signed-rank test can be used to determine if the
two sets of data being compared have major differences or if
they are fairly similar. Student’s paired # test is a parametric
test that takes into account the values of each measurement
while Wilcoxon paired test is a non-parametric test which
makes comparison by ranking the differences between the
values. Both the tests were done on the given sets of
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Table 1  Comparison of ADT and NURBS method
ADT NURBS Overlapping

Number of points: 9 Number of points: 9 Wilcoxon Test (95% confidence):
Same set

File size: 306 bytes File size: 1376 bytes
Students T Test (95% confidence):

Time taken : 0.0038sec Time taken : 0.0108sec Same set

Number of points: 45 Number of points: 45 Wilcoxon Test (95% confidence):

S Same set
File size: 1295 bytes File size: 3320 bytes

Students T Test (95% confidence):

Time taken : 0.0048sec Time taken: 0.0126 sec Same set

004

o 00
0.08 002 2 - 008 002

. . 1 0 .
Number of points: 100 Number of points: 100 Wilcoxon Test (95% confidence):
Same set

File size: 2567 bytes File size: 5750 bytes

Students T Test (95% confidence):
Time taken : 0.0053sec Time taken : 0.0175sec Same set
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Number of points: 169
File size: 3875 bytes

Time taken : 0.0057sec

Number of points: 169
File size: 8990 bytes

Time taken: 0.0178sec

Wilcoxon Test (95% confidence):
Same set

Students T Test (95% confidence):
Same set

Number of points: 200
File size: 4374 bytes

Time taken : 0.0060sec

Number of points: 200

File size: 10286 bytes

Time taken: 0.0189sec

Wilcoxon Test (95% confidence):
Same set

Students T Test (95% confidence):
Same set

coordinates with the hypotheses that both the sets do not have
significant difference. It can be concluded with 95% confi-
dence that surfaces generated from ADT and NURBS are
similar.

It can be seen from the statistical methods that the surfaces
are similar, but we can visually see in Table 1 that the surfaces
are different when superimposed because of the sharp edges in
the ADT model and smooth curves in the NURBS model.
Close approximation of the NURBS model can be obtained
from the ADT model with sufficient carefully placed control
points but the sharp edges of the ADT model are not possible
to be achieved from a single NURBS surface.

The comparison of file size and configuring time in Fig. 6
shows that there is the distinct advantage of using the ADT
surface generation over the NURBS method for optimization
applications with minimal processing of the random data fed
as input.

5 Discussion and evaluation of ADT

The advantages and differences of the two methods employed
in this paper can be listed as follows:
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(1) Storage: The ADT method requires lesser storage space
as compared to the NURBS method as can be seen in the
Fig. 6. The memory requirement for ADT is almost half
that required for NURBS. Although the difference in the
storage requirement appears to be 5912 bytes for 200
points, this difference can grow up by a multiple of thou-
sands in stochastic optimization applications. If a popu-
lation of 50 individuals is optimized for 1000 genera-
tions, 50,000 geometries need to be configured and that
requires 296-megabyte extra space owing to the differ-
ence of 5912 bytes in ADT and NURBS file size.

(2) Speed of generation: The ADT method is almost 3 times
faster than the NURBS-based method for the generation
of the surface. This is mostly because ADT does not
require pre-processing of the data and aligning them into
a grid to form curves that define the surface. As seen in
Table 1, with a time difference of 0.0129 s for each ge-
ometry with 200 points, 645 s can be reduced from the
total optimization cycle.

(3) Surface quality: The geometric continuity of the ADT
surface is CO while that for NURBS surface is C1 or
higher depending on the order of the curve chosen.
This is why ADT surface has sharp edges and corners
but NURBS has smooth surface without any sharp
edges. Hence, NURBS is desirable where smooth sur-
faces are necessary, but for other applications, ADT sur-
faces which are comprised of flat triangles, sharp edges
and corners may be sufficient. The ADT surfaces can
very closely resemble the NURBS surface if the control
points are placed accordingly, but a single NURBS can-
not recreate the sharp edges and corners of the ADT
surface.

(4) Outliers: ADT method provides same weight to all the
control points and ensures that all the points lie on the
surface, but NURBS requires the random data set to be
fitted into polynomial equations to form grids for gener-
ation of the desired surface. This consumes much time
and discounts the value of individual point which are

Fig. 6 Storage and computation

time required comparison
12000

e= o Size-ADT
10000
8000

6000

Bytes

4000

2000

9 45 100
Computation Scenarios (Number of Points)
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File Size Comparison

away from the mean. A single change in the control point
has a drastic effect in the final ADT surface while the
same may not be true for the NURBS surface. For sto-
chastic optimization operations, this property is of great
interest because each operation done on each set yields a
different result for ADT while it might not yield a differ-
ent result for NURBS surface.

(5) Robustness: Delaunay methods are very robust and can
handle large number of random points that are fairly
scattered. Similarly, ADT is capable of generating sur-
faces from any set of random points that are fairly
scattered in space, but for NURBS, the points must be
uniformly laid and arranged in grids. NURBS requires
parameters such as knot vectors, weights and polynomial
functions adding to its complexity. A generic approach
might not be able to provide the surface for all sets of
random points. Also, ADT method generates surfaces in
VTK format compatible with open source rendering and
simulation packages.

These advantages and differences clearly highlight the ben-
efits of using the ADT method for configuring surfaces from
random points for application in computationally expensive
stochastic optimization problems for CFD applications. This
method helps reduce the amount of data produced and also
aids handling of data by simplifying the operations, reducing
memory requirement and decreasing the amount of time re-
quired for processing.

6 Case study: optimizing a surface

A case study on faceted 3D surface generated from the ADT
method made with random points was conducted to test the
surface generation approach. The problem was defined as
maximizing the force on the surface from a water jet striking
on it. The initial population of surfaces consist of some flat
surfaces along with the randomly generated surfaces. The

Computation Time Required

0.02 « o «Time-ADT
0.018

Time-NURBS

Size-NURBS

0.016
0.014
0.012
0.01
0.008
0.006
0.004 - °
0.002

Seconds

- o =
-
-

169 200 9 45 100 169 200
Computation Scenarios (Number of Points)
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volumetric space domain for surface generation was limited to
a maximum of 36 mm x 30 mm X 13 mm with 1 mm
discretization in each direction. The diameter of the jet was
taken as 18 mm and its velocity as 4.34 m/s to resemble Pelton
turbine design parameters. The CFD simulation was conduct-
ed on DualSPHysics solver engine by modelling only a half of
the domain to save computational expenses as the flow is
symmetric along the longitudinal cross-section. The following
figure shows the SPH solution environment (Fig. 7).

Genetic algorithm was chosen as the stochastic
optimizaiton tool and the chromosomes were defined as the
coordinates of points that form the surface. Random selection,
2 point crossover reproduction and random mutation of 0.01%
were the operators used for optimization. Initial population of
48 individuals made of 101 coordinate points were generated.
This initial population consisted of a flat surface, an approxi-
mation of existing Pelton turbine bucket and randomly gener-
ated surfaces. The 4 elite individuals from each generation
were carried forward to the next generation to preserve the
best solutions from being lost during the cycle. The evolution
of the force readings for the 3 optimization runs carried out for
50 generations is shown in Fig. 8.

The results show an improvement in performance for buck-
et shaped surfaces. Although the existing bucket shape
(19.08 N) or the flat surface (21.96 N) did not come out as
the optimal shape, the best-performing surfaces did have sim-
ilar valley like features. These shapes, which appeared rough
and irregular, had the existing bucket like valley exactly where
the jet hits the surface as decipted with the red circles in the

Fig. 7 DualSPHysics solution environment (original in colour)

Optimal Result

Generations
0 10 20 30 40 50

Runl eseseseRun?2

Fig. 8 The optimal design readings for each generation

figure below. The contours on the figure are a gradient where
blue is deep and yellow is high in the z-axis. Since this opti-
mization attempt was made for a stationery plate, smaller cup
shape might be ideal for generating the maximum force on the
surface. Figure 9 shows the optimal shapes that resulted from
the optimization process.

These optimized shapes resulted went through 50 gen-
erations of crossover and mutation operations with 48 in-
dividuals in each generation. That sums up to 2400 simu-
lations run in total for the entire operation. Each simulation
was run for 0.07 s runtime with 0.01 s timesteps which
allowed enough time for flow to settle on the surface.
The time taken on average for each of the simulation was
107.53 s and for each optimization run was 0.05 s on av-
erage on a 3.4-GHz Intel Xeon E1245 processor with
16GB RAM and 2 GB NVIDIA Quadro 4000 GPU unit
with 256 CUDA enabled cores. (Two different computers
were used for the two experiments as the SPH simulations
required computers with CUDA enabled GPU processors
while the Fluent simulation required computers with li-
censed software.) The storage requirement for each simu-
lation was an average of 9.60 MB. These time and storage
requirements were inclusive of the geometry generation,
simulation and the optimization cycle for each individual
without any user intervention.

The results were then verified with Ansys Fluent which
reinforced the results. The error between the fluent readings
and DualSPHysics readings were minimal for the flat surface
and 10-15% for the random surfaces. A 3.3-GHz Intel Core
15-4590 processor workstation with 8GB RAM was used for
Ansys Fluent simulations. An average of 25GB was required
for each of the simulations. The simulation was run for a total
of 0.0225 s with time steps of 0.00005 s owing to Cournat
number limitations. Each simulation took 1.5 h to complete
not accounting for geometry creation and meshing. This
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Flat Surface Existing Bucket
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Fig. 9 Optimization results geometry (original in colour)

highlights the advantage in running the optimization with the
proposed method as compared to running a single simulation
on the commercial CFD package.

The simulation conducted in this study was a simplified
study, but the study has proven the capability of the proposed
method. The suggested design has the features of the
established designs and further investigations by limiting the
search domain and increasing the number of iterations could
provide more realistic results after refinement.

Another case study was conducted on Pelton turbine buck-
et in rotating condition. Although simulation results showed
7.5% improvement in the performance, actual performance
optimization of 1.5% was achieved over the existing design.
The performance was validated experimentally in the testing
rig present in the University of the West of Scotland Chemical
Engineering Laboratory.

The same method can be applied on other turbomachinery
with higher number of variables and more iterations to gener-
ate more optimal designs. Nevertheless, time and computa-
tional power requirements will be significantly less than com-
pared to NURBS-based geometry computation. Thus, this
method can be used as preliminary design optimization stage
to test numerous designs in less time. The final optimized
design can then be tested with the more accurate Eulerian
methods for further validation.

@ Springer
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7 Conclusion

The geometric design conception and optimization phase is
still considered as a bottleneck in the product development
cycle. The reasons for this being limited computational power
and processing time and the desire to generate effective de-
sign. An alternative for NURBS-based design optimization
process has been presented in this paper. The proposed ap-
proach reduces the amount of data produced in the entire
optimization process. For example, this method requires only
3 coordinate points values for each point and no additional
parameters such as knots and weights. The proposed approach
is hence robust and allows exploring radical changes in con-
ventional bucket designs, which may not be perceived during
conceptualisation stage.

The method provides faster and simpler construction of sur-
faces compatible with proposed methodology and can be used
together with stochastic optimization algorithms. The proposed
method has fewer variables and hence provides consistent out-
puts for the same data. Sudden changes in the gradient and
sharp corners that other random points surface generation
methods cannot render are accommodated in this method. In
general, the computational data storage requirement for the pro-
posed ADT method is half that required for similar NURBS
surface and the time required is 1/3 of that required for
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generating NURBS surface. These attributes are most desirable
for stochastic design optimization applications of free-form sur-
faces where the performance of the surface is interdependent on
its geometry, such as fluid flow over the surface.

The applications of this method include but are not limited
to optimization of turbomachinery, aerodynamic surfaces,
landscape, breakwater design and city planning to ensure
healthy flow of fresh air. Any response surface optimization
problem involving fluid flow can be modelled and optimized
with this method. There is very limited exploration with sharp
edged, ribbed or contoured features in CFD applications. But,
Formula 1 aerodynamic study has shown that there might be
scope for additional features to the conventional smooth sur-
face (Diasinos et al. 2017). This method was suggested to be
used together with computational fluid dynamics simulation
software and stochastic optimization algorithms to produce an
optimal surface for geometric design problems that can aid
develop smarter products.

8 Replication of results

The codes formulated to compare the ADT method and the
NURBS method are provided in the supplementary material
as a MATLARB file. It requires installation of a few packages
for successful compilation.

The codes formulated for the case study are provided as R
file. DualSPH has to be installed for the CFD operations. Few
other R packages are necessary to run this code successfully. It
should be noted that the results might not be identical because
of the stochastic nature of the work.
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