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We consider different ways to control the magnification in s#-organizing
maps (SOM) and neural gas (NG). Starting from early approacles of
magnification control in vector quantization, we then concetrate on
different approaches for SOM and NG. We show that three struturally
similar approaches can be applied to both algorithms: locaked learning,
concave-convex learning, and winner relaxing learning. Threby, the
approach of concave-convex learning in SOM is extended to aore general
description, whereas the concave-convex learning for NG isew. In general,
the control mechanisms generate only slightly different bleavior comparing
both neural algorithms. However, we emphasize that the NG mults are
valid for any data dimension, whereas in the SOM case the re#is hold only
for the one-dimensional case.

1 Introduction

Vector quantization is an important task in data procesgatiern recog
nition and control (Fritzke, 1993; Haykin, 1994; Linde, Buz: Gray,
1980; Ripley, 1996). A large number of different types haeerbdis-
cussed, (for an overview, refer to Haykin, 1994; Kohoner§5®Duda
& Hart, 1973). Neural maps are a popular typeneural vector quan-
tizersthat are commonly used in, for example, data visualizafiesture
extraction, principle component analysis, image proogssilassification
tasks, and acceleration of common vector quantization (o@t,BCot-
trell, Letremy, & Verleysen, 2004). Well known approaches the Self-
Organizing Map (SOM) (Kohonen, 1995), the neural gas (NGrtMetz,
Berkovich, & Schulten, 1993), elastic net (EN) (Durbin & Whaw,
1987) and generative topographic mapping (GTM) (BishognSen, &
Williams 1998).

In vector quantization, data vectovse R¢ are represented by a few
codebooks or weight vectove;, wherei is an arbitrary index. Several cri-
teria exist to evaluate the quality of a vector quantizee ost common
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one is the squared reconstruction error. However, othditgaéteria are
also known, for instance topographic quality for neighloarth preserving
mapping approaches (Bauer & Pawelzik, 1992; Bauer, Der, |[8nghn,
1999), optimization of mutual information (Linsker, 198&)d other cri-
teria (for an overview, see Haykin, 1994). Generally, ahfaitrepresen-
tation of the data space by the codebooks is desired. Thigepsois
closely related to the so-called magnification, which dégsrthe relation
between data and weight vector density for a given model Kihbe/ledge
of magnification of a map is essential for correct intergreteof its output
(Hammer & Villmann, 2003). In addition, explicit magnifican control is
a desirable property of learning algorithms, if dependingfee respective
application, only sparsely covered regions of the dataespage to be em-
phasized or, conversely, suppressed. The magnificatiobeaxplicitly
expressed for several vector quantization models. Usuallythese ap-
proaches the magnification can be expressed by a power |lavedethe
codebook vector densigyand the data density. The respective exponent
is calledmagnification exponerdr magnification factor As explained in
more detail below, the magnification is also related to ofiteperties of
the map, for example, reconstruction error as well as mud@atmation.
Hence, control of magnification is influencing these prapsrtoo.

In biologically motivated approaches, magnification casodle seen
in the context of information representation in brains,if@tance, in the
senso-motoric cortex (Ritter, Martinetz, & Schulten, 1p9agnification
and its control can be related to biological phenomena hikeeperceptual
magnet effect, which refers to the fact that rarely occgratimuli are dif-
ferentiated with high precision whereas frequent stimididistinguished
only in a rough manner (Kuhl, 1991; Kuhl, Williams, Lacerd&igvens,
& Lindblom, 1992). It is a kind of attention-based learningtwinverted
magnification, that is, rarely occurring input samples arpleasized by
an increased learning gain (Der & Herrmann, 1992; HerrmBawoer, &
Der, 1994). This effect is also beneficial in technical systeln remote-
sensing image analysis, for instance, seldomly found gf@oner classes
should be detected, whereas usual (frequent) classes witldl variance
should be suppressed (Merényi & Jain, 2004; Villmann, &hgr' & Ham-
mer, 2003). Another technical environment for magnificatomntrol is
robotics for accurate description of dangerous navigatiates (Villmann
& Heinze, 2000).

In this article we concentrate on a general framework formifaggtion
control in SOM and NG. In this context, we briefly review the shon-
portant approaches. One approach for SOM is generalizedyfserward,
it is transferred to NG. For this purpose, we first give thedastations,
followed in sectiori B by a more detailed description of mégation and
early approaches related to the topic of magnification odnimcluding
a unified approach for controlling strategies. The magrtiboacontrol
approaches of SOM are described according to the unifiedefremk in
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sectior 1, whereby one of them is significantly extended. Sdrae pro-
cedure is applied to NG in sectibh 5. Again, one of the corgpplroaches
presented in this section is new. A short discussion cordltige article.

2 Basic Concepts and Notations in SOM and
NG

In general, neural maps project data vectorfrom a (possibly high-
dimensional) data manifol® CR? onto a setd of neuronsi, which is
formally written as¥p_, 4 : D — A. Each neuron is associated with a
pointerw; €R¢, all of which establish the s&V = {w;},_,. The map-
ping description is a winner-take-all rule, that is, a stinswectorv € D
is mapped onto that neurane A with the pointerw, being closest to the
actual presented stimulus vectar

Up,a: v s(v)=argmin|v—w. (2.1)
icA
The neuron s is called winner neuron The set Ry, =
{v e D|VUp_4(v)=1i} is called the(masked) receptive fieladf the
neuroni. The weight vectors are adapted during the learning praaess
that the data distribution is represented.

For further investigations, we describe SOM and NG as ounded
neural maps in more detail. During the adaptation procesgjaence of
data pointss € D is presented to the map with respect to the data distribu-
tion P (D). Then the most proximate neuremccording to equatiof{d.1)
is determined, and the pointer,, as well as all pointerss; of neurons in
the neighborhood of, are shifted towards, according to

Aw; = eh (i,v, W) (v —w;). (2.2)

The property of “being in the neighborhooddfis represented by a neigh-
borhood functior (i, v, W). The neighborhood function is defined as

hy (i,v, W) = exp (—M) (2.3)
for the NG, wheré;; (v, W) yields the number of pointens; for which
the relation||v — w;|| < [|[v — w;| is valid (Martinetz et al., 1993); espe-
cially, we haveh, (s, v, W) = 1.0. In case of SOM the set of neurons
has a topological structure usually chosen as a hypercuiexagonal lat-
tice. Each neuromhas a fixed positiom (i). The neighborhood function
has the form

ho’ (i,V,W) = exp (_ ||I' (7'> —-r (S (V>>||A) ) (24)
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In contrast to the NG, the neighborhood function of SOM ideated in
the output spacel according to its topological structure. This difference
causes the significantly different properties of both dtbars. For the
SOM there does not exist any energy function such that thptati@n
rule follows the gradient descent (Erwin, Obermayer, & 3gmny 1992).
Moreover, the convergence proofs are only valid for the dineensional
setting (Cottrell, Fort & Pages, 1998, Ritter et al., 1992)e introduction
of an energy function leads to different dynamics as in the(Bdrbin
& Willshaw, 1987) or new winner determination rule (Hesk&99). The
advantage of the SOM is the ordered topological structureofons inA.
In contrast, in the original NG, such an order is not givene©an extend
the NG to the topology representing network (TRN) such thpbkogical
relations between neurons are installed during learnitiggagh generally
they do not achieve the simple structure as in SOM latticeasr(iWetz &
Schulten, 1994). Finally, the important advantage of the isl@at the
adaptation dynamic of the weight vectors follows a potémimimizing
dynamics (Martinetz et al., 1993).

3 Magnification and Maghnification Control in
Vector Quantization

3.1 Magnification in Vector Quantization.

Usually vector quantization aims to minimize the recorton error
RE =Y, [ IV —wil|* P (v) dv. However, other quality criteria are
also known, for instance, topographic quality (Bauer & Paike 1992;
Bauer et al., 1999). More generally, one can consider thergéred dis-
tortion error,

Evz/DHWs—VH P(v)dv. (3.1)

This error is closely related to other properties of the (aBwector quan-
tizer. One important property is the achieved weight vedtarsityp (w)
after learning in relation to the data densi®y(D). Generally, for vector
guantizers one finds the relation

P(w) o< p(w)” (3.2)

after the converged learning process (Zador 1982). Therepae is
calledmagnification exponerdr magnification factar The magnification
is coupled with the generalized distortion erfar]3.1) by

oa=— (3.3)



Table 1: Magnification of Different Neural Maps and Vector QuantiaatAp-
proaches.

Model Magnification Reference

Elastic net 1+ %Piﬁ Claussen and Schuster (2002)
SOM ;1?;7% Dersch and Tavan (1995)
Linsker network 1 Linsker (1989)

LBG 4 Zador (1982)

FSCL o Galanopoulos and Ahalt (1996)
NG 75 Martinetz et al. (1993)

Note: For SOM, M, (o) denotes the 2nd normalized moment of the
neighborhood function depending on the neighborhood range

where d is the intrinsic or Hausdorff dimensiohof the data. Begin-
ning with the pioneering work of Amari (1980), which invested a
resolution-density relation of map formation in a neuraldfimodel and
extended the approach of Willshaw and von der Malsburg (J,9@6sev-
eral neural map and vector quantizer approaches the magiuficelation
has been considered, including the investigation of thaticel between
data and model density.

Generally, different magnification factors are obtained ddferent
vector quantization approaches. An overview of severabntgmt mod-
els with known magnification factors is given in Table 1.

For the usual SOMs, mapping a one—dimensional input spatteaon
chain of neurons, )

ason =5 (3.4)
holds in the limitl < o <« N (Ritter & Schulten, 1986). For small val-
ues of neighborhood range the neighborhood ceases to be of influence,
and the magnification rate approaches the value % (Dersch & Ta-
van, 1995). The influence of different types of neighborhfuwdtion was
studied in detail for SOMs in Dersch and Tavan (1995), whixterds
the early works of Luttrell (1991) and Ritter (1991). The miéigation
depends on the second normalized moménbf the neighborhood func-
tion, which itself is determined by the neighborhood range/an Hulle

1Several approaches are known to estimate the Hausdorfindiore of data, often

calledintrinsic dimensionOne of the best known methods is the Grassberger-Proeaccia
analysis (GP) (Grassberger & Procaccia, 1983; Takens,)19885 GP, there is a large
number of investigations of statistical properties (e@Gamastra and Vinciarelli, 2001;
Eckmann and Ruelle, 1992; Liebert, 1991; Theiler, 1990).ahteural network approach

of intrinsic dimension estimation (based on NG), also in panson to GP, we refer to
Bruske and Sommer (1998), Camastra & Vinciarelli (2001)iméann, Hermann and
Geyer (2000), Villmann (2002), and Villmann et al. (2003).



(2000) extensively discussed the influence of kernel aghresin SOMs.
Results for magnification of discrete SOMs can be found iteR{{L989)
and Kohonen (1999). These latter problems and approachiesovibe
further addressed here.

According to equation$(3.3) and (B.1), the SOM minimizessbme-
what exoticE% distortion error, whereas the NG minimizes the ustial
error.

Further, we can observe interesting relations to inforomatheoretic
properties of the mapping: The information transfer realiby the map-
ping ¥p_, 4, in general, is not independent of the magnification of thp ma
(Zador, 1982). It has been derived that for an optimal infation trans-
fer realizing vector quantizer (or a neural map in our conieke relation
«a = 1 holds (Brause, 1992). A vector quantizer designed to aelaevop-
timal information transfer is the Linsker network (Linsk&889; see Table
(), or the optimal coding network approach proposed by Br1894).

3.2 Magnification Control in Vector Quantization: A General
Framework.

As pointed out in sectiofll 1, different application tasks meguire dif-
ferent magnification properties of the vector quantizeat ik, the mag-
nification should be controlled. Straightforwardly, mdgmtion control
means changing the value of the magnification faatéor a given vector
guantizer by manipulation of the basic approach.

Consequently, the question is, How one can impact the magtdn
factor to achieve aa priori chosen magnification factor? We further ad-
dress this topic in the following. First, we review resutts the literature
and put them into a general framework.

The first approaches to influence the magnification of a vesian-
tizer are models ofonscience learningharacterized by a modified win-
ner determination. The algorithm by DeSieno (1988) and tbguency
sensitive competitive learning (FSCL) (Ahalt, KrishnatyurChen, &
Melton, 1990) belong to this algorithm class. Originalhgs$e approaches
were proposed for equalizing the winner probability of tleeiral units in
SOM. However, as the neighborhood relation between neusarat used
in this approach, it is applicable to each vector quantiased on winner-
take-all learning. To achieve the announced goal, in theéeSnodel, a
bias termB is inserted into the winner determination rule, equatiadl),2
such that

Up,a:vi>s(v)=argmin(||v—w;|| — B) (3.5)
i€A

with the bias termB = ~ (3 — p;), andp; is the actual winning prob-
ability of the neuroni. The algorithm converges such that the winning



probabilities of all neurons are equalized, which is relatea maximiza-
tion of the entropy, and, hence, the resulted magnificasaqual to the
unity. However, an arbitrary magnification can not be aokie\WMoreover,
as pointed out in van Hulle (2000), the algorithm shows uriethehav-
ior. FSCL modifies the selection criterion for the best-rhatg unit by

a fairness tern¥’, which is a function of the winning frequency of the

neurons. Again, the winner determination is modified:

Upya:vi=s(v)=argmin (F (w;)||[v—wi). (3.6)
i€A

As mentioned above, originally it was defined to achieve anpgrqbable
guantization too. However, it was shown, this goal can naidieeved by
the original version (Galanopoulos & Ahalt, 1996; van Hu2800). Yet
for one-dimensional data, any givemorm error criterion, equatiof(3.1),
can be minimized by a specific choice of the fairness funciifof’ (w;) is
taken as

F (w;) = (wy)° (3.7)
for the one-dimensional case a magnificatign,c;, = % is achieved,
being equivalent to; = 577 (Galanopoulos & Ahalt, 1996). The diffi-

culties of transferring the one-dimensional result to kigfimensions are,
however, as prohibitive as in SOM.

We now study control possibilities to achieabitrary magnification
focusing on SOM and NG bgnodification of the learning ruleWe em-
phasize again that for SOM, the results hold only for the dineensional
case, whereas for NG, the more general case of arbitraryndiomality is
valid. Thus, the following direction of modifications of tigeneral learn-

ing rule, equation(Z]2),
Awi =¢ch (Zv v, W) (V - Wi) )
can serve as a general framework:

1. Localized learningintroduction of a multiplicative factor by a local
learning rate;

2. Winner-relaxing learning Introduction of winner relaxing by
adding a winner-enhancing (relaxing) tefin

3. Concave-convex learningcaling of the learning shift by powefs
in the factor(v — w; )¢

These three directions serve as axes for a taxonomy in tleeviog sec-
tion. We focus on SOM and NG as popular neural vector quansti2&'e
explain, expand and develop the respective methodolodiesagnifica-
tion control for these models. The localized and the winakxing learn-
ing for SOM and NG are briefly reviewed. In particular, lozali learning
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for SOM was published in Bauer, Der, and Herrmann, (1996 yedmeewin-
ner relaxing learning for both SOM and NG and localized lesgin NG
were previously developed by the authors (Claussen, 2Q0%,; Zlaussen
& Villmann, 2003a; Villmann, 2000). The concave-convex rieag for
SOM is extended here to a more general approach comparedoiogins
(Zheng & Greenleaf, 1996). The concave-convex learning\f@ris new
too.

4 Controlling the Magnification in SOM

Within the general framework outlined in sectlonl3.2, we monsider the
three learning rule modifications for SOM.

4.1 Insertion of a Multiplicative Factor: Localized Learning.

The first choice is to add a factor in the SOM learning rule. Atablished
realization is thdocalized learning the biological motivation of which
is the perceptual magnet effect (Bauer et al., 1996). Ferghrpose, an
adaptive local learning step sizg, is introduced in equatio_{4.2) such
that the new adaptation rule reads as

AW; = €5vyho (1, v, W) (Vv — w;) (4.1)

wheres (v) is being the best-matching neuron with respect to equation
@.1). The local learning rates = ¢ (w;) depend on the stimulus density
P at the position of their weight vectoss; via

(€) = eoP (w;)™, (4.2)

where the brackets . .) denote the average in time. This approach leads
to the new magnification law,

Wpearsor = son - (m+ 1), (4.3)

where m appears to be an explicit control parameter (Bauer et 8619
Hence, an arbitrary predefined magnification can be achieved

In applications, one has to estimate the generally unknate distri-
bution P, which may lead to numerical instabilities of the controlaina-
nism (van Hulle, 2000).

4.2 Winner-Relaxing SOM and Magnification Control.

Recently, a new approach for magnification control of the 6y gener-
alization (Claussen, 2003, 2005) of the winner-relaxinglifcation (Ko-
honen, 1991) was derived, giving a control scheme, whichdspendent



of the shape of the data distribution (Claussen 2005). Wer rtef this
algorithm as WRSOM.

In the original winner-relaxing SOM, an additional term oz in
learning for the winning neuron only, implementing a retaxbehavior.
The relaxing force is a weighted sum of the difference betvwibe weight
vectors and the input according to their neighborhoodimafl he relax-
ing term was introduced to obtain a learning dynamic for SQEbading
to an average reconstruction error taking into accountffieeteof shifting
Voronoi borders.

The original learning rule is added by a winner relaxing ttru, «)
as

Aw; = €h, (i, v, W) (v —w;) + R (p, k), (4.4)

with R (i, k) being

R(pu, k) = (p+r)(v—w,;)d (4.5)
— Kb Z he (7, v, W) (Vv — w;),

J

depending on weighting parameterandx. Fory = 0 andx = % the
original winner relaxing SOM is obtained (Kohonen, 1991)r8isingly,
it has been shown that the magnification is independent @laussen,
2003, 2005). Only the choice afcontributes to the magnification:

2

— (4.6)

Oy rsom =
The stability range i&<| < 1, which restricts the accessible magnification
range t03 < ajypson < 1. More detailed numerical simulations and
stability analysis can be found in Claussen (2005).
The advantage of winner relaxing learning is that no esenadithe
generally unknown data distribution has to be made, as medjun the
local learning approach above.

4.3 Concave-Convex Learning.

The third structural possibility for control according tardramework is to
applyconcave or convex learnirig the learning rule. This approach was
introduced in Zheng and Greenleaf (1996). Here, we extesafproach
to a more general variant.

Originally, an exponent is introduced in the general learning rule
such that equatioh (d.2) now reads as

Aw; = ¢h, (i,v, W) (v — w;)° 4.7)



with .

(vow) Y (vow) v —wil[S (4.8)
Thereby, two different possibilities are proposéd: % withk > 1,k €N
andx is odd convex learninyj or one simply takesg > 1, ¢ eN and¢ is

odd (concave learning This gives the magnification

, 2

aconcave/convemSOM = 6 )

4.9)

3
§+2

= QsomMm - (410)
which allows an explicit magnification control. Yet this apach allows
only a rather rough control arougd= 1: the neighboring allowed values
are = % and¢ = 3 corresponding to magnification$ . JeonvezSOM =

Sandc, ), oue JeonverSOM = 2, respectively. Therefore, greater flexibility
would be of interest.

For this purpose, we are seeking for a generalization of botitave
and convex learning. As a more general choice we gakebe real, that
is, £ € R. If we do so, the same magnification equatignl(4.9) is obthine
The proof of the magnification law is given in appendix A. Glusly, the
choicest = é andé¢ = k > 1, k éN andx being odd as made in Zheng
and Greenleaf (1996) are special cases of the now genenalaagbp

We considered the numerical behaviour of the magnificatamtrol
of the WRSOM using a one-dimensinal chain & neurons. The data
distribution was chosen in agreement with Bauer et al. (18986°(x) =
sin(7x).The theoretical entropy maximum of the winning probaleBtof
the neurong; is S p;log(p;) = log(N) giving the value3.912 for
N = 50. The results in dependence §for different neighborhood ranges
o are depicted in Figuid 1.

According to the theoretical prediction, the output enyrag maxi-
mized for small¢, and for large¢, an magnification exponent zero is
reached corresponding to an equidistant codebook withaatation to
the input distribution. For < 1, the turnover is shifted toward smaller
values of¢, and for§ < 1,0 < 1, fluctuations increase.

Further, as in the WRSOM, the advantage of concave-conwaxileg
is that no estimate of the generally unknown data distrilsuhias to be
made as before in localized learning.
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Figure 1:Output entropy for concave and convex learning. An inputsigrof
P(z) = sin(mx) was presented to an one-dimensional chaiVot= 50 neu-
rons after10° learning steps of stochastic sequential updating, avdrager10°
inputs, and learning rate= 0.01, fixed.

5 Magnification Control in Neural Gas

In this section we transfer the ideas of magnification canir®sOM to
the NG, keeping in mind the advantage that the results thenadid for
any dimension.

5.1 Multiplicative Factor - Localized Learning.

The idea oflocalized learning's now applied to NG (Herrmann & Vill-
mann 1997). Hence, we have the localized learning rule

AW,’ = 6s(v)h>\ ('Lv v, W) (V - WZ) ) (51)

with s (v) again being the best-matching neuron with respect to emuati
(Z7) ande, () is the local learning chosen as in equatibnl(4.2). This ap-
proach gives a similar result as for SOM,

agocalNG = QNG - (m + 1) ) (52)
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Figure 2: Local learningfor NG: Plot of the entropy/ for maps trained with
different magnification control parameters(d = 1 (¢), d = 2 (+), d = 3 (0O)).
The arrows indicate the theoretical valuesiofm = 2, m = 1, m = 2/3, resp.)
which maximizes the entropy of the map.

and, hence, allows a magnification control (Villmann, 200Blpwever,
we have similar restrictions as for SOM: in actual applimasi one has to
estimate the generally unknown data distributién

The numerical study shows that the approach can also be osed t
increase the mutual information of a map generated by a N@- (Vi
mann, 2000). As for WRSOM, we use a standard setup as in \ilima
(2000) of 50 Neurons andl0” training steps with a probability density
P(xy...zq) = [[;sin(rz;), x € [0,1], and with parametera = 1.5
fixed ande decaying from0.5 to 0.05. The entropy of the resulting map
computed for an input dimension ©f2 and3 is plotted in Figuré12.

5.2 Winner-Relaxing NG.

The winner-relaxing NG (WRNG) was first studied in Claussed ¥ill-
mann (2003a). According to the WRSOM approach, one usesditivad
winner relaxing termR (u, ) to the original learning rule:

Aw; = ehy (i,v, W) (v — w;) + R (i, k), (5.3)

12



with R (u,x) being as in equation[{4.5). The resulting WRNG-
magnification for small neighborhood valugsvith A — 0 but not van-
ishing is given by Claussen and Villmann (2005):

1 d
Ay ryg = T rnds2 (5.4)

Thereby, the magnification exponent appears to be indepéenflan ad-
ditional diagonal term (controlled ky) for the winner the same as in WR-
SOM; againu = 0 is the usual setting. If the same stability bordetis= 1
of the WRSOM also apply here, one can expect to increase theXg6-
nent by positive values of, or to lower the NG exponent by factor2 for
k= —1.

However, one has to be cautious when transferring\the 0 result
obtained above (which would require to increase the numiieewrons as
well) to a realistic situation where a decrease @fith time will be limited
to afinal finite value to avoid the stability problems foundHierrmann and
Villmann (1997). For a finite\ the maximal coefficient, that contributes
to the averaged learning shift is given by the prefactor efgacond but
one winner, which is given by* (Claussen & Villmann, 2005). For the
NG, however, the neighborhood is defined by the rank listthieswinner
term of the NG is not present in the winner relaxing term (foe 0), all
terms share the facter? by h, (k) = e~*hy(k — 1) which indicates that
in the discretized algorithm has to be rescaled hy* to agree with the
continuum theory. The numerical investigation indicakes this prefactor
applies for finiteA and number of neurons. The scaling of the position of
the entropy maximum with input dimension is in agreemenhliteory,
as well as the prediction of the opposite signahat has to be taken to
increase mutual information.

Numerical studies show that winner-relaxing learning dao be used
to increase the mutual information of a NG vector quantirati The
entropy shows a dimension-dependent maximum approxiynatet =
=€ (see Figurél3). In any case, within a broad range around ti@aip
k, the entropy is close to the maximum.

The advantage of the method is to be independent on estimatio
the unknown data distribution as the SOM equivalent WRSOutHer,
again as inthe WRSOM, the magnification of WRNG is indepehiehe
first order on the diagonal term, controlled by Numerical simulations
have shown that the contribution in higher orders is matdidkaussen &
Villmann, 2003b). More pronounced is the influence of thegdinal term
on stability. According to the larger prefactor, no stabddévior has been
found for|u| > 1, thereforeu = 0 is the recommended setting (Claussen
&Villmann, 2005).
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Figure 3: Winner relaxing learnindor NG: Plot of the entropyH curves for
varying values of for one-, two and three-dimensional data. The entropy h&s th
maximum if the magnification equals the unit (Zador 1982)e alrows indicate
the k-values for the respective data dimensions.

5.3 Concave-Convex Learning.

We now consider the third modification known from SOM, the care-
convex learning approach but in its new, developed genaram,

Aw; = ehy (i,v, W) (v —w;)* (5.5)

with ¢ € R and the definition[{418). It is proved in the appendix B that th
resulting magnification is

, d

= 5.6
concave/convex NG §+ 1 ‘l’d’ ( )

(67

depending on the intrinsic data dimensionality This dependency is in
agreement with the usual magnification law of NG, which i® atdated
to the data dimension.

The respective numerical simulations with the parameteicehas be-
fore are given in Figur€l4. In contrast to concave-convex Siére
o/ = 1 can be achieved for large herea’ is bounded byﬁ; information
optimal learning is not possible in cases of low-dimenslidiada.
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Figure 4: Concave-convex learninigr NG: Plot of the entropyH curves for
varying values of for one-, two and three-dimensional data. The entropy can be
enhanced by convex learning in each case (dasheddirel , with 10® learning
steps).

6 Discussion

According to the given general framework, we studied thtegcturally
different approaches for magnification control in SOM and. @& meth-
ods are capable to control the magnification with more or éessiracy.
Yet, they differ in properties (e.qg., stability range, dgnestimation). No
approach yet shows a clear advantage. The choice of theatigorithm
may depend on the particular problem and implementatiostcaints. In
particular, several problems occur in actual applicatiist, in the SOM
case, all result are only valid for the one-dimensional chseause all in-
vestigations are based on the usual convergence dynamiseveq the
SOM dynamics is analytically treatable only in the one-disienal set-
ting and higher-dimensional cases that factorize. Movimgyefrom these
special cases causes a systematic shift in magnificatidnotoas numer-
ically shown in Jain and Merényi (2004). In actual appl@as, a quan-
titative comparison with theory is quite limited due to selenfluences
which are not easily tractable. First, the data density bdsetestimated,
which is generally difficult (Merényi & Jain, 2004); secqrtle intrinsic
dimension has to be determined; and third, the measurerhém onag-
nification from the density of weight vectors is rather ceaespecially in
higher dimensions.
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Table 2: Comparison of Magnification Control for the Different CasitAp-
proaches for SOM and NGI (= 1 for SOM).

SOM NG
Local (m+1)asom (m+1)ang
learning (Bauer et al., 1996) (Villmann 2000)
Winner-relaxing %_,_304501\/[ ﬁa]\/g
learning (Claussen, 2003, 2005) (Claussen & Villmann, 2005
Concave-convex 6% QasoM % ana
learning (in section 4.3; in section 5.3

Zheng & Greenleaf, 1996)

Only some special cases can be handled adequately. Inyarticax-
imizing mutual information can be controlled easily by alvst¢ion of the
entropy of winning probabilities of neurons or consideratof inverted
magnification in case of available auxiliary class inforimiat that is, la-
beled data (Merényi & Jain, 2004). Thus, actual applicegibave to be
done carefully using some heuristics. Interesting, swsfaeapplications
of magnification control (by local learning) in satellitewete sensing im-
age analysis can be found in Merényi and Jain (2004), (\@fim 1999;
Villmann et al., 2003).

Summarizing the above approaches of magnification contr®lpb-
tain the good news that the possibilities for magnificationtomol known
from SOM can be successfully transferred to the NG learmrgjlithree
cases. The achieved theoretical magnifications are cetléntTabld .

The interesting point is that the local learning approachwall as
concave-convex learning, yields structurally similar rificdtion factors
for the new magnification. However, a magnificationia$ not reachable
by concave-convex learning in case of NG. In case of the wirglaxing
approach, we have a remarkable difference: in contraste W MRSOM,
where the relaxing term has to be inverted< 0) to increase the magni-
fication exponent, for the NG, positive values«odire required to increase
the magnification factor.

Appendix A: Magnification Law of the Generalized Concave-Covex
Learning for the Self-Organizing Map

In this appendix we prove the magnification law of the genzedl
concave-convex learning for SOM: the exponent in equaHan)(is re-
quired to bet € R and keeping further in mind the definitidn{4.8). Since
the convergence proofs of SOM are only valid for the one-disianal
setting, we switch fronw to w and fromv to v.
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In the continuum approach, we can replace the index of theoneay
its position or location (Ritter et al., 1992). Further, the neighborhood
functionh,, depends only on the difference of the locatiai .y as the
location of the winning neuron. Then we have in the equilibrifor the
learning rule equatioi (4.7),

/ho (r — 7o) (v—w (r))* P (v)dv = 0. (A.1)

We perform the usual approach of expanding the integrand Taysor
series in powers of = s (v) — r and evaluating at (Ritter & Schulten,
1986; Hertz, Krogh, & Palmer, 1991; Zheng & Greenleaf, 1996his
gives

v=w(r+g), (A.2)

hy (s (v) — r) becomes, (s) = h, (—¢), and

P(v) =P (w(r+s)) = P(w)+ P (w)uw'(r). (A.3)
Further,dv = dw (r + <) = w' (r + <) ds can be rewritten as
w' (r+¢)ds = (w' + cw”) ds, (A.4)

and forv — w (r) = w (r +¢) — w (r) we get

1 1
w(r+¢)—w(r)~qw + igzw” =g (w’ + igw”) . (A.5)

Because ofv — w (r))* in equation[AL), we considér’ + %cw”)g:

1 3 . "
(w’ + 5gw”) ~ (W) (1 + %%) . (A.6)

Further, because of the definitidn {4.8), the powenas to be interpreted
as

¢ =q ¢, (A.7)

which is an odd function iq.

Collecting now [A2){AT) we get in{Al1)

0 = /hc (S) - lg]f- (w’)§ . (1 + %fw" (w')_1 g) (A.8)
X (P (w) + <P (w)w' (r)) (w + cw") d.

17



Sinces - [¢|*" is odd, the term of lowest order invanishes according
to the rotational symmetry df, (). Further, in our approximation, we
ignore terms behing?. Hence, the above equation can be simplified as

2 _
0= (w)* (P’ (w) @) +£32P (w) w”) / h () %+ |6 ds.
(A.9)
From there we get
p= drl _ prke (A.10)
dw
and, hence,
Q@ _ 2 (A.11)
concave/convexSOM — 24 57 .

which completes the proof.

Appendix B: Magnification Law of the Generalized Concave-Cavex
Learning for Neural Gas

For the derivation of the magnification for the generalizedaave-convex
learning in case of magnification-controlled NG, first we dndlre usual
continuum assumption (Ritter et al., 1992). The furtheattreent is in
complete analogy to the derivation of the magnification & tisual NG
(Martinetz et al., 1993). Lat be the difference vector

r=v-—w, (B.1)

The winning rankk; (v, W) in the neighborhood functioh, (i, v, W) in
equation[[Z13) depends only antherefore, we introduce the new variable

x(r) = ki (r)7, (B.2)

which can be assumed as monotonously increasing |rith We define
thed x d-Jacobian

J (x) = det (g—z) . (B.3)
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Starting from the new learning rule,

Aw; = ehy (i,v, W) (v —w;)* (B.4)

again consider the averaged change,

(Aws) = / P (v) I (5, v, W) (v — W) dv (B.5)

If hy (i, v, W) in equation[[ZB) rapidly decreases to zero with increasing
r, we can replace the quantitiesx), J (x) by the first terms of their
respective Taylor expansions around the paint 0, neglecting higher

derivatives. We obtain

=

x (r) = r (Tap (W;)) <1 LA VAT G (r2)> . (B.6)

d-p(wi)

which corresponds to

(1= (rap (wa)) 77 - 2720050 1 0 (%))

r(x)= d.p(v‘z) (B.7)
X (1qp (W)
with
Td = m (B8)

as the volume of d-dimensional unit sphere (Martinetz et al., 1993). We
definey = 74p (w;). Further, we expand (x) and obtain

0J
_ ! <1 — T (1 + 1) X arp) +0(2*) (B.10)
e d p
and, hence,
g_'] _ () %P, (B.11)
X x=0 p
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After collecting all replacementd, (B.5) becomes

(Aw;) = e-gp_g/dxh)\(x)-xg-
D

(B.12)
.(l_ <1+1) o~ (1+3) .x.@+...) . (B.13)
@ d P

13
~<1—g0_rli~x- Orp +) , (B.14)
d-p

3
<1—<,0_r1i.x.arp—|—,..> zl—fap_rli-x-arp—l—... (B.15)
d-p P

) (l_ <1+1 4)0_(”5) ~X5'%—|—...> (B.19)
® d

. (1—5@0_é x5 darpp —l—) . (B.20)

Because of the rotational symmetry/gf, we can neglect odd power terms
in x. Remaining terms are of even power order. Again, accordirggtia-
tion @38), we takext = x- [x|*"!, and, hencex¢ itself acts as an odd term.
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Therefore, only terms containing** with odd % contribute. Finally, con-
sidering the non-vanishing terms and neglecting higheermterms, we

find the relation 0P 5 p
- P
= — B.21

P(w;) p (d+£+1>’ (8.21)
which is the desired result.
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