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Computer simulated trajectories of bulk water molecules form complex spatiotemporal structures at the
picosecond time scale. This intrinsic complexity, which underlies the formation of molecular structures at
longer time scales, has been quantified using a measure of statistical complexity. The method estimates the
information contained in the molecular trajectory by detecting and quantifying temporal patterns present in the
simulated data (velocity time series). Two types of temporal patterns are found. The first, defined by the
short-time correlations corresponding to the velocity autocorrelation decay times (=<0.1 ps), remains asymp-
totically stable for time intervals longer than several tens of nanoseconds. The second is caused by previously
unknown longer-time correlations (found at longer than the nanoseconds time scales) leading to a value of
statistical complexity that slowly increases with time. A direct measure based on the notion of statistical
complexity that describes how the trajectory explores the phase space and independent from the particular

molecular signal used as the observed time series is introduced.
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I. INTRODUCTION

Molecular dynamics (MD) trajectories representing a dif-
fusion process in liquids form complex patterns in the phase
space. Because of the system’s high dimensionality (defined
by the number of interacting molecules in the analyzed vol-
ume), single molecule trajectories in the long-time limit are
usually assumed to be indistinguishable from correlated
noise by standard statistical methods [1]. However, the equa-
tions of motion of each particle are deterministic, therefore,
the local nonlinear dynamics at the picosecond time scale
may lead to nontrivial behavior and the emergence of mo-
lecular structures over much longer (nanoseconds) periods.
Discovering and quantifying this nontrivial long-term behav-
ior and intrinsic complexity of molecular trajectories (over
various time scales) that can shed light on the origin of emer-
gent molecular behavior is the subject of the present work.

The computational mechanics approach suggested by
Crutchfield et al. [2-4] seems to be most suitable for the
task. The approach is useful for detecting dynamical struc-
tures in observed time series, since it is based on
information-theoretic concepts, without detailed assumptions
on the geometric properties of the structures originating from
the dynamics in the phase space. The authors introduced the
idea of an € machine working in the space of so-called causal
states that catch the principal dynamics of the system. One of
the central concepts of the formalism is a statistical complex-
ity measure, a characteristic of the e machine, that describes
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how complex the underlying process is by quantifying the
amount of information stored and processed by the system.
The advantage of computational mechanics is that, besides
intuitive (and at the same time mathematically rigorous) sta-
tistical properties that quantify the complexity, it captures
complete statistical information contained in the signal (see
the Appendix ).

It should be noted that there exist several alternative defi-
nitions of complexity used in different contexts. The analysis
of the metric properties of sets of trajectories in phase space
[5] or the study of time separation between initially close
trajectories [6] should be distinguished from the statistical
complexity used in the present work. The latter is aimed at
purely probabilistic modeling of the time series, irrespective
of the geometry of trajectories in the phase space or local
instability of the dynamics. Approaches for estimating the
physical complexity of classical trajectories using their
information-theoretic contents include, for example, work by
Brudno [7] that relates Kolmogorov’s algorithmic complex-
ity and the metric entropy of an ergodic dynamical system.
Recently, Segre [8] showed that chaotic dynamical systems
are simple from Bennett’s “logical depth” point of view.
Benci er al. [9] have investigated the amount of information
necessary to describe the chaotic orbits and find more than
logarithmic increase with time for weakly chaotic cases.

An alternative approach to the analysis of molecular tra-
jectories could be the application of the concepts and meth-
ods of time series analysis that appeared recently in the field
of nonlinear dynamics for characterizing intrinsically deter-
ministic processes [10,11]. However, this group of time se-
ries analysis techniques seems to be feasible only for systems
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with few degrees of freedom. The limitation of all nonlinear
dynamics methods is the assumption of the existence of a
low-dimensional manifold (attractor) in the phase space
where the essential dynamics occur. It is, however, unclear
whether this concept can be effectively utilized in a numeri-
cal analysis of signals obtained from highly dimensional sys-
tems, such as fully developed turbulence, the human brain,
or molecular ensembles. It is, therefore, necessary to search
for new techniques that would discover inherent signatures
of dynamics rather than assume the existence of structures in
the phase space.

From the viewpoint of classical physics, the motion of a
single particle (hydrogen atom in our case) in bulk water
without impurities can be well approximated by a stochastic
model of Brownian motion. Characterizing a molecular tra-
jectory in terms of diffusion theory reveals linear time
growth of the mean square displacement [12], that approxi-
mately corresponds to theoretical predictions from the clas-
sical theory of Brownian motion [13]. Although deviations
from Gaussianity of corresponding distribution functions can
be detected by the analysis of higher moments [1,14] the
experimental (or numerically simulated) time series becomes
indistinguishable from a stochastic Gaussian process at time
periods longer than =100 ps (at room temperature) [1,15].
This implies a sufficient description of molecular trajectories
in terms of correlation functions and/or power spectra and
almost trivial behavior on the time scales larger than “corre-
lation time” defined by, e.g., the first zero of the autocorre-
lation function.

Although such a stochastic approach provides a satisfac-
tory description of liquids at the macroscopic scale, there is
no clear understanding of how the observed macroscopic
randomness is produced by purely deterministic equations of
motion of every atom, i.e., how the microscopically ordered
motion is transformed to the macroscopic disorder. There
were several attempts recently to demonstrate that at a mi-
croscopic level the motion of molecules is chaotic [16], and
the randomness due to local instability of trajectories in the
phase space is transformed to a random walk motion of
Brownian particles observed in experiments. It has been ar-
gued, however, in later works [17] that similar random be-
havior at macro level can be caused by nonchaotic systems
that do not possess the property of local instability at micros-
cales. Therefore, the question on the microscopic origin of
macroscopic randomness remains open.

On the other hand, it became clear recently [ 18] that, even
if the dynamics of a single microparticle is chaotic its tem-
poral behavior may be nontrivial due to the presence of reso-
nances in the phase space and particles can demonstrate
anomalous diffusion. When a chaotically moving particle
comes close to any of the resonance zones, it can spend an
abnormally long time there due to the so-called “stickiness”
of the border of the resonances. As a result of such intermit-
tent behavior, the phase space becomes strongly nonuniform
and processes with significantly different characteristic tem-
poral scales appear in the time series representing the trajec-
tories. Consequently, particle trajectories may possess much
longer memories than can be expected from a simple analy-
sis of the autocorrelation function.

All the above considerations provide motivation for per-
forming the analysis of molecular trajectories over very
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long-time periods compared to time scales defined by the
autocorrelation functions (=1 ps), aimed at detecting non-
trivial (i.e., different from a pure Gaussian noise) temporal
structures. In order to quantify the deterministic origin of the
dynamics of particles in a high-dimensional phase space cor-
responding to MD trajectories of bulk water we apply a com-
bination of the computational mechanics approach and a sur-
rogate data method from nonlinear dynamics [19]. Our goal
is to detect and quantify complex temporal structures present
in the water trajectory defined by the deterministic dynamics.
We show that, because of existing long-time correlations, the
structure of the groups of histories, the € machine, in the MD
signal is qualitatively different from that obtained for an ar-
tificial random time series (surrogate) with identical correla-
tion and/or spectral properties.

Our work can thus serve to provide insights into two im-
portant open problems: (i) is it possible to apply the compu-
tational mechanics approach to realistic molecular systems;
(ii) does computational mechanics give a possibility to quan-
tify nontrivial temporal structures in liquid water.

The next section describes the specifics about the molecu-
lar model for water used in our calculations, as well as other
details of numerical procedures used to obtain the molecular
trajectory. The main idea and the methodology of the further
analysis aimed at quantifying the informatic-theoretical con-
tent of the calculated time series are given in Sec. III. The
obtained results are presented in Secs. IV and V, while their
interpretation is provided in Sec. VI.

II. MOLECULAR MODEL AND MOLECULAR DYNAMICS
SIMULATION DETAILS

Water, being a complex liquid, has arguably one of the
most developed simulation models [20-27]. Numerous MD
models of water differ in sophistication depending on the
specific task of the simulation. For us, the combination of the
simulation speed and the potential ability of modeling pro-
tein folding was decisive in choosing the molecular model.
We, therefore, focused on simple point charge (SPC) [28]
water while checking other flavors for the consistency of the
results. We expect that the main conclusions of this work will
hold for other liquids, the extensive study of which is, how-
ever, a subject of a separate publication.

Bulk water consisting of 392 or 878 SPC, simple point
charge extended (SPC-E) [28], or transferable intermolecular
potential 3 point (TIP3P) molecules was simulated using the
GROMACS molecular dynamics [29] package. The tempera-
ture of the system was kept constant at 275, 300, or 380 K
using Berendsen [30] or Nose-Hoover [31] thermostats, with
a coupling time of 0.1 ps, whose combination with various
coupling constants was investigated. Pressure coupling was
also applied to a pressure bath with a reference pressure of 1
bar and a coupling time of 0.1 ps. A 1 nm cutoff distance for
both van der Waals and Coulomb potentials was used. An
equilibration until the potential and kinetic energies reach
constant levels of fluctuations was performed before collect-
ing data for analysis. The velocity of the oxygen and hydro-
gen atoms of one of the water molecules was used as a three-
dimensional signal for the complexity analysis. Instant
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temperature, T,-mFﬁka,miviz, where the summation is over
all atoms, N4y is the number of degrees of freedom and k is
the Boltzman constant, was also used for calculating the
complexity values.

Classical molecular systems are Hamiltonian. However,
numerical errors associated with the model potential and
thermostatting algorithm make the simulated MD system
non-Hamiltonian. Therefore, we use a selected velocity sub-
space for building a symbolic sequence and reconstructing
the phase space without recourse to the Hamiltonian proper-
ties of the underlying molecular dynamics.

III. IDEA AND METHODOLOGY
A. Signal analysis
1. Diffusion process

Traditionally, motion of a single particle in a liquid that
appears random can be characterized by the time dependence
of its mean squared displacement (x?(¢)), which demonstrates
a power law behavior

(x*(1)) o= 1* (1)

at sufficiently long times. Here x(z) corresponds to the devia-
tion of the coordinate x from the arbitrary initial condition
x(0) and the averaging is performed either over an ensemble
of trajectories, or, under the assumption of ergodicity of the
diffusion process, over an ensemble of initial conditions
along a single trajectory. Normal diffusion (Brownian mo-
tion) then corresponds to the value of the diffusion coeffi-
cient a=1, whereas values different from unity indicate the
presence of anomalous diffusion. The case of 0<<a<1 is
called subdiffusion, whereas the range of values | <a<<2 is
attributed to a superdiffusion process. The limiting value of
a=2 characterizes the ballistic regime typical to free motion
of the particles over short distances. Note that the distribu-
tion of x(¢) is Gaussian only in the asymptotic limit of 7
— and at small 7 significant deviations from Gaussianity
can be detected by the analysis of higher moments [1]. The
indicator o(r) is often used for quantifying the non-Gaussian
behavior [12,14]

@)
3(x*(1))

Due to the fact that for a Gaussian distribution {(x*(7))
=3(x*(1)), the deviation of the indicator o(¢) from zero is a
manifestation of intrinsic non-Gaussianity of the process

x(1).

o(r) = 1. (2)

2. Phase-space partitioning

In this study the velocity of one of the atoms is mainly
used as a three-dimensional signal for the complexity analy-
sis. The domain of the signal values appearing in the simu-
lation has the shape of a ball centered at the origin with the
radius of =4 nm/ps. The approximately centrally symmetric
distribution of the data points makes the velocities a conve-
nient signal for symbolization and data accumulation in con-
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FIG. 1. (Color) Approximations for generating partitions ob-
tained using the method by Buhl and Kennel [33] for the cross
section of the hydrogen velocity space for the partitions correspond-
ing to two-, three-, four-, and five-symbols alphabet.

trast to, for example, the coordinates that diffuse very slowly
in the phase space.

At the initial stage of data analysis, the original three-
dimensional vector time series is transformed to a scalar
symbolic sequence. The symbols are produced by applying a
special phase-space coarse graining procedure on a suitably
chosen cross section plane in the velocity space. It turns out
that if the v,=0 plane is used as a section surface, the aver-
age time interval between the resulting data points
(=0.032 ps) roughly corresponds to the first minimum on
the autocorrelation function of the original three-dimensional
signal. A natural choice for the phase-space partitioning used
for symbolization would be the generating partition (GP)
[32] that has the property of a one-to-one correspondence
between the continuous trajectory and the generated sym-
bolic sequence. That is, all information is retained after the
symbolization. However, because of the very high dimen-
sionality of the system it is infeasible to find a GP in our
case. There are methods for calculating approximations to
the GP. Using one of them [33] we obtained indications of
what an optimal partition would look like. For our velocities
data, the resulting approximated GPs were centrally symmet-
ric for all tested number of partitions; the cases for two,
three, four, and five partitions are shown in Fig. 1. Thus, for
all the data analyzed we used centrally symmetrical parti-
tions for converting the continuous data into symbolic se-
quences.

Summarizing, the following procedure was used for sym-
bolization (Fig. 1): (i) the velocities of the hydrogen (or oxy-
gen) atoms were used as a continuous three-dimensional sig-
nal; (ii) at the locations where the velocity pierces the xy
plane the points of the map were generated; (iii) using the
centrally symmetric partitions the map was converted into
the symbolic sequence. The size K of the alphabet to be used
in the conversion process is empirically found to be suffi-
cient at the value K=3 for good convergence and reproduc-
ibility of numerical results.

3. Reconstruction of the € machine

Computational mechanics detects hidden order within
random looking symbolic sequences by building a linked
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structure of probabilistically related states in the phase space,
the € machine. The phase space is obtained by a procedure
similar to the attractor reconstruction technique in dynamical
systems theory based on the Takens embedding theorem
[34], but with a symbolic sequence taken for an original time
series. Every point in an /-dimensional reconstructed phase
space then corresponds to a set of / successive symbols from
the (scalar) symbolic sequence.

Such sets of symbols (heretofore, histories of length /) are
grouped according to their ability to predict one step for-
ward. If the time step between successive symbols approxi-
mately equals the correlation decay time, then, e.g., for a
completely random process, all the histories are grouped into
a single causal state. Due to the absence of predictive power
on the time scales longer than the decay time of correlations,
this simply reflects the fact that all histories predict the same
random futures.

Contrary to completely random signals, the groups of his-
tories with similar futures are numerous for the molecular
signal, and corresponding causal states can be characterized
by their occurrence rates P(e;) (see the Appendix). The sta-
tistical complexity C, is then a statistical measure quantify-
ing the difference of the distribution of P(¢;) from the uni-
form one expected for a purely stochastic process. Therefore,
as will be shown in subsequent sections, the difference of the
molecular signal from a random signal consists of both the
large number of unique causal states found in the phase
space, and the corresponding high value of the statistical
complexity.

4. Surrogate time series analysis

It should be noted that the algorithms used for numerical
identification of the set of causal states and estimating the
value of statistical complexity include several computational
steps as well as many internal parameters that control the
computation precision and statistical confidence of the re-
sults. As a consequence, there are a number of potential
sources for statistical errors and biases that require special
care. A straightforward approach would be direct analysis of
corresponding distribution functions for the estimated values,
with the subsequent calculation of moments (including dis-
persion) and the associated error bars. However, this type of
analysis encounters serious technical difficulties due to the
complexity of the calculation procedure that is, in fact, a
combination of several algorithms. We therefore accepted a
different, much simpler way of getting error estimates,
widely used in the literature on the analysis of time series. In
works devoted to statistical data analysis, it is also known as
the “bootstrap” method [35], whereas in papers discussing
nonlinear dynamics based techniques [19] it is called the
“surrogate data” method. Throughout this paper, we use the
latter term as the name for artificial time series.

The idea of the surrogate data methodology consists of
the comparison of the experimental data to a set of artifi-
cially created time series (surrogates), which lack some in-
trinsic property of interest but have very similar (or even
identical) probability density function and/or power spec-
trum to those of the original data. This method thus provides
a kind of “control experiment” that allows testing of the
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experimental time series against a hypothesis that it is pro-
duced by a linear stochastic process like, e.g., an autoregres-
sive moving average process (ARMA) [36].

The practical algorithm implementing the idea of surro-
gate data consists of several steps. First, a statistical indicator
called discriminating statistics has to be defined. From a gen-
eral viewpoint of time series analysis, this could be any real
number calculated from the data, like, for example, a high-
order moment, autocorrelation, fractal dimension, or statisti-
cal complexity, depending on the particular property of inter-
est that the analysis is focused on. At the second stage, the
surrogate data series are produced by using a random number
generator combined with some original algorithm of data
transformation. In other words, the algorithm converts the
random sequence of numbers to a time series with required
properties. The surrogates preserve some well-controlled sta-
tistical characteristics of the analyzed data, but lack the prop-
erty of interest. For example, in the context of the analysis of
deterministic dynamics, the surrogates are usually chosen to
have the power spectrum identical to the original data series,
but, by its definition, do not possess any property imposed by
deterministic dynamics such as, e.g., finite value of correla-
tion dimension [37] or others [38]. At the final stage, the
discriminating statistics have to be calculated for original
data and compared to a set of corresponding values calcu-
lated from a set of surrogate time series. Significant discrep-
ancy in the calculated values can be considered as an indi-
cation of an essential difference between the surrogates and
the original time series in the analyzed property.

In this work the discriminating statistics are the number of
causal states ny and the value of statistical complexity C,.
For surrogates, we use two types of time series:

(1) Phase-shuffled surrogate. This is a standard surrogate
time series obtained via the phase-shuffling algorithm [19].
The data obtained with this method possess identical power
spectrum (and, hence, autocorrelation function) to the origi-
nal time series, but lack the property of dynamic correlation
between the data points. It is generated by calculating the
Fourier spectrum of the original data and assigning random
values to all the phases of Fourier components. After calcu-
lating the inverse Fourier transform, the artificial data series
(surrogate) has the unchanged power spectrum but is com-
pletely random, i.e., it belongs to the class of Gaussian linear
stochastic processes.

(2) Temporal pattern-shuffled surrogate. This surrogate
data set is created by introducing random perturbations to the
original time series that do not change dynamic temporal
patterns in the data up to a certain time period 7. It is ob-
tained by random rotation (by a random angle) of the data
segments containing n, consecutive points in the phase-space
cross-section plane (see Fig. 1). The surrogates obtained by
this method allow an analysis of the relationship between the
characteristic periods in the analyzed data and the structure
of causal states in the € machine.

IV. RESULTS
A. Overview of the dynamics and statistical analysis

1. Spectral characteristics

The velocity autocorrelation functions (vacf) of water at-
oms, obtained as a time average over 2 ns (Fig. 2), show that
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velocity autocorrelation function

0.4 0.6 0.8 1.0
time (ps)

FIG. 2. (Color online) Velocity autocorrelation function for oxy-
gen (dashed line) and hydrogen atoms of two water molecules cal-
culated as time average over 2 ns. The curves for different atoms of
the same type are practically indistinguishable.

linear time correlations last for =0.2 ps for the hydrogens
and =0.5 ps for the oxygens. From a viewpoint of linear
correlation theory, there are no long-range temporal correla-
tions in the analyzed data.

On the other hand, the power spectrum of the velocity
fluctuations (Fig. 3) shows a nontrivial feature at somewhat
longer time scales: a broad low frequency peak is present at
~] ps.

This fact can also be visualized by plotting the trajectory
corresponding to the time evolution of the orientation vector
of a water molecule (Fig. 4). The trajectory shown in Fig. 4
clearly displays complicated intermittent dynamical struc-
tures over different time scales. A typical temporal pattern
observed for such data can be roughly described as follows.
It tends to fluctuate around some fixed value for a time pe-
riod of =1 ps demonstrating quick jumps to other areas of
similar fluctuations within a much shorter time interval
(compared to 1 ps). Note, that such behavior can be a mani-
festation of a fractional kinetics process typical to Hamil-
tonian systems typically containing resonances [39].

2. Diffusion

The calculation of the squared displacement for a hydro-
gen atom shows a power law behavior, implying a diffusion
process with the diffusion constant slightly less than unity,
Fig. 5. The largest deviation from the normal diffusion with

-31

spectral power (dB)
&
N

0.1 1 10
time (ps)

FIG. 3. Spectrum of the velocity x component of a hydrogen
atom in bulk SPC water at 300 K.
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0 (rad)

FIG. 4. (Color online) Dipole moment orientation (¢ and @
angles in the spherical coordinates) as a function of time for the
selected water molecule.

a=1 is observed at the time scales approximately corre-
sponding to the maximum in the power spectrum, i.e., at
about 1 ps. Therefore, the Brownian motion of the hydrogen
atom can be roughly classified as normal diffusion at time
scales longer than =100 ps. At long time scales
(=100 ps) the motion of the atom becomes similar to a clas-
sical Brownian particle, therefore, it can be expected that at
large time intervals the trajectory is well approximated by a
stochastic Gaussian process. This fact is further illustrated in
Fig. 6 where we plot the time dependence of the non-
Gaussianity parameter o(r) [Eq. (2)]. The MD trajectory
shows significant deviations from the Gaussian behavior
only at small time intervals, whereas at =10 ps it becomes
indistinguishable from a surrogate data (Gaussian process).
However, as it will be shown below, the molecular trajecto-
ries of water particles present nontrivial dynamics and a sig-
nificant difference from the Gaussian surrogates even at
much longer time scales (tens of nanoseconds) that can be
clearly demonstrated by the analysis of statistical complexity.

B. Time dependence of C,: A universal
exponent of logarithmic growth

The calculated values of C, against time 7 are shown in
Fig. 7. The red heavy curve at the bottom corresponds to the
phase-shuffled surrogate time series. The other curves, cal-
culated at different values of the parameter [ (phase-space

1.2
0
/
- P \o\ 50000000
S 0.9 / O, 600C
2 L 0,00
&
[0]
Q
© 06 /
S o
[7]
=
k=
T 03
0.0
0.1 1 10 100

time (ps)

FIG. 5. Diffusion coefficient of the x component of a hydrogen
atom in bulk SPC water at 300 K.
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FIG. 6. Non-Gaussianity parameter for three Cartesian compo-
nents of the displacement for a hydrogen atom (x—circles,
y—squares, z—triangles) and phase-shuffled surrogate for the x
component (filled squares).

dimension, history length) demonstrate the convergence of
C, with increasing /. Starting from the history length of
about seven symbols (I=7), the calculated value of the sta-
tistical complexity (at any fixed moment of time) saturates
and does not change with a further increase in /.

Note, however, that the dependence of C wont does not
converge, but first goes through a maximum and then settles
on the log, #-like curve (this behavior is clearly seen, espe-
cially for high / values, Fig. 7). The maximum at the small ¢
is due to the lack of statistics, when the algorithm finds too
many causal states considering almost every history s~ as a
unique causal state. The number of causal states n,, at these
values of ¢ is abnormally high, and each causal state consists
of only a few histories s~. This part of the curve is, therefore,
of little interest for the present analysis and in the following
we focus the analysis only on the logarithmic part of the
curves.

While C,, practically converges at any sufficiently large
time moment with [ (for />7), Fig. 8 (and has values sig-

12

u

statistical complexity C

0 10 20 30 40 50 60
time (ns)

FIG. 7. (Color online) Statistical complexity against time for the
hydrogen velocity signal and the surrogate. The curves, from bot-
tom to top, correspond to the values of the history length / from 2 to
11. The /=11 curve does not settle on the logarithmic part within
the shown area but seems to follow the same trend. The thick line is
the C,, values for the phase-shuffled surrogate signal (/=9). For all
curves the alphabet size K is equal to 3.
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FIG. 8. Statistical complexity vs the length of histories (dimen-
sion of the phase space) for the original data (solid line) and the
surrogate (dashed line), /=30 ns.

nificantly higher than those for a corresponding phase-
shuffled surrogate time series), its logarithmic dependence
on time requires special consideration. It should be empha-
sized that the time intervals discussed here are very long
compared to the correlation time (Fig. 2) or any other time
period where nontrivial (i.e., non-Brownian) statistics can be
expected to exist (Fig. 6).

Since the growth of C,, has a clear logarithmic character,
we propose to introduce a coefficient () that can measure
the growth rate as follows:

Cy=a+hglog,t. (3)

We would like to emphasize that the coefficient 4, can be
used as a robust and universal characteristic of the statistical
complexity of molecular trajectories since it seems not to
depend on the particular numerical model, details of compu-
tational procedure, size of the molecular ensemble, and type
of the test atom (hydrogen or oxygen).

To ensure the reproducibility of the phenomenon a num-
ber of tests have been performed. The tests provide evidence
that the log, dependence is not an artifact of the numerical
methods used but rather an inherent property of the water
molecular system. Different MD models, parameters of inte-
gration, signal processing, and symbolization procedure pro-
duce statistically the same results.

The effects of various methods of phase-space partition-
ing in the algorithm of discretizing the continuous time series
and producing the symbolic time series have been checked
by applying nonsymmetric (shifted along the x and/or y axes)
partitioning and varying the position of the cross-section
plane along the z axis. Except for the trivial cases character-
ized by poor statistics of the data points, the logarithmic
growth of C,, was present with the same (within numerical
errors) values of /.

The influence of a particular MD numerical simulation
model on the detected phenomenon were insignificant. (i)
Both Nose-Hoover and Berendsen thermostats produced al-
most identical results in C,, with the same log,-like behavior.
Varying the coupling constant of the Berendsen thermostat
by two orders of magnitude did not change the results. (ii)
SPC-E and TIP3P water models produced slightly different
absolute values of C, than SPC while keeping the same
overall logarithmic behavior of the curves unchanged. (iii)
Systems containing 392 and 878 water molecules resulted in
the same values of the complexity parameters.

Finally, different values of the second adjustable param-
eter of the e-machine reconstruction algorithm, the signifi-
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FIG. 9. (Color online) %, values (indicated on the right) for
SPCE (h=0.69), TIP3P (h;=0.78), and SPC (h=0.71) models of
water. The values for the SPC model at 275, 300, and 380 K are
labeled 0.70, 0.71, and 0.76, respectively.

cance level for the y-squared significance test, 0.001, 0.01,
and 0.1, reproduced the same behavior of C, vs 7 curve.
The results of various numerical tests performed on ve-
locity time series data of hydrogen atom are presented in Fig.
9. Within statistical fluctuations, the value of s, remained in
the interval 0.74 = 0.07 under any combination of physical

parameters and details of the calculation procedure.

C. Comparison to surrogate data: Characteristic
time scale of dynamical patterns

1. Phase-shuffled surrogate

A qualitatively different result was obtained for the phase-
shuffled surrogate data. The complexity quickly settles at a
constant value that roughly corresponds to the /=3 curve for
the original signal (Fig. 7). The number of causal states as
well as their occurrence rates also do not change for time
intervals longer than =10 ns. The significant decrease in the
statistical complexity of the surrogate signal can be inter-
preted as the absence of most of the dynamical patterns that
constitute the causal states and contribute to a high value of
C,, in the molecular trajectories.

2. Temporal pattern-shuffled surrogate

An important test supporting the validity of our calcula-
tions is the numerical experiments with the surrogate of the
second type. The idea behind introducing this kind of artifi-
cial time series consists of an attempt to destroy temporal
correlations (dynamic patterns) present in the data, while
preserving the overall distribution of points in the cross-
section plane. The key parameter used in the generation pro-
cedure was the length of the temporal patterns to be pre-
served, thus the temporal scales responsible for the high
value of the statistical complexity (compared, e.g., to the
surrogate of the first type) could be distinguished. The time
series have been obtained as follows: before performing the
symbolization in the cross-section plane, the groups of n,
consecutive points v; were rotated by a random angle «
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FIG. 10. Statistical complexity C, and number of states ny, for
the temporal pattern-shuffled surrogate data with /=9. From bottom
to top, n,=3, 4, 10, 20, 50, and the original data.

around the origin. The results for n,=3, 4, 10, 20, 50 are
presented in Fig. 10. For n,=4 the log, behavior in the tem-
poral profile of the statistical complexity was completely de-
stroyed and C,, and the number of causal states saturated at a
constant value. For higher n, the logarithmic behavior was
retained, although the absolute values of C,, were somewhat
lower than for the case of original data. Starting from the
value of n,=40, i.e., for the time scales longer than =1 ps,
the value of statistical complexity remains unchanged. This
result thus indicates that the statistical complexity at long
time intervals (=1 ns) is completely defined by three orders
of magnitude shorter dynamical patterns (<1 ps).

On the other hand, if the interval of the perturbations is
less than the linear correlation time of 0.1 ps (n,=<5) this
destroys all longer-time correlations, making the signal simi-
lar to the phase-shuffled surrogate characterized by very low
values of C,,.

For disturbance intervals longer than the correlation time
(n,=10, 20, 50) the number ny of the states is much less
than that in the original data leading to reduced values of
statistical complexity.

V. CAUSAL STATES CLUSTERING: “CORE” STATES

To get a further insight into the link between the statistical
complexity and the characteristic periods in the time series
responsible for its high value, we analyzed the sets of causal
states that constitute the € machine and, hence, define the
statistical complexity through the distribution function of
their occurrence rates P(¢;). In order to distinguish between
various time scales, we studied the time intervals between
successive appearances of a causal state in the symbolic time
series. For all the analyzed time series, we first identified the
set of causal states and then plotted the histograms of recur-
rence times (periods) for each of them. This analysis reveals
that the causal states demonstrate a clear separation into two
classes, which we will refer to as “core” states (those defined
by short-time recurrences) and “noncore” states (those with-
out the well-defined characteristic time scale of recurrence).
Core states are characterized by a clearly developed peak at
the value of about 0.1 ps [see Fig. 12(b)], while the rest of
the causal states are characterized by an exponential distri-
bution of the recurrence times [Figs. 12(e) and 12(f)]. In
order to quantify the difference between the two classes, we
introduce a dimensionless parameter G that characterizes the
presence of the peak in the interval of the recurrences =1 ps
(compared to the interval 1 ps=r=2 ps),

max (/1)) —my,

: (4)

g2

where 4, is the value of the recurrence time histogram in the
time interval r=1 ps, and m,,01, are the median and the
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FIG. 11. Clustering of the causal states for the hydrogen atom
velocity time series into core (diamonds) and noncore (triangles)
classes. Parameter G is plotted vs occurrence rates of corresponding
causal states.

standard deviation values for the histogram in the interval
1 ps=t=2 ps. G can be used as a characteristic of each of
the causal states. Its large value indicates high probability of
the short-time recurrences, or, in other words, the quasiperi-
odic nature of the corresponding causal state. The causal
states characterized by a low value of G have “exponential”
distribution of the return times and do not have pronounced
low-order periodicity. In Fig. 11 we plot the scatter diagram
representing the apparent clustering of the causal states into
two classes with respect to the parameter G. The horizontal
axis approximates the occurrence rate [or probability P(e;)]
of the causal states, i.e., for each of them we counted the
number of its appearances in the symbolic time series and
estimated the probability P(e;) by dividing it to the total
length of the symbolic series.

Additional support to the observation of two qualitatively
different classes of causal states is provided by Fourier
analysis. For each of the causal states we generated a binary
time series that contained “1” at those time moments where
the given causal state was observed, and “0” elsewhere. By
calculating the power spectra for the time series correspond-
ing to the causal states we obtain an alternative indication of
the difference between the core states and the rest of the set.
Core states have a comparatively high level of spectral den-
sity in the vicinity of the characteristic period of =1 ps,
whereas “noncore” states have a pronounced gap at this
value, Figs. 12(a) and 12(d). This finding implies that the
processes with characteristic time scales of =0.1 ps calcu-
lated from the first zero of the correlation function as well as
~1 ps corresponding to the peak of the power spectrum are
defined by the core causal states.

As for the phase-shuffled surrogate time series, the set of
causal states is found to consist completely from the core
states, i.e., the total number, probabilities, and even the sym-
bolic sequences constituting the states approximately coin-
cide with those of the core states of the e machine of the
original signal. We can, therefore, conclude that the noncore
causal states are the main reason for the high value of the
statistical complexity in the MD signal.

The number of noncore states in the original signal grows
approximately linearly with time. They are, therefore, re-
sponsible for the phenomenon of the logarithmic growth of
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FIG. 12. Power spectra [(a) and (d)] and histograms of recur-
rence times [(b), (¢), (e), and (f)] for typical causal states belonging
to different types: a core state [(a)—(c)] and a noncore state [(d)—(f)].
The histograms on (c) and (f) are zoomed and smoothed fragments
of those shown in (b) and (e). Spectra in (a) and (d) are the func-
tions of inverse frequency.

C, with time. The noncore states are defined by the long-
time nonlinear correlations that are not captured by the (lin-
ear) autocorrelation analysis and completely absent in the
surrogate signal.

Summarizing, the core states are always present, whatever
the length of the time series or the location of the time win-
dow on the time axis. The fact of the invariant presence of
the core states indicates their key role in the formation of the
power spectrum and correlation function. The rest of the €
machine represents nontrivial, nonlinear, long-term processes
that describe the way the system explores the phase space.
For a molecular trajectory, the number of noncore states is
high, indicating a perpetual process of exploring new areas
in the phase space, whereas the absence of such states in the
case of surrogate time series shows statistical stationarity of
the latter and uniform phase-space coverage property of the
surrogate trajectory.

VI. DISCUSSION AND CONCLUSIONS

The computational mechanics approach utilizing informa-
tion theoretic concepts of the € machine and statistical com-
plexity are used for describing the high-dimensional molecu-
lar dynamics of an ensemble of 392 water molecules.

The problem of finding hidden regular patterns in a time
series that appears to be a random process is addressed by
the analysis of the phase-space filling property by an indi-
vidual trajectory. The presence of patterns is judged by sig-
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FIG. 13. (Color) h, values (indicated on the right) for various
observables: black—the hydrogen velocity, red—the oxygen veloc-
ity, and blue—the instantaneous temperature.

nificant deviations from the uniform coverage of the phase
space expected for the case of a random process.

Long-range memories present in the molecular dynamics
simulations are detected and investigated by the means of
statistical complexity analysis. It is shown that arbitrary long
memories (much longer than one can expect from a spectral
or correlation analysis) are present in the recorded time se-
ries, manifesting themselves as groups of causal states in the
velocity-defined phase space.

The noncore causal states change with the length of the
analyzed molecular signal reflecting subtle differences in the
statistics of the sequences of data points over time scales that
are orders of magnitude longer than the common micrody-
namics correlations. It should be stressed that these long-
range correlations cannot be detected using the usual linear
two-point statistics: the correlation function is essentially
zero at all times for the data points spaced with intervals
longer than a few picoseconds.

The time dependence of the statistical complexity value
presumably comes from the fact that the microstate sampling
is a slow process due to the extremely high value of the
dimension of phase space. Since this time dependence origi-
nates from the dimensionality of the phase space, the rate of
the complexity change, iy [Eq. (3)], should be an invariant
for any microscopic observable (provided that this observ-
able is exhaustively sampled at these times). We have tested
this hypothesis by comparing the complexity values obtained
for the velocities of oxygen and hydrogen atoms to the time
series of the instantaneous temperature 7, The result is
presented in Fig. 13 where we plot the dependencies of C
on time for one of the MD simulations. It is clear that the
slopes of all the curves shown in Fig. 13 are indeed the same
within numerical tolerance.

Finally, statistical complexity turns out to be a universal
measure of dynamical structures present in the observed
data. A comparison to surrogate data sets with broken dy-
namical correlations supports the hypothesis that the patterns
are not caused by the details of the computational procedure,
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intrinsic statistical errors, or insufficient data, but by the
complex dynamics of the system.

The rate of the temporal change in the statistical complex-
ity value reflects the way the phase space of the system is
explored (filled) by the trajectory. It can be conjectured that
the exponent hg represents a universal physical constant
characterizing water, since it does not depend on the specific
macroscopic observable analyzed, parameters of the system
or simulation model, such as temperature, number of mol-
ecules, or numerical model employed. It is also independent
of the details of the data processing such as the choice of the
phase-space partition used in the symbolization of the time
series, the number of symbols, or the length of the histories
used for reconstruction of the € machines. However, it does
depend on the particular substance used in the simulations.
For example, we have also investigated the case of a very
different molecular system, liquid argon (Lennard-Jones lig-
uid) and found significantly different values of #, compared
to the case of water. This will be the subject of future pub-
lications.

The main results obtained in this paper by the analysis of
the statistical complexity of a single MD trajectory (not an
ensemble of independent trajectories) can be roughly sum-
marized as follows: (i) over a long (nanoseconds) time scale
nontrivial structures in the probabilistic space (far beyond
the decay time of a conventional linear autocorrelation func-
tion) are detected and analyzed; (ii) the probabilistic (causal)
states demonstrate apparent clustering by the parameter G
characterizing their periodicity (recurrence times); (iii) a
measure is introduced that quantifies the growth of statistical
complexity, i.e., the way the molecular system explores the
phase space; (iv) the analysis of surrogate data reveals the
absence of any significant causal states structures in the sur-
rogate time series, thus indicating the dynamic nature of the
temporal patterns that form causal states in the MD time
series.
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APPENDIX: COMPUTATIONAL MECHANICS

In nonlinear dynamics, common dynamic invariants such
as dimensions, entropies, and Lyapunov exponents, are, in
essence, simply sets of numbers used for characterizing the
dynamics of the system. Obviously, it is hopeless to expect
that one number or some small set of numbers can ad-
equately describe a multidimensional complicated dynamical
system such as water. In contrast, computational mechanics
extracts all statistically significant information from the sig-
nal at the same time achieving the maximal information
compression (see below), thus, providing a very desirable
description of the dynamics.
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Computational mechanics analyzes symbolic dynamics,
that is, a sequence of symbols, ...s_»5_;5(S;S>. .., from a finite
alphabet of size K. All past s; and future s halves of bi-
infinite symbolic sequences centered at times i are consid-
ered. Two pasts s| and s, are defined equivalent if the con-
ditional distributions over their futures P(s*|s7) and P(s*|s3)
are equal. A causal state €(s7) is a set of all pasts equivalent
to s;: =e(s;)={\: P(s*I\)=P(s*|s;)}. At a given moment
the system is at one of the causal states, and moves to the
next one with the probability given by the transition matrix
T;=Plejle). The transition matrix determines the
asymptotic causal state probabilities as its left eigenvector
P(€)T=P(¢;), where 2,P(¢€;)=1. The collection of the causal
states together with the transition probabilities define an €
machine.

It is proven [40] that the € machine is

(1) a sufficient statistic, that is, it contains the complete
statistical information about the data;

(2) a minimal sufficient statistic, therefore the causal states
cannot be subdivided into smaller states; and

(3) a unique minimal sufficient statistic, any other one
simply relabels the same states.

PHYSICAL REVIEW E 77, 036225 (2008)

The statistical complexity C,=0 is the information mea-
sure of the size of the € machine that quantifies the amount
of information about the past of the system that is needed to
predict its future dynamics: C,=H[P(e;)], where H is the
Shannon entropy of the distribution of a random variable X,
H[P(X)]=-2xP(X)log, P(X). € machines can be recon-
structed from observed data using the CSSR algorithm de-
scribed and implemented in Ref. [41].

Statistical complexity measures the informational content
of the dynamics by searching and quantifying dynamical pat-
terns in the signal. C,,=0 both for completely random (all
values are independent) and completely ordered (constant
value) signals. For the intermediate cases the level of the
order is estimated. However, in contrast to, for example,
Fourier analysis, the shape of the patterns is not prescribed.
Any patterns present are discovered.

For subsequences s~, s* of a finite length / the upper limit
of the statistical complexity realized is when all of them are
unique. In this case the number of causal states equals K’
with probabilities 1/ K', where K is the alphabet size. Thus,
the maximum possible value of the complexity is / log, K.
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