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A qualitative model explanation of the experimentally obtained field dependences of the magneti-
zation in ferro- and antiferromagnetic media in contact with one another is proposed. In this
model a thin ferromagnetic �FM� film on an antiferromagnetic �AFM� substrate consists of only
two ferromagnetic layers. This is the simplest model which admits a spatially nonuniform FM
state. In this exactly solvable model it shown that a range of fields exists where a stable collinear
�canted� structure of the FM subsystem obtains. This structure corresponds to inclined sections of
the field dependence M�H� of the magnetization which are not associated with the kinetics of the
magnetization reversal process. In the model proposed, for systems with large easy-plane aniso-
tropy the magnetization reversal process with “exchange bias” taken into account is strictly sym-
metric as a function of the field provided that the additional weak FM anisotropy in the easy
plane is neglected. When this anisotropy in the easy plane is taken into account hysteresis
appears in the magnetization curve and the field dependence M�H� becomes asymmetric.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3151994�

I. INTRODUCTION

Interest in magnetic multilayer structures is motivated by
their many applications, both already and not yet realized, in
magneto- and spin electronics. Examples are highly sensitive
magnetic-field sensors and magnetic writing and storage of
information. There is great interest in studying phase transi-
tions, spin structure, scaling �qualitative change of the prop-
erties�, and proximity effects as functions of the dimension
of the materials. Bi- and multilayer magnetic structures con-
sist of alternating layers with different magnetic properties.
Multilayer structures with alternating ferro- and antiferro-
magnetic layers are especially interesting. These objects are
promising in connection with the study and application of the
phenomenon of giant magnetoresistance. They are of interest
from the theoretical standpoint as systems where media with
different spatial symmetry are contiguous.1–3

One of the most intriguing phenomena in the physics of
low-dimensional magnetic systems is the phenomenon of ex-
change bias �EB� or exchange anisotropy.4–6 This effect,
which Mieklejohn and Bean discovered in 1956 for oxidized
cobalt �CoO� microparticles,4 consists of a displacement of
the hysteresis loop in the magnetization as a function of the
external magnetic field M =M�H� from the symmetric posi-
tion relative to the point H=0. The EB phenomenon arises in
systems with a ferromagnet �FM�/antiferromagnet �AFM� in-
terface when the system is cooled below the Néel tempera-
ture TN of the AFM �which should be less than the Curie
temperature TC of the FM� in an external magnetic field.
Although the effect was first observed for FM microparticles
coated with an AFM film, layered FM/AFM systems are
most convenient for studying the effect and for technical

applications. The EB phenomenon is used in the read/write
heads of modern hard disks to fix the direction of magneti-
zation at H=0.

Qualitatively, the effect consists of the following. At
temperatures above TN but below TC the AFM is a magneti-
cally disordered state and the FM is in an ordered state. As
temperature decreases below TN in the presence of a field H
the antiferromagnet becomes ordered, and the exchange bias
through the interface gives an effective magnetic field Hbias

which displaces the hysteresis loop M =M�H�. This is a sur-
face effect, which decreases with increasing thickness of the
FM layer as Hbias�1 /LF, where LF is the thickness of the
FM layer.5,6 The simplest theoretical model of the
phenomenon,4 which is predicated on uniform magnetization
of the FM layer, gives an expression for the exchange bias
Hbias=J0SASF /LFMF, where SA and SF are the AFM and FM
magnetic moments, respectively, MF is the magnetization of
the FM �for lattice constant along the FM/AFM interface�,
and J0 is the exchange through the interface. Experiments
show that this expression is greater than Hbias by two to four
orders of magnitude, if it is assumed that J0 is of the same
order of magnitude as the exchange interaction inside the FM
layer. In addition, we note that the FM/AFM interface can be
compensated �the total magnetic moment of the near-surface
AFM layer is zero� or uncompensated.1–3 It would be natural
to expect that the EB effect arises only for uncompensated
interfaces. However, in reality, Hbias is of the same order of
magnitude for both types of interfaces. Many theoretical
models studying its different aspects were proposed for the
EB effect from the moment it was discovered.7 For example,
Refs. 1 and 8–14 examine the possibility of the formation of
domain walls �DWs� or incomplete domain walls parallel to
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the interface; Refs. 14–16 studied the role of defects of the
interface and of the domain and polycrystalline structure of
magnets; and, Refs. 10, 11, and 17 attempted to explain the
nature of EB in systems with a compensated interface. In
spite of the large number of works in existence, there is still
no exhaustive theory of the EB phenomenon.

Recently, new particularities of the exchange bias phe-
nomenon have been found experimentally. Specifically, the
displaced hysteresis loop becomes asymmetric �i.e.
M�2Hbias−H��−M�H�� and additional steps appear in
it.18–22 The slope of the magnetization curve is different on
different sections; this could be due to different spin-flip ki-
netics in different magnetic configurations. Exaggerated dia-
grams of magnetization reversal in these cases are presented
in Fig. 1. These diagrams correspond qualitatively to the dia-
grams presented in Refs. 18–22. The “small pedestals”
present in the field dependence draw attention. The field de-
pendence M�H� presented in Fig. 1b is also interesting. Two
regions can be discerned here. The top part of the hysteresis
loop �for positive values of the field� is almost symmetric
with respect to the field; this is characteristic for ordinary
hysteresis. A wide, field-shifted, hysteresis loop is seen in the
bottom part of the dependence M�H�. The presence of “small
pedestals” and field-separated sections of the dependence
M�H� indicates the possible existence of unusual, additional,

stationary states which differ from the completely magneti-
cally reversed states. Different theories23–25 developed to ex-
plain the asymmetry of the hysteresis loop deploy additional
assumptions, such as the presence of a nonzero angle be-
tween the direction of the FM magnetization and the AFM
anisotropy axis or the presence of higher-order terms in the
exchange interaction through the FM/AFM boundary.23,24 On
the other hand, it is shown in Refs. 10–13 that for sufficiently
thick FM layers a portion of the anisotropy in M�H� arises
naturally in the simplest models of the EB phenomenon.

The present article examines a model proposed in Refs.
10–13 for the FM/AFM interface. In this model the AFM is
a magnetically rigid material, i.e. the magnetic moments of
the AFM are fixed. The FM moments are not fixed and in-
teract with an external field H, with one another �the ex-
change integral J�, and with the contiguous AFM layer �ex-
change integral J0�, forming objects of the type incomplete
DWs in a FM layer. Then the exchange integral J0 must be
interpreted as an effective interaction10–13,16 that takes ac-
count of the presence of defects in the interface and partial
lack of compensation of the AFM boundary. Obtaining a
theoretical estimate of this parameter is a quite difficult
problem.10–13,16 Experiments show that J0 /J�10−2–10−3.
The present article examines a wider range of values of the
ratio J0 /J. In a subsequent article we shall show that an
increase of this parameter corresponds to an effective de-
crease of the thickness of the FM layer; this justifies studying
in the present work anomalously thin films with J0 /J�1.
Just as in Refs. 10–13, in the main part of this work the
additional easy-plane magnetic anisotropy of the FM, which
results in the appearance of hysteresis, is neglected. This is
because the anisotropy does not qualitatively affect the sym-
metry of the magnetization reversal curve or the field Hbias,
which in the absence of anisotropy is determined from the
condition M�Hbias�=0. The present model was studied nu-
merically or analytically in Refs. 10–13 using a very simple
approach.

Our objective in the present work is to derive and inves-
tigate exact analytic solutions of the problem in the limiting
case of a ferromagnet consisting of two atomic layers, i.e. in
the simplest possible model that still admits the existence of
nonuniform FM states.

II. THEORETICAL MODEL OF A BILAYER FERROMAGNET

We shall study a simple model in which the ferromag-
netic part of the system consists of only two atomic layers �in
reality, the number of layers can reach several tens�. The case
of a single FM layer is examined in Ref. 4 and is trivial; the
minimal model admitting nonuniform states of the DW type
consists of two layers. The investigation of nonlinear discrete
systems with a small number of degrees of freedom shows
that some of their structural and dynamic properties have
analogues in systems with a large number of degrees of free-
dom and even in systems with distributed parameters.26,27

The first system that we shall examine is a ferromagnetic
subsystem with strong easy-plane anisotropy, which “packs”
spins into this plane, in the absence of additional weak an-
isotropy in the easy plane. �In what follows “taking account
of anisotropy” means taking account of the additional mag-
netic anisotropy in the easy plane.� For simplicity, we as-

FIG. 1. Experimental magnetization-versus-field curves from Ref. 21 �a�
and Ref. 22 �b�. The asymmetry of the field shift and a “small pedestal” for
H�0 are clearly seen.
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sume that the state is uniform along the interface. We assume
that the spins in the AFM layer which is in contact with the
boundary are directed along the Z axis and an external mag-
netic field in applied in this same direction. Then the model
becomes scalar and is described by two angles of rotation of
the spins in the easy-plane away from the direction of the Z
axis for the two FM layers: �1 and �2. The AFM is assumed
to be layered and the interface uncompensated, i.e. uniform.
In Fig. 2 the interface between the ferro- and antiferromag-
nets is directed along the Z axis, and the easy-plane corre-
sponds to the �ZX� plane. The energy of the FM in the sys-
tem, including the interaction through the interface, is

E = − J0 cos �1 − J cos��1 − �2� − H�cos �1 + cos �2� ,

�1�

where J0 is the exchange interaction through the boundary
�assumed to be ferromagnetic�, J is the exchange between
the FM layers, and H is the external magnetic field. It is easy
to see that this energy is invariant under the transformations
H↔−J0−H and �1↔�−�2. Here M�−J0−H�=−M�H�,
which signifies that the EB field in this model Hbias=−J0 /2,
which is identical to the results of the model proposed in
Ref. 4. In a field shifted by the amount Hbias the magnetiza-
tion curve is symmetric. Thus a model with two spins and no
anisotropy cannot explain the asymmetry of the hysteresis
loop.

The equilibrium spin configurations are determined by
the system of equations �E /��1=�E /��2=0, which reduce
to the following system:

�H + J0�sin �1 + J sin��1 − �2� = 0, �2�

H sin �2 − J sin��1 − �2� = 0. �3�

These equations give a simple relation between the angles �1

and �2:

sin �2 = − �1 + J0/H�sin �1. �4�

III. FIELD DEPENDENCES OF THE MAGNETIZATION OF
FERROMAGNETIC LAYERS

The equation �3� possesses the obvious solutions

sin �1 = 0, sin �2 = 0, �5�

describing collinear magnetic structures with parallel and an-
tiparallel spin orientations, which can be conventionally rep-
resented in the form ↑↑ ��1=�2=0�, ↑↓ ��1=0 ,�2=��,
↓↑ ��1=� ,�2=0�, and ↓↓ ��1=�2=��, where the left-hand
arrow corresponds to the direction of magnetization in the
first FM layer and right-hand arrow denotes the same in the
second layer; the angles are measured from the direction of
magnetization in the adjoining AFM layer. The respective
energies of these states are: E↑↑=−J0−J−2H, E↑↓=−J0−J,
E↓↑=J0+J, and E↓↓=J0−J+2H. For J�J0 the energy mini-
mum corresponds for H�Hbias=−J0 /2 to the state ↑↑ with
total magnetization M =2 and for H�Hbias to the state ↓↓
with M =−2. The dependence M =M�H� for collinear states
is a step function with the step shifted to negative fields by
the amount Hbias. For the opposite inequality J�J0 �we shall
examine this case also, though in any real situation the op-
posite and stronger condition J0�2J ordinarily holds� there
are three regions of collinear structures with two critical
fields H1=−J0+J�H2=−J. In the region H�H1 the phase
with the lowest energy is the ↓↓ phase with magnetization
M =−2; in the region H1�H�H2 the comparable phase is
↑↓ with M =0 �“antiparallel”�; and, in the region H�H2 the
comparable phase is ↑↑ with M =2. In this case a “small
pedestal” with M =0, shifted to negative fields by the amount
Hbias=J0 /2, can be present in the field dependence M�H�.
The ↓↑ phase for J0�0 is not realized. However, as we shall
show, the antiparallel phase ↑↓ is stable in a narrower field
interval and only if J�J0 /2.

This is because collinear structures do not exhaust all
solutions of Eq. �3�: noncollinear phases with the magnetiza-
tion vectors tilted away from the direction of the magnetiza-
tion field are also possible. The nonuniform states with turn-
ing of the magnetization which are being studied here are not
domain walls, but structurally they are reminiscent of the
latter and they exist only in an external magnetic field. For
further analysis it is convenient to introduce a dimensionless
external magnetic field shifted relative to zero field by Hbias

and the dimensionless exchange interaction parameter

h = 2H/J0 + 1, I = 2J/J0. �6�

In this notation the magnetization jump occurs at h=0 and
the anticollinear phase arises for I�1 and occupies a sym-
metric region I−1�h�1− I. The distribution of the mag-
netic moments in the noncollinear structure has the following
form:

cos �1,2 =
4I2h � �1 − h2�2

2I�1 − h2��1 � h�
. �7�

Note that these expression possess the symmetry cos �1�h�
=−cos �2�−h�, which is a trivial consequence of the above-
mentioned symmetry of the problem. The dependence of the
magnetization of the ferromagnetic part on the external field
assumes the form

M�h� = cos �1�h� + cos �2�h� = h
4I2 − �1 − h2�2

I�1 − h2�2 . �8�

It is evident that this function is asymmetric in the field h
�shifted�: M�−h�=−M�h�. It should be kept in mind that the

FIG. 2. Diagram of the model proposed for a bilayer ferromagnetic in con-
tact with an uncompensated boundary of an antiferromagnet.
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expression �8� is meaningful only for −2�M �2. In addi-
tion, the limited range of the individual functions cos �i�−1
�cos �i�1� imposes additional conditions on the region of
acceptable values of the parameters

− 1 �
4I2h � �1 − h2�2

2I�1 − h2��1 + h�
� 1. �9�

The phase diagram of the regions of stability of different
configurations of the ferromagnetic part of the system in the
�h , I� plane in the case of zero easy-plane anisotropy is pre-
sented in Fig. 3a.

The magnetic field dependences of the magnetization of
the ferromagnetic layers are presented in Fig. 4 for different
ratios of the exchange interaction between the ferromagnetic
layers and through the ferro/antiferromagnetic boundary, i.e.
different values of the parameter I. The dependences for the
collinear phases correspond to the horizontal segments of the

straight lines, and the dependences for the noncollinear
�canted� phases correspond to the inclined curves. For clarity,
the field dependences for perpendicular magnetization M�

=sin �1+sin �2 are also presented �dashed curves�. For fields
in the range �1+2I� �h���1+ I2+ I there exist additional
canted phases, which are, evidently, unstable and are not
presented in the figure. Consequently, we shall discuss only
collinear and canted structures in the region �h��1.

For I�1 the anticollinear structure ↑↓ with M =0
�“small pedestal”� is absent, and the canted structure exists in
the range �h��h

*
�1, where the boundary of the interval

depends on the parameter I as follows: h
*

=�1+ I2− I. For I

=1 there appears a narrow region of solutions, which is sym-
metric with respect to h, for an anticollinear structure of
width 2�1− I�, which increases in width as I decreases, but
these solutions are unstable in the range 1 /2� I�1. Figure

FIG. 3. Phase diagram of a bilayer model of a ferromagnet in the variables
�h , I�. The regions of stability of the collinear phases ↑↑, ↓↓, and ↑↓ and a
noncollinear phase �NC� in the absence �a� and presence �b, c� of anisotropy
in the easy plane are shown: b1=b2=0.1 �b� and b1=0.2, b2=0 �c� �bi

=�i /J0 are dimensionless anisotropy constants�.
FIG. 4. Longitudinal �solid lines� and transverse �dashed lines� magnetiza-
tion versus the external field h for different values of the parameter I: a� I
�1 /2�I=1.1�, b� I=1 /2, c� I�1 /2�I=0.48�.
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4a displays the dependence M�H� for 1 /2� I�1, and the
corresponding dependence of the Z components of the turn-
ing spins in the FM layers are displayed in Fig. 5a. For the
canted structure �dM /dh�h=0�0. This derivative vanishes at
the critical value I=1 /2 �Fig. 4b�: �dM /dh�h=0=0. The cor-
responding dependences of the magnetization in the layers
are displayed in Fig. 5b. Finally, the field dependences of the
total magnetization and the magnetizations in the layer with
0� I�1 /2 are presented in Figs. 4c and 5c, respectively.
This is the most interesting range of values of the parameter
I. In this range canted phase exists only for fields h0� �h�
�h

*
, where h0=�1−2I, and a solution for the antiparallel

phase exists in the range �h��1− I. That is, in the interval
�1−2I� �h��h

*
the canted structure coexists with different

collinear structures and the stability of different states must
be investigated. �At the points �h�=h0 the derivative
�dM /dh�h=ho=0.�

IV. STABILITY OF MAGNETIC PHASES WITH DIFFERENT
SYMMETRY

We shall now investigate the stability of different struc-
tures in the region h0� �h��h

*
. The total energy of the sys-

tem �1� in the notation introduced above is

E =
2E

J0
= − �h + 1�cos �1 − �h − 1�cos �2 − I cos��1 − �2� .

�10�

In this notation the energies of the collinear �parallel and
antiparallel� and canted phases have the form

E↑↑ = − I − 2h, E↓↓ = − I + 2h, E↑↓ = I − 2,

ENC =
h2 − 1

2I
+

I�h2 + 1�
h2 − 1

. �11�

For I�1 only the collinear and canted structures exist,
and for I�1 a “small pedestal,” corresponding to the anti-
parallel structure and lying higher in energy than the depen-
dence for the canted phase, appears in the dependence E�h�.
The field dependences of the energy for different phases are
presented in Fig. 6: I�1 �a�, I=1 /2 �b�, and I�1 /2 �c�. The
energies of the collinear structures are identical to the energy
of the canted structure for �h�=h

*
, and at these points

dENC /dh=dE↑↑,↓↓ /dh. The situation is different for I�1 /2
and I�1 /2. For I�1 /2 the energy of the canted phase has
its minimum value �less than the energies of the collinear
phases� in the entire region of existence of this phase, and the
phase is stable. For I�1 /2 a stable anticollinear structure
exists in the range �h��h

*
, and the canted phase does not

exist at all. In the range h0� �h��h
*

the lowest-energy struc-

ture is the canted structure, which is stable. We shall examine
the possibility of the existence of metastable states, i.e. we
shall examine the stability of all solutions found.

The stability of these solutions is determined by the
positive-definiteness of the determinant of the matrix of de-
rivatives D=det��2E /��i�� j��0. In order for a state to cor-
respond to minimum energy the condition K=�2E /��1

2�0
must also be satisfied. This means that the following in-
equalities must be satisfied simultaneously:

K = �h + 1�cos �1 + I cos��1 − �2� � 0, �12�

D = �h2 − 1�cos �1 cos �2 + I cos��1 − �2�

� ��h + 1�cos �1 + �h − 1�cos �2� � 0. �13�

For the noncollinear solutions �7� the condition �13� al-
ways holds, since it can be shown that for them D= I��1
+h�sin �1�2. However, the first condition �12� can be reduced
to the inequality K= I�1+h� / �1−h��0, which holds for �h�
�1. Consequently, canted structures are unstable for �h��0,
as mentioned above. For �h��1 noncollinear solutions exist
only in the range h0� �h��h

*
, where they are stable. For I

�1 the collinear phases with �h��h
*

and the canted phase

with �h��h
*

correspond to the only energy minima. All other

FIG. 5. Field dependences of the Z component of the magnetization of the
first �1� and second �2� ferromagnetic layers: a� I�1 /2�I=1.1�, b� I=1 /2, c�
I�1 /2�I=0.48�.

480 Low Temp. Phys. 35 �6�, June 2009 Grechnev et al.



states correspond to saddle points and maxima of the energy
E��1 ,�2� as a function of the angles of the spins. Thus there
is no hysteresis in the field dependence of the magnetization.
This �absence of relative energy minima� is also true of other
ranges of the parameter I: energy minima correspond to only
collinear phases for �h��h

*
, the canted phase for �h��h

*
�I�1 /2� and h0� �h��h

*
�I�1 /2�, and the anticollinear

phase for �h��h0 �I�1 /2�. In Fig. 3a each point in the pa-
rameter plane �I ,h� corresponds to one and only one stable
phase �there are no additional relative energy minima�. Phase
transitions proceed at the boundaries of the phases in a con-
tinuous manner and hysteresis does not arise in the system.
We note that this is valid only if the anisotropy of the ferro-
magnet is neglected in the initial model.

The final field dependence of the magnetization in the
initial variables is as follows. For J�J0 /4, there exists a

canted structure for negative fields with H−�H�H+, where
H�=−J0 /2� ��4J2+J0

2−2J� /2. The situation is more com-
plicated for J�J0 /4: inside the region �H−, H+� there arises a
region J−J0�H�−J where the system is in an anticollinear
phase. That is, the magnetization curve is indeed shifted in
this range of parameters and possesses a small pedestal; this
corresponds to certain elements of the experimental depen-
dences. In the limit J=0 the magnetization curve possesses
two vertical steps: one at H=0 and another at H=−J0. This is
entirely natural: the ferromagnetic spin layers are coupled
with one another, and in zero field the spin �2� flips while in
a field −J0 the spin �1� closest to the boundary flips.

V. EFFECT OF MAGNETIC ANISOTROPY IN THE
EASY-PLANE ON THE FIELD DEPENDENCES OF THE
MAGNETIZATION

We shall now examine the effect of single-ion magnetic
anisotropy in the easy-plane on the properties of magnetiza-
tion reversal in our simple model. Since this anisotropy is
due to the properties of the atoms surrounding the spins it is
natural to assume that the anisotropy of the two ferromag-
netic layers is different, because the magnetic moments of
the ferromagnetic layer �1� are in contact with the atoms of
the second ferromagnetic layer and with the atoms of the
antiferromagnetic from the contiguous layer. We now intro-
duce the easy-axis anisotropy in the rotation plane of the
spins and assume that the anisotropy axis of the ferromagnet
is parallel to the anisotropy of the antiferromagnet and the
direction of the external field �i.e. it is directed along the Z
axis�. Here the expression for the energy �1� is modified as
follows:

E = − J0 cos �1 − J cos��1 − �2� − H�cos �1 + cos �2�

−
�1

2
cos2 �1 −

�2

2
cos2 �2. �14�

To obtain a qualitative understanding of the phenomenon
we shall examine the simplest case first: the limit J=0. In
contrast to the preceding case where there is no anisotropy,
now this anisotropy results in a possibility of the existence of
states with a relative energy minimum, which results in the
appearance of hysteresis. It is easy to show that only collin-
ear structures correspond to energy minima �absolute and
relative� on the potential energy surface E=E��1 ,�2� and the
saddle points of this surface for small anisotropy constants
��1=�2�J0 /2� correspond only to collinear structures. �For
large anisotropy parameters a minimum corresponding to a
canted phase appears, but its energy is higher than that of the
all other stable states.�

The transformation of the magnetization curve �for J
=0� taking account of the anisotropy is displayed in Fig. 7.
The energies E↑↑ for H�0, E↑↓ for −J0�H�0, and E↓↓ for
H�−J0 correspond to an absolute minimum of the energy.
The hysteresis curve is symmetric relative to the point
H=−J0 /2=Hbias with �1=�2, and for �1��2 asymmetry ap-
pears in this dependence. The width of the right-hand loop
�centered at H=0� is 2�2 and that of the left-hand loop �cen-
tered at H=−J0� is 2�1. A small pedestal corresponding to an
anticollinear phase lies between these loops �Fig. 7a�. The

FIG. 6. Field dependences of the energy E�h� for different values of the
parameter I: a� I�1 /2�I=1.1�, b� I=1 /2, c� I�1 /2�I=0.48�. The solid and
dashed lines correspond to stable and unstable, respectively, states.

Low Temp. Phys. 35 �6�, June 2009 Grechnev et al. 481



transformation of this curve for J0��1�J0+�2 is interest-
ing �Fig. 7b�. In this case the hysteresis curve is reminiscent
of the experimental curve in Fig. 1b.

We shall now examine the problem briefly, taking ac-
count of the anisotropy and nonzero interlayer exchange in-
teraction simultaneously in the ferromagnetic part of the sys-
tem �J�0�. First, we note that for �1=�2 the symmetry
property of the hysteresis loop in a field h shifted by the
amount of the exchange shift is preserved. For �1��2 this
symmetry is broken. When anisotropy is taken into account it
is impossible to obtain an analytic solution for the canted
phase, but it is possible to find the boundaries of stability for
the collinear phases. For this it is necessary to use the in-
equalities �12� and �13�. In addition to the dimensionless
notation introduced above for the field and the exchange in-
teraction �6�, it is convenient to introduce dimensionless an-
isotropy constants bi=�i /J0. The stability boundaries for the
various collinear phases now take on the form

h � h↑↑ = − I − b1 − b2

+ �I2 + �1 + b1 − b2�2 for the phase ↑↑ , �15�

h � h↓↓ = + I + b1 + b2

− �I2 + �1 − b1 + b2�2 for the phase ↓↓ , �16�

h↑↓
1 � h � h↑↓

2 ,

h↑↓
1,2 = b2 − b1 	 ��1 + b1 + b2��1 + b1 + b2 − 2I�

for the phase ↑↓ . �17�

As the average anisotropy �b1+b2� increases, the collin-
ear phases stabilize, i.e. their regions of stability expand and
start to overlap. First-order transitions directly between col-
linear phases without the formation of a canted phase now
become possible. The parameter �b1−b2� characterizes the
degree of asymmetry of the transitions. Figures 3b and 3c
display phase diagrams of the structural change of the ferro-
magnetic layers. These diagrams generalize the diagram
shown in Fig. 3a to cases of identical anisotropy constants
b1=b2=0.1 �Fig. 3b� and different constants b1=0.2, b2=0
�Fig. 3c�. It follows from these figures that in the case of
identical anisotropy constants b1=b2 regions of canted
phases and regions of hysteresis behavior cannot exist simul-
taneously on the magnetization curve for any value of the
exchange I. However, for different anisotropy constants b1

�b2 and small values of I �for example, I
*

in Fig. 3c� such

phase can exist simultaneously �see Fig. 7c�.

VI. CONCLUSION

A model describing a planar contact between ferro- and
antiferromagnets in a magnetic field was proposed. The
model describes a ferromagnetic layer consisting only of two
magnetic planes. The AFM was assumed to be magnetically
rigid �i.e. with fixed directions of the moments in the layer
adjoining the interface� and the AFM boundary uncompen-
sated. The strong FM-type magnetic anisotropy of the easy-
magnetization plane was taken into account, reducing the
model to a scalar model. In the proposed model the expres-
sion for the exchange bias field Hbias is identical to the ex-
pression in the trivial model.4 However, the field width of the
region of magnetization reversal is finite, which is due to the
formation of a noncollinear �canted� phase. The possibility of
the existence of canted structures is interesting, because this
leads to the existence of inclined sections on the field depen-
dence of the magnetization M�H� which are not associated
with the kinetics of magnetization reversal of the ferromag-
net. In addition, for small �compared with the exchange in-
teraction J0 through the interface� ferromagnetic exchange
J�J�J0 /2� a “small pedestal” with M =0 corresponding to
the antisymmetric phase ↑↓ is observed in the field depen-
dence of the magnetization of the ferromagnetic layer near
the field Hbias. The magnetization curve is strictly symmetric
relative to the field Hbias. A hysteresis loop appears when the
magnetic anisotropy in the easy plane of the FM is taken into
account. Anisotropy was taken into account in the limit of
very weak FM exchange �J→0� to gain a qualitative under-
standing of the magnetization reversal process. It was dem-

FIG. 7. Magnetization curves for the ferromagnetic subsystem for J0��1

+�2, J=0 �a�, J0��1�J0+�2, J=0 �b�, and �1��2, J�0 �c�.
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onstrated that strong asymmetry of the hysteresis loop ob-
tains when anisotropy is taken into account. The results
obtained give a qualitative description of a number of experi-
mentally observed dependences of the magnetization curves
�exchange bias; presence of “small pedestals,” inclined sec-
tions of the curves, and asymmetry of the hysteresis loops�.
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