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Abstract—This paper presents a hybrid PSO algorithm (Par-
ticle Swarm Optimization) with an ILS (Iterated Local Search)
operator for handling equality constraints problems in mono-
objective optimization problems. The ILS can be used to locally
search around the best solutions in some generations, exploring
the attraction basins in small portions of the feasible set.
This process can compensate the difficulty of the evolutionary
algorithm to generate good solutions in zero-volume regions. The
greatest advantage of the operator is the simple implementation.
Experiments performed on benchmark problems shows improve-
ment in accuracy, reducing the gap for the tested problems.

Keywords—Hybrid, Evolutionary Algorithm, Equalities, Con-
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I. INTRODUCTION

Although Evolutionary Algorithms (EA’s) are a powerful
tool in optimization, they have been originally developed
to solve unconstrained problems [17]. When it comes to
constrained problems, the randomness of the algorithm may
lead into unfeasible areas, mainly when they have equality
constraints, resulting in zero-volume objects [15]. The tradi-
tional way to treat these equalities is using the penalty method,
transforming the constrained problem into an approximate
unconstrained one [16], [6].

When calculating the fitness function, the penalization can
be added to or multiplied by the objective function. There are
several ways to do this, but the most common penalty type
is the additive one [18]. If the constraints are not satisfied by
some solution, the fitness value is changed proportionally to
the violation, measured by some parameter μ. The larger the
parameter, the closer the penalty problem is to the original
one, but μ needs to be precisely chosen. A very large μ can
lead to problems with ill-conditioning and too much emphasis
on finding the feasible set. That way, the algorithm may end
before expectation with sub-optimal results. If a very low one
is picked, the algorithm may be clueless about how to reach
the feasible region and return unfeasible solutions [2]. The
major drawback of the penalty approaches is the requirement
of a good penalty function definition and a proper tuning of
penalty parameters, which can be challenging.

Even with the penalty approach application, the problem
remains very complex. An improvement that can be done
to EA’s is the hybridization of the algorithm. By definition,
something is hybrid when is powered by two or more sources.
In many cases, the hybrid algorithm uses both the exploration
advantage of EA’s and the precision in local searches’ algo-
rithms. According to [8], there are many ways to hybridize an

Figure 1. Hybridization possibilities [8].

algorithm. Figure 1 shows some ways to do a hybridization,
such as using other algorithms to develop better initial popula-
tion, improve evolutionary operators or search the offspring of
superior individuals. Hybridism is not necessarily better than
the pure EA’s, but it has to be as precise as them. So, it is
worth testing if the time increase is not intolerable.

In this paper, we propose a hybrid Particle Swarm Opti-
mization (PSO) algorithm to solve some benchmark equality
constraint problems. It is a very studied algorithm with lots of
uses [10], but it has limitations, as described in [5]. Changing
some aspects of the algorithm or hybridizing it can be done
to overcome this limitations. Some previous works have tried
to change how the particles moves (what we call topology)
[3], and including a local search in it [4], both dealing with
constrained problems. Our work maintained the original PSO
almost entirely, only adding the inertia factor [13]. After
generating a population of solutions with the EA, we enhance
it with the Iterated Local Search (ILS) algorithm. The cost of
extending the execution time is expected to be compensated
by better function values at the end of the process.

The paper is organized as follows. In Section II, we explain
the proposed ILS algorithm. Section III describes how to build
the PSO and hybridize it with the local search algorithm.
Section IV shows the results obtained through tests, and the
conclusions are derived in Section V.

II. ITERATED LOCAL SEARCH

The Iterated Local Search (ILS) algorithm is a simple,
easy to implement, robust and highly effective metaheuristic
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[11]. It focuses on exploring a small region of the space
of solutions, searching for local minima that could improve
previously obtained points. The name comes from the fact
that the algorithm repeatedly uses local search to find those
improvements.

The method only requires one input, the starting point.
Then the following steps occur:

1) The best point in a specified neighborhood is chosen,
using a hill climbing method [12].

2) That point will be the center of the next neighborhood
search.

3) The first two steps will be repeated until there is no
upgrade for the current solution or if the maximum
number of iterations is reached.

When the local search is done, it is expected to have
found a local minimum. The next step is perturbing that point,
and the result of that perturbation will be the start of the
next search, exploring other neighborhood for an even better
solution. Repeating that numerous times, the method expects
to check attraction basins for the best minimum around the
starting point. The algorithm ends returning the best point
found over all the iterations. Figure 2 shows the procedure.

Each local search phase will be deterministic, returning
always the same solution if it starts at the same point. However,
the method is stochastic, since the perturbation is randomly
chosen. This grants variability to the search, but requires a wise
choice on the number of iterations: quick searches could be
ineffective, while long ones could be a waste of time, possibly
falling into the same attraction basins too many times.

As the reader can see, the basic structure of the strategy
is very simple. An implementation is shown in Algorithm
1. The biggest possible problem should be the calibration
of parameters. In this study, the following parameters were
empirically used:

• The points examined by the Downhill function have
only 1 variable different from the input. That variable
has a ±0.1% of the variable range added to it. So,

Figure 2. ILS graphic procedure

Algorithm 1 Iterated Local Search

procedure ILS(x0)
best← x0

xk ← x0

for k = 0 < maxiterations do
for i = 0 < limit do

function DOWNHILL(xk)
min← xk

for all y ∈ V (xk) do
if f(y) < f(min) then

min← y
end if

end for
return min

end function
end for
if f(min) < f(best) then

best← min
end if
xk ← perturb(min)

end for
end procedure

with n variables, n points will be compared with the
input.

• If the Downhill doesn’t make an improvement or the
limit (set to 150 iterations) is reached, the local search
is terminated.

• The next starting point is randomly put in the neigh-
borhood correspondent to the hypercube with edges
whose length is 2% of the variable range and is
centered in the best-found point.

• The perturbation is repeated 100 times.

In this paper, the ILS will be used alongside with the
PSO. The initial solution is going to be the best individual
in the PSO’s population in some predefined generations, and
the point returned by the ILS algorithm will deterministically
replace the worse individual of the population. This hybridism
enhances the results obtained by the evolutionary algorithm by
itself by exploring more accurately the areas occupied by the
population.

III. PSO WITH ILS

The PSO algorithm, first introduced in 1995 by Eberhart
and Kennedy [7], is a population-based cooperative algorithm,
shares similar characteristics to the genetic algorithm, however,
the manner in which the two algorithms traverse the search
space is fundamentally different, to handle optimization prob-
lems. The version used here incorporates the mechanism of
hybridization with a local search operator based in the iterated
local search.

A. Real PSO

The PSO has two primary operators: velocity update and
position update. Here, we use the global version of PSO, as
follows:
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1) The algorithm is initialized with an initial population,
treated in the PSO as a set of particles, each particle
is a possible solution to the problem, with random
positions and velocities in the search space and fitness
function computation for each particle.

2) Store the position of the best generation particle
(called gbest) and the best position of each individual
particle (called pbest).

3) Compare particle’s fitness evaluation with particle’s
pbest. If the current value is better than pbest, then
reset pbest value equal to current value.

4) Compare population’s fitness evaluation over previ-
ous best. If the current value is better than gbest, then
reset gbest value equal to current particle’s index and
value.

5) Update the velocity and position of the particle ac-
cording to Equation 1 and Equation 2, respectively:

vki (t) =wt ∗ vki (t− 1) + c1γ1i(pbest
k
i − xk

i (t− 1))

+c2γ2i(gbest
k
i − xk

i (t− 1))
(1)

wherein vki (t) is ith component of the velocity of the
kth particle, xk

i (t) is the ith component of the posi-
tion of the kth particle, in tth step of the algorithm; w
is the inertia factor, which ranges from 0.9 to 0.4; c1
and c2 are the social parameters, which can be varied
to make the particles have more tendency to go in the
direction of pbest and gbest, in this work both were
used equally to 2,05; γ1i and γ2i are random values
between 0 and 1.
From the velocity and the previous position of the
particle its new position is calculated:

xk
i (t) = xk

i (t− 1) + vki (t) (2)

6) Loop to item 2 until a criterion is satisfied.

In case of an individual is out of the allowed range, the
reflection operator is executed to force the individual back into
the feasible region. The reflection by the lower limit (xL) and
upper limit (xU ) is given respectively by

xr = xL + |x− xL| or xr = xU − |xU − x|
where x is the individual outside of the feasible region and xr

represents the reflected individual. We use the chaotic random
inertia weight strategy wt = −0.5× rand() + 0.9.

B. Hybrid PSO

The hybrid PSO (real-PSO with ILS) algorithm, presented
in this section, deals with nonlinear equality constraint using
ILS method as a local search operator in the real-PSO algo-
rithm. Some of the possibles reasons for hybridization are as
follows [14]:

1) To improve the performance of the evolutionary al-
gorithm (example: speed of convergence)

2) To improve the quality of the solutions obtained by
the evolutionary algorithm

3) To incorporate the evolutionary algorithm as part of
a larger system

This kind of approach is used by many global optimization
procedures, and the main advantage obtained is that the search
space of solutions is reduced to a “subspace” of local optimal.
We show below the scheme of the Hybrid PSO algorithm:

Algorithm 2 Hybrid PSO

procedure
Initialize PSO parameters
Initialize PSO population
if no stop criterion then

Evaluate population
Store pbest and gbest
Update velocity and position
Local search operator

end if
end procedure

IV. EXPERIMENTS AND RESULTS

In this section, we describe numerical experiments with
a set of analytical problems in order to compare the PSO
and PSO-Hybrid algorithms. The experiments were run using
a 3.5 GHz Intel Core i7 CPU with 32 GB RAM and our
implementation was done in MatLab. The Matlab language
codes are available from the corresponding author.

The analytical tests were chosen of benchmark problem
presented in [15] and [1]. The Problem 1 is a multi-modal
known Rastrigin function, with only two variables and a
simple quadratic restriction. The Problem 2 is harder since
the objective function grows exponentially with every variable,
and have three restrictions with three restrictions. Lastly, the
Problem 3 have three variables and two restrictions, with a
wider range, slightly harder than the first one. All of them are
minimization problems, described as follows:

• Problem 1:

min f(x) = x′.A′.Ax− 10[1 1] cos(2πAx)

subject to: (x1 − 2)2 + (x2 − 2)2 = 1

A =

(
1 0
0 4

)

− 4 ≤ xi ≤ 4, i = 1, 2 (3)

The optimum values for the functions is
f(x∗) = −1.3953.

• Problem 2:

min f(x) = ex1x2x3x4x5

subject to:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

x3x2 − 5x4x5 = 0

x3
1 + x3

2 + 1 = 0

−2.3 ≤ xi ≤ 2.3, i = 1, 2;

−3.2 ≤ xi ≤ 3.2, i = 3, 4, 5

(4)

The global optimum is x∗ =
(−1.7171, 1.5957, 1.8272,−0.76364,−0.7636)
wherein f(x∗) = 0.0539498.
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• Problem 3:

min f(x) = 1000− x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

subject to:

⎧⎨
⎩
x2
1 + x2

2 + x2
3 − 25 = 0

8x1 + 14x2 + 7x3 − 56 = 0

0 ≤ xi ≤ 10, i = 1, 2, 3

(5)

The global optimum is at x∗ = (3.512, 0.217, 3.552)
wherein f(x∗) = 961.715.

The g(x) = 0 type equality constraints were replaced by
two inequality constraints of the form:

g1(x) = −g(x)− ε ≤ 0

g2(x) = g(x)− ε ≤ 0

with ε = 0.001. If any inequality constraint gi is violated then
the objective function is penalty via

f = f + 10gi(x).

Each algorithm was executed 30 times for each problem with
the same parameters described in subsection III-A for both
versions and

• particle population size = 100

• maximum number of generations = 200

. The local search operator was run every 5 generations.

The main purpose of this paper is the application of the
proposed local search with a well-established PSO algorithm.
Having that in mind, the effect of the parameter choices over
the PSO performance is not addressed in this work. A more
detailed and exhaustive parameter fine-tuning, including the
local search frequency, will be carried out in a future work.

A. Results

The PSO-ILS hybridization was compared with the pure
PSO and with another hybridization that uses a Broyden-
Fletcher-Goldfarb-Shanno (BFGS) operator [9], in which an
estimate of the inverse Hessian matrix is constructed itera-
tively, to define a search direction.

The maximum number of generation was the only stopping
criterion for all algorithm versions. At the end of all algorithm
runs, the mean convergence line, representing the mean value
of the best individual throughout the 200 generations, is
obtained for each problem test.

Figures 3, 4 and 5 show the convergence lines for each
problem. In the graphs, the x-axes represent the generation
and the y-axes represent the objective function value of the
best individual.

Observing Figure 4 and 5, it is possible to see that the
PSO-ILS has a higher speed of convergence compared with
the PSO-BFGS and the pure PSO. Around the 15th generation,
the PSO-ILS H found a solution which is a better value than
the final solution found by the PSO-BFGS and pure PSO. For
Problem 1, analyzing the convergence line given by Figure 3,
the convergence speed of the PSO-ILS is slightly higher than
that of the PSO-BFGS and pure PSO.
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Figure 3. Convergence Lines for Problem 1.
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Figure 4. Convergence Lines for Problem 2.

With the goal of comparing the quality of final solution
of the algorithm versions, a non-parametric statistical test is
applied in a one versus all approach. The mean difference
between the final solution of the algorithms, PSO-ILS versus
PSO and PSO-ILS versus PSO-BFGS, is taken as a test
statistic object. The significance of these observed results is
assessed using a Monte Carlo simulation. The null hypothesis
to be tested is stated as There is no evidence that one of
the algorithms is intrinsically better than the other one. The
central assumption of the Monte Carlo simulation is that, if
the observed result has arisen by chance, then this value will
not seem unusual in a distribution of results obtained through
many random relabellings of the samples. For applying the
statistical test, the following steps must be carried out:

1) Compute the object (the mean difference between the
objective function values) for the samples for each
algorithm. This value is called the observed value;

2) Reallocate randomly half of the samples to one
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Figure 5. Convergence Lines for Problem 3.

algorithm and half to the other. Compute the object
value as before;

3) Repeat the previous step until a large number of
randomized object values have been generated and
construct a distribution of these values;

4) If the observed value is not more extreme than a
fraction of the resulting outcomes that corresponds to
a significance level, then consider the null hypothesis;
otherwise, reject it.

For Problem 1, after applying the statistical test, the null
hypothesis can not be rejected meaning that there is no statis-
tical difference between the final objective values for the pair
of algorithms, (PSO-ILS, PSO) and (PSO-ILS, PSO-BFGS).
However, the convergence speed of the PSO-ILS is clearly
higher than the convergence speed of the other algorithms.
Furthermore, a final solution can be found by PSO-ILS around
the 15th generation.

Figures 6 and 7 show the statistical results using the final
objective values of the algorithms considering Problem 2.
Figures 8 and 9 show the statistical results using the final
objective values of the algorithms considering Problem 3.
The results are described by the gray histograms, while the
observed result is depicted as a filled black circle over the
same figures. The statistical tests have been performed using
mean(PSO-ILS)-mean(·) and, therefore, positive differences
(situated on the right of the histogram) favor PSO-ILS over
the other algorithms.

The overall gain provided by the ILS hybridization is clear.
Now we present the Table I with more precise information
about runtime (best, worst, average and standard deviation)
required for each algorithm.

In all the problems, the PSO-ILS took more time than the
other algorithms, and that is expected since it checks so many
perturbations, descending many times, each time evaluating
points. It is, however, the most precise algorithm, making the
hybridization advantageous if the biggest concern of the user
is reducing the gap to the optimum. Moreover, the pure PSO
and the BFGS hybridization lose accuracy when the problem
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Figure 6. Statistical testing, using the final objective function values for
Problem 2 considering PSO-ILS and PSO-BFGS. The result is statistically
significant since the filled black circle lies on the right-hand side of the
histogram.
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Figure 7. Statistical testing, using the final objective function values for
Problem 2 PSO-ILS and PSO. The result is statistically significant since the
filled black circle lies on the right-hand side of the histogram.

gets harder, while the ILS version keeps the precision, and it
is the only reliable option for more complex problems with
unknown optimum. The standard deviation is also lower in
our approach, suggesting a stable algorithm, while the other
algorithms can have some bad results depending on the initial
seed of the random number generator.

V. CONCLUSION

When solving very complex optimization problems, it is
desirable to get as close as possible to the best point, giving
long time periods to the algorithms to evolve. Therefore, it
is interesting to make a hybridization if the increased cost in
execution time is compensated by doing the algorithm more
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Figure 8. Statistical testing, using the final objective function values for
Problem 3 considering PSO-ILS and PSO-BFGS. The result is statistically
significant since the filled black circle lies on the right-hand side of the
histogram.
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Figure 9. Statistical testing, using the final objective function values for
Problem 3 PSO-ILS and PSO. The result is statistically significant since the
filled black circle lies on the right-hand side of the histogram.

Table I. RUNTIME OF THE ALGORITHMS FOR EACH PROBLEM TEST.

Run time (s)
PSO PSO-BFGS PSO-ILS

P1 P2 P3 P1 P2 P3 P1 P2 P3

mean 0.53 0.37 0.37 1.27 0.94 0.91 4.39 14.66 3.25

std 0.02 0.01 0.05 0.05 0.03 0.06 0.09 12.77 0.14

min 0.50 0.35 0.30 1.22 0.89 0.84 4.27 7.85 3.07

max 0.62 0.41 0.49 1.42 1.00 1.08 4.69 61.09 3.61

robust. In this paper, we tested the performance of the PSO
hybridization using the ILS algorithm in benchmark equality
constrained problems. This type of problem has a very complex
feasible region, so evolutionary algorithms need to attach other

search strategies to be useful. The developed method could find
solutions with tiny gaps to the optimum, and it has proved to
be more accurate than another good hybridization, using the
BFGS algorithm, and than the pure evolutionary algorithm.
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