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Most conventional techniques for estimating conditional probability 
densities are inappropriate for applications involving periodic vari- 
ables. In this paper we introduce three related techniques for tackling 
such problems, and investigate their performance using synthetic data. 
We then apply these techniques to the problem of extracting the distri- 
bution of wind vector directions from radar scatterometer data gathered 
by a remote-sensing satellite. 

1 Introduction 

Many applications of neural networks can be formulated in terms of a 
multivariate nonlinear mapping from an input vector x to a target vector 
t. A conventional neural network approach, based on least squares, for 
example, leads to a network mapping that approximates the regression 
(i.e., the conditional average) of t given x. For mappings that are mul- 
tivalued, however, this approach breaks down, since the average of two 
solutions is not necessarily a valid solution. This problem can be resolved 
by recognizing that the conditional mean is just one aspect of a more 
complete description of the relationship between input and target, ob- 
tained by estimating the conditional probability density of t conditioned 
on x, written as p(t I x).  The least-squares approach then corresponds 
to maximum likelihood for the special case in which p(t 1 x) is modeled 
by a gaussian distribution which is spherically symmetric in t-space and 
which has an x-dependent mean. 

Although techniques exist for modeling general conditional densities 
when the target vectors lie in Euclidean space, they are not appropriate 
when the targets are periodic. Direction and (calendar) time are two 
quantities that are periodic and that occur frequently in applications. 

In this paper, we introduce three general techniques for modeling the 
conditional distribution of a periodic variable. We then investigate and 
compare their performance using synthetic data, as well as data collected 
from the ERS-1 remote sensing satellite. 
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2 Density Estimation for Periodic Variables __ - 

A commonly used technique for irnconditioiial density estimation is based 
on mixture models of the form 

where o,  are called mixing coefficients, and the component functions, 
or kernels, o , ( t )  are typically chosen to be Gaussians (McLachlan and 
Basford 1988; Titterington rt 01. 1985). To turn this into a model for con- 
ditional density estimation, we simply make the mixing coefficients, as 
well as any adaptive parameters in the component densities, into func- 
tions of the input vector x. To achieve this we set the mixing coefficients 
and parameters from the outputs of a neural network that takes x as 
input. This approach underlies the “mixture of experts” model (Jacobs 
rf al. 1991) and has also been considered by a number of other authors 
(Bishop 1994; Liu 1994. 

In this section we extend this technique to provide three distinct meth- 
ods for modeling the conditional density p(H j x )  of a periodic variable H 
conditioned on an input vector x. We also compare these methods with 
earlier approaches for treating periodic variables. 

2.1 Mixtures of Wrapped Normal Densities. The first technique that 
we consider involves a transformation from a Euclidean variable k E 
(-x. x) to the periodic variable H E [O.  2i;) of the form H = 4 mod 27r. 
This can be visualized as wrapping the infinite real line around a circle 
of unit radius It induces a transformation that maps density functions p 
with domain into density functions p with domain [O.  27) as follows: 

It is clear by construction that the function p satisfies the periodicity 
requirement p(H + 2a ~ x) = j l ( H  1 x). It is also normalized on the interval 
10. ~ T J ,  provided p( \ 1 x)  is normalized on R, since 

Various choices for the component density functions that make up 
j x) are possible, but here we shall restrict attention to the mixture p( 
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functions that are Gaussian of the form 

where t E w. The transformed density function 4, is known as the 
"wrapped normal" distribution (Kotz and Johnson 1992). 

The density function p ( x  I x) is modeled using a combination of a 
neural network and a mixture model as described above. In this paper 
we use a standard multilayer perceptron with a single hidden layer of 
sigmoidal units and an output layer of linear units. To ensure that the 
mixture model in equation 2.1 is a density function, it is necessary that 
the mixing coefficients a;(x) satisfy the constraints 

for all x. This can be achieved by choosing the a;(x) to be related to the 
network outputs by a normalized exponential, or softmax function (Jacobs 
etal. 1991) 

where 2; represents the corresponding network outputs. The centers 
p l  of the kernel functions are represented directly by the network out- 
puts; this is motivated by the corresponding choice of an uninformative 
Bayesian prior, assuming that the relevant network outputs have uniform 
probability distributions (Berger 1985; Jacobs et al. 1991). The standard 
deviations a,(x) of the kernel functions represent scale parameters and 
so it is convenient to represent them in terms of the exponentials of the 
corresponding network outputs. This ensures that a,(x) > 0 and discour- 
ages o,(x) from tending to 0. Again, it corresponds to an uninformative 
prior in the Bayesian framework. 

The adaptive parameters of the model (the weights and biases in the 
network) are optimized by maximum likelihood. In practice it is conve- 
nient to minimize an error function E given by the negative logarithm 
of the likelihood function. Derivatives of E with respect to the network 
weights can be computed using the rules of calculus (Bishop 1994), and 
these derivatives can then be used with standard optimization proce- 
dures to find a minimum of the error function. The results presented in 
this paper were obtained using a conjugate gradient algorithm. 

One limitation of the maximum likelihood approach is that it leads to 
biased solutions since it underestimates the variance of a distribution in 
regions of low data density (Bishop 1995). An extreme example occurs if a 
component density function collapses onto one of the data points, giving 
zero variance and an infinite likelihood. For the applications reported 
in this paper, this effect will be small since the number of data points 
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is large and we are dealing with a one-dimensional target space. The 
use of an exponential relationship between the variance and the network 
output, discussed above, also helps to avoid pathological solutions. 

In a practical implementation, it is necessary to restrict the value of N 
in the summation. We have taken the summation over 7 complete periods 
of 2 s  spanning the range (-7ii. 7-1). Since the component Gaussians have 
exponentially decaying tails and the standard deviations are typically 
1 28, this truncation introduces negligible error provided that care is 
taken in initializing the network weights so that the kernels have their 
means in the central interval (--I. a ) .  

2.2 Mixtures of Circular Normal Densities. The second approach 
to periodic conditional density estimation is also based on a mixture of 
kernel functions, but in this case the kernels themselves are periodic, 
thereby ensuring that the overall conditional density function will be 
periodic. The particular form of kernel function that we use can be 
motivated by considering a vector v in two-dimensional Euclidean space 
for which the probability distribution p(v)  is a symmetric Gaussian. By 
using the transformation i', = ilvl/ cosH, T I , ,  = / / v / /  sinH, we can show that 
the conditional distribution of the direction 0, given the vector magnitude 
!ivii, is given by 

(2.7) 

which is known as a circirlnr rioriiinl or i w i  M i w s  distribution (Mardia 
1972). The normalization coefficient is expressed in terms of the zeroth- 
order modified Bessel function of the first kind, I,,( m i ) ,  and the parameter 
111 (which depends on //vll in this derivation) is analogous to the inverse 
\.ariance parameter in a conventional normal distribution. The parameter 

Again the parameters (t)(x), c',(x), and n i , ( x )  in the corresponding 
mixture model are determined by the outputs of a neural network taking 
x as input, and the network weights are determined by minimizing the 
negative log likelihood defined with respect to the training data. Because 
l o i m )  is asymptotically an exponential function of mi, some care must be 
taken in the implementation of the error function and its derivatives to 
avoid overflow in the results of intermediate calculations. 

I corresponds to the mean of the density function. 

2.3 Expansion in Fixed Kernels. The third and final technique intro- 
duced in this paper involves a conditional density model consisting of a 
fixed set of periodic kernels, again given by circular normal functions as 
in equation 2.7. In this case the mixing proportions alone are determined 
by the outputs of a neural network (through a softmax activation func- 
tion equation 2.6) and the centers i.lI and width parameters m, are fixed. 
We have selected a uniform distribution of centers, and set m, = rn for 
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each kernel, where the value for rn was chosen to give moderate overlap 
between the component functions. 

Clearly a major drawback of fixed-kernel methods is that the num- 
ber of kernels must grow exponentially with the number of output-space 
variables. This is an example of the ”curse of dimensionality” (Bellman 
1961; Bishop 1995). For the single output variable considered here, how- 
ever, the number of kernel functions that is required is small, and the 
technique can be regarded as practical. 

2.4 Related Work. The problem of modeling periodic variables has 
been well studied. In Mardia (1972) there is an introduction to conven- 
tional statistical approaches including the modeling of simple distribu- 
tions. An approach to the problem of modeling more complex distribu- 
tions involving multiple variables is that of Directional Unit Boltzmann 
Machines (DUBM) contained in Zemel et al. (1995). In this paper the the- 
ory of a Boltzmann machine whose units have associated densities that 
are circular normal distributions is developed. However, their approach 
is not suitable for the applications considered here for two reasons. First, 
the applications we consider have real-valued inputs, but in the DUBM 
all units must be directional. Second, the applications have a multimodal 
conditional distribution of the target variable. However, the determinis- 
tic version of the DUBM models the output density with a single circular 
normal, which is adequate only for unimodal distributions. The stochas- 
tic version does not suffer from this restriction, but requires extremely 
long training times. 

3 Application to Synthetic Data 

To test and compare the methods introduced in Section 2, we first con- 
sider a simple problem involving synthetic data, for which the true un- 
derlying distribution function is known. This data set is intended to 
mimic the salient features of the real data to be discussed in the next 
section. It is generated from a mixture of two triangular distributions 
where the centers and widths are taken to be linear functions of a single 
input variable x, and the mixing coefficients are fixed at 0.6 and 0.4. Any 
values of B that fall outside ( -x. T )  are mapped back into this range by 
shifting in multiples of 2x to give a distribution which is periodic. An 
example data set generated in this way is shown in Figure 1. 

Three independent data sets (for training, validation, and testing) 
were generated from this distribution, each containing 1000 data points. 
For each technique, training runs were carried out in which the number 
of hidden units, as well as the number of kernels in the mixture model, 
were varied systematically to determine good values by minimizing the 
error obtained on the validation set. Table 1 gives a summary of the best 
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Figure 1: (a) Scatter plot of the synthetic training data. (b) Contours of the 
conditional density p ( H  1 st obtained from a mixture of adaptive circular normal 
functions as described in Section 2.2. (c) The distribution p(H [ s) for s = 0.5 
(solid curve) from the adaptive circular normal model, compared with the true 
distribution (dashed curve) from which the data were generated. (d) The same 
data as in (c) shown as  a polar plot. 

results from each of the three methods. We see that, for this data set, 
the best results, as determined from the test set, were obtained using the 
mixture of adaptive circular normal functions. Plots of the corresponding 
distributions are shown in Figure 1. 
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Table 1: Results Obtained Using Synthetic Data' 

Method Centers Hidden Validation Test 
units error error 

~~ 

1 6 7 1177.1 1184.4 
2 6 8 1109.5 1133.9 
3 36 7 1184.6 1223.5 

'Method 1: Mixture of wrapped normal functions. 
Method 2: Mixture of adaptive circular normal functions. 
Method 3: Mixture of fixed kernel functions. 

4 Application to Radar Scatterometer Data 

One of the original motivations for developing the techniques described 
in this paper was to provide an effective, principled approach to the 
analysis of radar scatterometer data from satellites such as the European 
Remote Sensing satellite ERS-1 (Thiria et al. 1993; Bishop and Legleye 
1995). The ERS-1 satellite is equipped with three C-band radar antennae 
that measure the total backscattered power (written as ao) along three 
directions relative to the satellite track, as shown in Figure 2. When 
the satellite passes over the ocean, the strengths of the backscattered 
signals are related to the surface ripples of the water (on a scale of a few 
centimeters), which in turn are determined by the low-level winds. 

Extraction of the wind vector from the radar signals represents an 
inverse problem that is typically multivalued. Although determining the 
wind speed is relatively straightforward, the data give rise to aliases for 
the wind direction. For example, a wind direction of 0 will sometimes 
give rise to similar radar signals to a wind direction of 0 + T ,  and there 
may be further aliases at other angles. A conventional neural network 
approach to this problem, based on a least-squares estimate of 0, would 
predict directions that were given by conditional averages. Since the 
average of several valid wind directions is not itself a valid direction, 
such an approach would clearly fail. In this paper we show how such 
problems can be avoided by extracting a complete distribution function 
of wind directions, conditioned on the satellite measurements. 

For this application, the modeling of the conditional distribution of 
wind direction provides the most complete information for the next stage 
of processing, which is to "dealias" the wind directions by combining in- 
formation from groups of wind-field cells, together with prior knowledge, 
to determine the most probable overall wind field. 

A large data set of ERS-1 measurements, spanning a wide range of 
meteorological conditions, has been assembled by the European Space 
Agency in collaboration with the UK Meteorological Office. Labeling of 
the data set was performed using wind vectors from the Meteorological 



1130 Christopher M. Bishop and Ian T. Nabney 

sat el I i te 

500 km 

Figure 2: Schematic illustration of the ERS-1 satellite showing the footprints of 
the three radar scatterometers. 

Office Numerical Weather Prediction model. These values were inter- 
polated from the inherently coarse-grained model to regions coincident 
with the scatterometer cells. 

The data that were selected for the experiments reported in this pa- 
per were collected from low-pressure (cyclonic) and high-pressure (an- 
ticyclonic) circulations. These conditions, rather than cases that were 
homogeneous or with a simple gradient in speed or direction, were cho- 
sen to provide a more challenging task to test the modeling techniques. 
Ten wind fields from each of the two categories were used: each wind 
field contains 19 x 19 = 361 cells, each of which represents an area of ap- 
proximately 26 x 26 km. After removal of completed data, this resulted 
in training, validation, and test sets each containing 1963 patterns. 

The inputs used for modeling the data were the three values of 00 

for the aft-beam, mid-beam, and fore-beam, together with the sine of the 
incidence angle of the mid-beam, since this angle strongly influences the 
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Table 2: Results on Satellite Dataa 

Method Centers Hidden Validation Test 
units error error 

1 4 20 2474.6 2446.2 
2 6 20 2308.0 2337.9 
3 36 24 2028.9 1908.9 

OMethod 1: Mixture of wrapped normal functions. 
Method 2: Mixture of adaptive circular normal functions. 
Method 3: Mixture of fixed kernel functions. 

reflected signal received by the scatterometer. Each ~ 7 0  input was scaled 
to have zero mean and unit variance, while the fourth input value was 
passed to the network unchanged. The target value was expressed as 
an angle clockwise from the satellite’s forward path and converted to 
radians. Again, a conjugate gradient algorithm was used to optimize the 
network weights. 

Table 2 gives a summary of the preliminary results obtained with each 
of the three methods. As expected, the fact that this is a more complex 
domain than the synthetic problem meant that there were more difficul- 
ties with local optima. In fact, over 75% of the training runs ended with 
the network trapped in a poor minimum of the error function. This prob- 
lem was considerably reduced (to about 25% of the runs by initializing 
the network weights so that the initial centers of the kernel functions 
were approximately uniformly spaced in [O, 27r). Of the adaptive-center 
models, the one with six centers has the lowest error on the validation 
data; however, fewer centers are actually required to model the condi- 
tional density function reasonably well. This can also be seen in Figure 3, 
which shows the conditional distribution of wind directions at a typical 
data point from the test set, and which clearly has fewer than eight peaks. 

5 Discussion 

In this paper we have introduced three distinct but related techniques for 
modeling the conditional probability distribution of a periodic variable, 
and we have illustrated the use of these techniques in a simple synthetic 
problem, and on radar scatterometer data from a remote sensing satel- 
lite. All three methods give reasonable results, with the adaptive-kernel 
approaches somewhat outperforming the fixed-kernel technique on syn- 
thetic data, and vice versa on the scatterometer data. A conventional 
network approach, involving the minimization of a sum-of-squares error 
function or the use of a DUBM, would perform very poorly on these 
problems since the required mapping is multivalued. 
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Figure 3: Linear and polar plots of the conditional distribution p ( H  I X) for a 
sample input vector from the test set. The dominant alias at T is evident. In 
both plots, the solid curve represents method 1, the dashed curve represents 
method 2, and the curve with diamonds represents method 3. 

The two fully adaptive methods (methods 1 and 2) give largely sim- 
ilar results. This is not unexpected, since the kernels used are similar 
functions. Generalizing the approach, there is a range of possible mod- 
els with different parameters fixed: the third method is an extreme case 
where the only adaptive parameters were the mixing coefficients. 

One aspect of these algorithms that is more complex than conven- 
tional network optimization is the problem of model order selection. 
The incorporation of a mixture model means that there are two struc- 
tural parameters to select: the number of hidden units in the network 
and the number of components in the mixture model. Changes to ei- 
ther of these parameters will change the number of adaptive weights in 
the network, and so the two parameters are closely coupled. In this pa- 
per we have varied both of these structural parameters in a systematic 
way and sought the optimum network by measuring performance on 
an independent validation set. It  is likely that the use of a larger, fixed 
network structure, together with regularization to control the effective 
model complexity, will significantly simplify the process of model order 
selection. 
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