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Clusters of temporal optical solitons—stable self-localized light pulses preserving their form during

propagation—exhibit properties characteristic of that encountered in crystals. Here, we introduce the

concept of temporal solitonic information crystals formed by the lattices of optical pulses with variable

phases. The proposed general idea offers new approaches to optical coherent transmission technology and

can be generalized to dispersion-managed and dissipative solitons as well as scaled to a variety of physical

platforms from fiber optics to silicon chips. We discuss the key properties of such dynamic temporal

crystals that mathematically correspond to non-Hermitian lattices and examine the types of collective mode

instabilities determining the lifetime of the soliton train. This transfer of techniques and concepts from solid

state physics to information theory promises a new outlook on information storage and transmission.
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The concept of a soliton is one of the most unifying
theories of modern physics with nonlinear solitary waves
observed and studied in a range of diverse fields of science
(see, e.g., [1–6]). The term ‘‘soliton’’ implies stable robust
structures that can propagate in time or space without
changing their shape. Stability makes solitons very attrac-
tive building blocks for numerous theories, experimental
techniques, and practical applications. Chains of solitons
have been studied, mostly in the context of the mathemati-
cal inverse scattering transform applied to the Toda chain
model [7–11], though the resulting equations are quite
universal [10]. We suggest here a rather different concept
that goes far beyond previously studied problems. The key
novel point is that we propose the concept of dynamical
lattices of solitons with different phases used for carrying
or storing information, thus forming temporal solitonic
information crystals (SICs). We refer to the soliton train
as the solitonic crystal underlining the similarities with the
theory of crystal lattices, though the interpretation of the
results applies directly to the information transmission.
Controlled variation of soliton phases is principally impor-
tant, because it makes it possible to encode, transmit, and
store information using soliton dynamical lattices. As we
shall see, the proposed concept provides an interesting link
between the theory of crystal lattice, nonlinear science,
photonics, and information theory.

The properties of soliton ‘‘crystallization’’ depend on
the number M of the phase levels allowed for each soliton
from the cluster. This number is also a number of states that
can be used for coding information—it determines a data

modulation format [12,13]. To illustrate the proposed idea,
without loss of generality, we study the dynamical proper-
ties of the particular information crystal formed by pulses
with phases belonging to the discrete set f2�b=MgM�1

b¼0 .

Each of these phases (or phase differences) can be linked to
a symbol with an integer value: b ¼ 0; 1; . . . ;M� 1. In
communication applications, such a choice of phases cor-
responds to a very practical and important M-level phase-
shift keying (M-PSK) data format [12,13].
Compared to conventional crystals encountered in con-

densed matter physics, the SICs have more freedom in the
design parameters that determine their properties. The first
important problem with regard to the considered objects is
their lifetime, which, obviously, depends on the ‘‘crystal
design,’’ i.e., on the information encoded into the sequence
of soliton pulses. We study here the lifetime of soliton
trains (SICs) defined through the instabilities in the pulse
train leading to the corruption of the information stream.
Such instabilities are caused by the nonlinear interaction of
the lattice elements (solitons). To illustrate our idea, we
consider here a specific example of a train formed by a
chain of optical solitons of the nonlinear Schrödinger
equation. In the practical limit of well separated solitonic
‘‘atoms,’’ the dynamical problem is reduced to the complex
Toda chain equations [7–9,11], which, under realistic as-
sumptions (exactly matching the requirements for the in-
formation transmission), describe the evolution of the
position and phase for each individual soliton of the train.
We investigate how the information content of the pattern
affects the train dynamics and elucidate general mecha-
nisms for the appearance of unstable collective modes that
define the lifetime of the SIC. This lifetime is directly
relevant to applications in telecommunications and infor-
mation theory. The collective motion of the SIC is tanta-
mount to the dynamics of a non-Hermitian linear lattice
under an external force, and the growth increments of the
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ensuing modes define its lifetime. Using the similarity
between conventional crystal lattice dynamics in the pres-
ence of localized defects and the proposed ‘‘informational
lattices,’’ one can apply the well developed methods of
condensed matter physics [6] to the description of infor-
mation coding and distortions. The introduction of new
data coding formats with particular predefined properties
can be based on the studies of the dynamical properties of
the encoded train: The knowledge of the SIC eigenmode
structure can then be used for the composition of new
formats with a given lifetime.

We emphasize that, for coherent optical communication,
the proposed technique can offer an interesting alternative
to quasilinear transmission with uncompensated dispersion
and subsequent digital signal processing [14,15].
Uncompensated dispersion broadens optical pulses during
the propagation over a very large number of time slots, thus
introducing strong patterning effects and making compen-
sation of nonlinear effects quite a challenging problem
[16–18]. The use of multilevel modulation formats in co-
herent transmission allows one to decrease the symbol
(baud) rate [12], i.e., the speed at which each symbol is
transmitted while keeping the total effective rate very high.
For multilevel data coding usingM levels with large enough
M, the gain in the information rate is log2ðMÞ, which makes
possible the transmission of symbols at relatively low (for
optical communication) rates of, say, 1 GHz. Evidently, the
largerM, the smaller the rate that can be used. In this regime
the width of an optical soliton in a standard single mode
telecommunication fiber can be of the order of 200 ps (and
broader) with the average signal power of the scale of only
0.1 mW per channel. Such a small signal power is still
sufficient to provide for a continuous balance between the
Kerr nonlinearity and the fiber dispersion to form a soliton
and to take advantage of dispersion uncompensated trans-
mission. In the proposed soliton-based coherent communi-
cation approach, a large part of nonlinear distortions is
compensated by the dispersion removing the need for sepa-
rate compensation of those two factors, similar to the pre-
viously studied on-off-keying direct detection soliton
transmission technique (without use of an optical phase for
information coding) [3,4]. The novel point here is the context
of coherent transmission and hence the possibility to undo
the remaining nonlinear impairments through nonlinear digi-
tal signal processing. This paves the way to go well beyond
the current capacity limitations of traditional optical com-
munications [13–15,19,20]. The analytical knowledge of
SIC properties allows one to apply efficient digital signal
processing to mitigate the effects of the nonlinear interaction.
We would like to stress once more that optical fiber commu-
nication is just one particular example of the application of
the proposed general concept of information crystals.

Without loss of generality, we consider here as the
master model the nonlinear Schrödinger equation with
constant anomalous dispersion:

@Q

@Z
� i

2

@2Q

@t2
� ijQj2Q ¼ 0; (1)

written here in soliton units; see Refs. [3–5,21] for particu-
lar values of normalizing parameters: Qðt;ZÞ is the optical
pulse envelope, Z stands for the propagation distance, and
t is the time in the frame comoving with the group velocity
of the envelope. The proposed information crystal is
built from a train of equidistant same amplitude fundamen-
tal solitons of Eq. (1) [2] with different phases (used

for carrying information): Qðt; 0Þ ¼ P
N
n¼0 2�e

i�nðtÞ=
cosh½2�ðt� �nÞ�, where �n and �n are, respectively, the
phase and position of the nth individual soliton and 2� is
the amplitude, N þ 1 being the total number of solitons in
the train. The exponential overlap between the adjacent
solitons, " ¼ exp½��ð�nþ1 � �nÞ�, is assumed to be small;
i.e., the initial intersoliton separation is much larger that
the soliton width ���1. For the description of the dynam-
ics of soliton positions �n and phases �n, we introduce a
complex variable qn as qnðZÞ ¼ �2��nðZÞ þ 2n ln2�þ
i½n���nðZÞ� with the Z dependence of the soliton phase
�nðZÞ ¼ 2Z�2 þ�nð0Þ in the case of the noninteracting
pulses. The initial phase values �nð0Þ (or rather their
differences) carry the information content to be transmit-
ted: ��nð0Þ ¼ 2�bn=M, with the first difference operator
defined as ��n � �nþ1 ��n. The initial stage of the
train dynamics (in the first order in ") can be described
by means of the complex Toda chain model [7–9,11]:
@ZZqn ¼ 16�2½e�qn þ e�qn�1�; see [22].
We assume that initially all solitons are equidistant with

the common distance r ¼ �nþ1ð0Þ � �nð0Þ. We now lin-
earize the Toda model around the initial configuration q0

[11]: qnðZÞ ¼ qnð0Þ þ wnðZÞ, jwnj � j�qnð0Þj. The ini-
tial differences contain the encoded information:
�qnð0Þ ¼ �2�rþ 2 ln2�þ i½�� ��nð0Þ�. Further-
more, we rescale the propagation distance Z as
8�2e�r�Z ! z. After the linearization, we arrive at a set
of inhomogeneous equations of the form

d2w

dz2
¼ �̂wþ f; (2)

where �̂ is a tridiagonal complex ðN þ 1Þ � ðN þ 1Þ ma-
trix. By introducing symbol indicator quantities �n ¼
exp½i�ðM� 2bnÞ=M�, the elements of the coupling matrix
are expressed as �nn ¼ �ð�n þ �nþ1Þ, �nn�1 ¼ �n, and
�nnþ1 ¼ �nþ1, while the components of the driving vector
f are fn ¼ ��n�1. In Eqs. (2), the initial wnð0Þ and their z
derivatives can be set to zero.
The solution of Eq. (2) can be written as wnðzÞ ¼R

z
0 d�fmGnmðz� �Þ, where the Laplace transform Ĝð�Þ

of the matrix Green function Ĝ corresponds to the resol-

vent of �̂, ð�� �̂Þ�1, evaluated at the argument � ¼ ��2.
Each pole of the Green function, �k, corresponds to an
eigenvalue of the matrix � and to an eigenmode of system

Eq. (2) growing with distance as ��1
k sinh�kz, �k ¼ �1=2

k .
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For any transmitted pattern the locus of eigenvalues is
j�kj � 4 (dashed circle in Fig. 1). Thus, the quantity
Re½�k� � 2 defines the growth increment of each eigen-
mode, and the characteristic lifetime of the SIC is given by
the eigenvalue corresponding to the largest positive
real part: maxkRe½�k�. The typical pattern of �k for the
SIC corresponding to a random input 8-PSK is given in
Fig. 1(a).

For the uniform inputs (all symbols are the same, bn ¼
b), we have the common symbol indicator �b ¼
exp½i�ðM� 2bÞ=M�, and the expression for the spectrum
is �k ¼ �2�bð1� cos	kÞ with 	k ¼ �k=ðN þ 1Þ; see
Fig. 1(b). For b ¼ M=2, the spectrum coincides with that
of the classical phonon dynamics [6], and this pattern is
stable. We will mark with the index ‘‘0’’ the coupling

matrix which corresponds to this stable case: �̂0.
The direct calculation of the resolvent for the homoge-

neous pattern can be performed analytically by taking into
account that the number of symbols, N, is very large. Then
for the stable configuration b ¼ M=2 one arrives at

G0
mnð�Þ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�þ �2

p ½Fð�Þnþmþ1 þ Fð�Þjn�mj�; (3)

where 2Fð�Þ ¼ �þ 2� ð4�þ �2Þ1=2. The use of Eq. (3)
assumes that we deal with a semi-infinite system, where
the site positions n and m are counted from its edge; the
method of calculation is similar to that used in the theory of
crystal lattices [6].

To demonstrate further the analogy with crystal lattice
theory, let us consider isolated ‘‘defects’’ embedded in the
homogeneous SIC. Consider a single ‘‘defect symbol’’
bs ¼ b in an otherwise stable pattern comprising only
bn ¼ M=2. This means that the phase difference between
(sþ 1)th and sth solitons ��s � �, whereas the remain-

ing differences are equal to�. The resulting perturbation P̂

of matrix �̂ is local: �̂ ¼ �̂0 þ P̂, where P̂ is determined
by the value of the defect symbol indicator �b: Pss ¼
Psþ1sþ1 ¼ 1� �b; Pssþ1 ¼ Psþ1s ¼ �Pss (the other

elements are 0); Eqs. (2) remain the same, except for those
sites with numbers s and sþ 1. The nonzero components
of the driving vector are fs ¼ �b � 1 and fsþ1 ¼ �fs.
The perturbed set of dynamical equations is structurally

similar to equations for the crystal lattice vibrations with a
single defect bond [6]. A significant difference from the
classical theory is that the resulting defect bond is imagi-
nary, and the perturbed matrix � is generally non-
Hermitian. In the case of the defect symbol value b ¼ 0,

matrix �̂ remains Hermitian but not negatively definite:
This means that the defect bond is nonelastic as well. So,
for any value of the defect symbol b � M=2, one should
expect the appearance of unstable defect modes.
We now examine the localized eigenvalue which pro-

duces this instability. Again one can use ideas similar to
those of the classical theory of crystal lattice defects [6]

even though the site-coupling matrix �̂ is a non-Hermitian
one. To define the defect eigenvalue, one needs to calculate
the resolvent corresponding to that perturbed matrix, which
can be done explicitly by utilizing the Woodbury formula
[23] for perturbed inverse matrices. The latter is a general-
ization of the approach first used by Lifshitz [24] for
determining the frequencies of localized impurity modes
in an otherwise perfect crystal lattice (see also [6]). Our

initial unperturbed matrix �̂0 corresponds to a homoge-
neous pattern with bn � M=2, �n � 1. Then we seek for

the spectrum of the perturbed one, �̂ ¼ �̂0 þ P̂. If the
defect symbol is settled far from the system edges, the
localized eigenvalue becomes almost independent of s,
and the expression for the localized eigenvalue is [see
Fig. 2(a) for the spectrum of 8-PSK]

�b ¼ 4�2
b

1� 2�b

þOðe�sÞ: (4)

Because the perturbation is localized on a single bond
between the two sites (solitons), the corresponding un-
stable defect mode is localized on this bond as well; see
Figs. 2(c)–2(f). This is similar to phonon modes in a crystal
lattice with a defect [6]. The expression for the width of the
localized mode corresponding to the defect b is

Rb � �ln�1jFð�Þj
���������¼�b

: (5)

If the defects are sparse and do not interact, the localized
eigenvectors do not ‘‘feel’’ the presence of other neighbor-
ing defects, and the typical spectrum of �k consists of the
stable band at the real negative axis (located between
�4 and 0), and the ‘‘defect speckles’’ in the complex
plane: These will be densely concentrated in the vicinity
of points defined by Eq. (4), as seen in Fig. 2(a) for a
typical pattern of the noninteracting defects in a 8-PSK
symbol train. To satisfy the sparseness condition, the
concentration of the defect symbols, c, must satisfy
c < cb ¼ ð2RbÞ�1. The values of Rb can be found

FIG. 1 (color online). Eigenvalue distributions for the 8-PSK
format in the complex plane of � ¼ 
þ i� . Pane (a) shows the
typical eigenvalue distribution for a completely random pattern.
Dashed circles mark the theoretical spectrum boundary: j�j ¼ 4.
Pane (b) shows the spectra for all possible homogeneous pat-
terns: Each colored ray from the origin corresponds to a par-
ticular value of symbol b.
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via Eq. (5), and the results for 2-, 4-, and 8-PSK are
summarized in Table I: The mode width grows as one
moves away from the most unstable mode with b ¼ 0
(with �0 ¼ 4=3); Figs. 2(c)–2(f). Note that the width of
the most unstable mode, R0 � 0:91, is the lowest possible
for any PSK format.

We would like to stress that the lifetime of a dynamic
crystal can be to some extent (limitations are imposed by a
single pulse transmission) controlled by the crystal design,
first of all, by separation of the ‘‘atoms’’ (pulses) from each
other. For standard communication systems where trans-
mission distance is always limited, it is possible to design
the information crystal in such a way that its lifetime
(distance at which instability is developed) will always
be much larger than the transmission distance. In addition,
coding can be used to remove the patterns that correspond
to the maximum instability [25]. While the increase of the
distance between pulses is the major way to increase life-
time, the instability can be also controlled by using, e.g.,
the sparse encoding format (SEF) based on utilization of a
stable uniform pattern corresponding to b ¼ M=2 as a
matrix or informational substrate into which we sparsely

embed the information-carrying symbols (with the spac-
ings exceeding 2Rb; see the Supplemental Material [21] for
the emergence of highly unstable modes for dense coding).
The information can be carried by both the phase of the
substrate and the embedded symbol. The alphabet of such a
format can be large enough while instability will be sub-
stantially suppressed. The measure of ‘‘sparseness’’ is
determined by the lowest value of cb: For the 8-PSK, this
means c < c3;5. Each defect symbol would bring about the

appearance of the localized growing eigenmode. Again for
the 8-PSK case this regime is achieved for interdefect
distance R> int½2R3;5� � 6; see Table I. The growth rate

of the corresponding mode depends only on the value of a
corresponding defect symbol. Since we know exactly the
growth rate Re½�b� for each defect mode, one can readily
estimate the typical lifetime of the encoded pattern; see
Fig. 2(b): The maximal instability increment corresponds

to �0 � 4=3, for which we have �0 ¼ 2=
ffiffiffi
3

p
. For other

defect modes with b � 0, this value is lower. Compare
this to general patterns [see Fig. 1(a)] where the instability
rate is � � 2. Therefore by applying this embedding pro-
cedure (i.e., using SEF) we can increase the lifetime of a
pulse train and hence the maximum error-free propagation
distance compared to conventional dense encoding. Note
that the usage of more sophisticated (compared to SEF)
input encoding, like, e.g., correlated input, can enhance the
overall bit rate of the transmission while one keeps the
lifetime of a SIC at the same level.
Figure 3 shows the results of the direct numerical mod-

eling of Eq. (1) illustrating the increased stability of the
SEF compared to arbitrary symbol patterns. The evolution
of relative phase differences, ��nðzÞ=ð2�M�1Þ (phase
jitter), is shown for a completely random initial pattern
[Fig. 3(a)] and sparsely encoded 8-PSK input with R ¼
7> 2R3;5 [Fig. 3(b)]. It is seen that the implementation of

the SEF reduces phase jitter by more than 50%. We would
like to stress once more that the lifetime of SIC defined as
the inverse increment of amplitude growth can be con-
trolled by appropriate design and dramatically enhanced
by increasing the distance R between the encoded symbols
beyond the extent of localized unstable modes defined by
Eq. (5). The Supplemental Material [21] also contains the
corresponding results for the timing jitter.
In conclusion, in this Letter, we have introduced the

concept of informational crystals formed by lattices of
temporal pulses (solitons) with varying phases. The phases
of individual pulses are used to carry the information
content. Within the approach proposed, we elucidated the
mechanisms of the appearance and development of insta-
bilities. The instabilities in the initial evolution are always
present in the linear dynamics as the coupling matrix for
the ensuing linear system for phase and position deviations
is generally non-Hermitian and subject to an ‘‘external
force.’’ We have proposed to use such solitonic information
crystals with solitons being transmitted at relatively low

TABLE I. Values of the Rb as given by Eq. (5) and corre-
sponding critical concentrations cb.

M, b Rb cb

Any M, b ¼ 0 0.91 0.55

M ¼ 8, b ¼ 1; 7 0.97 0.51

M ¼ 8, b ¼ 2; 6, or M ¼ 4, b ¼ 1; 3 1.24 0.40

M ¼ 8, b ¼ 3; 5 2.58 0.19

FIG. 2 (color). Pane (a): The spectrum of a 8-PSK pattern
where each 7th symbol is randomly coded. The digits near the
localized eigenvalues refer to the value of b for an isolated
defect. Circles mark the common eigenvalues with the 4-PSK
format, and the square indicates the defect eigenvalue for the
b ¼ 0 symbol, which is present in all M-PSK formats. The
analytical values are defined via Eq. (4). Pane (b): The increment
values Re½�b� for the defect modes. Panes (c)–(f) give the
profiles of localized eigenvectors, corresponding to isolated
defect symbols.
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rates allowing us to provide a continuous balance between
the fiber nonlinearity and dispersion effects for coherent
transmission systems to achieve communication capacity
well beyond the limits of traditional (quasilinear) optical
communication techniques.

The knowledge of instability spectra [like, e.g., the one
shown in Fig. 1(a)] allows one to identify the most
‘‘dangerous’’ patterns [21], which can then be removed
by using data coding or by other techniques that can
substantially reduce the frequency of their appearance
[25] to achieve maximum stability of the soliton crystal.
Sparse encoding is an additional possibility to increase
crystal lifetime (although not necessarily the optimal
one). What makes the sparse encoding interesting, how-
ever, is that we have been able to utilize the machinery of
the theory of crystal lattice defects—which again illus-
trates the potential for cross-fertilization of the two fields.
We believe that the proposed concept of temporal infor-
mation crystals and the transfer of techniques from con-
densed matter physics to the area of telecommunications
and information theory might lead to a completely new
outlook on information storage and transmission.
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