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Abstract 
 
Our goal here is a more complete understanding of how information about luminance contrast is encoded 
and used by the binocular visual system. In two-interval forced-choice experiments we assessed observers' 
ability to discriminate changes in contrast that could be an increase or decrease of contrast in one or both 
eyes, or an increase in one eye coupled with a decrease in the other (termed IncDec). The base or pedestal 
contrasts were either in-phase or out-of-phase in the two eyes. The opposed changes in the IncDec 
condition did not cancel each other out, implying that along with binocular summation, information is also 
available from mechanisms that do not sum the two eyes' inputs. These might be monocular mechanisms. 
With a binocular pedestal, monocular increments of contrast were much easier to see than monocular 
decrements. These findings suggest that there are separate binocular (B) and monocular (L,R) channels, but 
only the largest of the three responses, max(L,B,R), is available to perception and decision. Results from 
contrast discrimination and contrast matching tasks were described very accurately by this model. Stimuli, 
data, and model responses can all be visualized in a common binocular contrast space, allowing a more 
direct comparison between models and data.  Some results with out-of-phase pedestals were not accounted 
for by the max model of contrast coding, but were well explained by an extended model in which gratings 
of opposite polarity create the sensation of lustre. Observers can discriminate changes in lustre alongside 
changes in contrast. 
 
Keywords:   contrast discrimination, binocular vision, dichoptic masking, contrast  

matching, binocular lustre, computational model 
 
 
1 Introduction  
 
1.1 Functional architecture of binocular vision   
      from psychophysics  
 
Two eyes are better than one, but not always. 
Observers with normal binocular vision typically 
show faster reaction times, better spatial acuity and 
higher contrast sensitivity using two eyes rather 
than one (for reviews see Blake, Sloane, & Fox, 
1981; Blake & Fox, 1973).  When measured with 
forced-choice techniques, contrast thresholds with 
one eye are on average 1.6 to 1.7 times higher than 
with two eyes (Meese, Georgeson, & Baker, 2006; 
Simmons & Kingdom, 1998; Simmons, 2005) - 
consistently higher than the classical figure of √2 
(1.41) (Campbell & Green, 1965). It seems clear 
that this binocular advantage in visual performance 
arises from binocular summation of signals from 
each eye (Fig. 1a), carried out by binocular cells in 

the primary visual cortex (Hubel & Wiesel, 1962; 
Anzai, Bearse, Freeman, & Cai, 1995).  
 
Surprisingly however, the binocular advantage in a 
variety of spatial tasks (Landolt C acuity, letter 
recognition, orientation discrimination) tends to 
evaporate at higher contrasts (Bearse & Freeman, 
1994; Home, 1978).  We focus here on another 
simple visual task – contrast discrimination – 
which also appears to show no binocular advantage. 
The task is to decide which of two otherwise-
identical sinewave gratings has the higher contrast. 
When the base or pedestal contrast (C) is above 
threshold, then the contrast difference DC required 
to distinguish the two contrasts, C and C+DC, is the 
same whether the test gratings are shown to one eye 
or to both eyes (Legge, 1984; Maehara & Goryo, 
2005; Meese, Georgeson, & Baker, 2006). This 
may seem paradoxical, but it does not imply that
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Figure 1.  Some basic ideas about binocular combination. (a) Binocular summation: a single binocular output channel (B, 
red) combines monocular responses to contrasts (cL, cR) in the left and right eyes. Blue disks are monocular units. (b) 
Monocular outputs (L,R) in parallel with the binocular one. (c) In this paper we explore the idea that parallel outputs are 
available initially, but only the largest of them, max(L,B,R), is selected for further processing.  
 
binocular summation is absent above threshold.  
Rather, this and related results reveal that the 
process of binocular summation is accompanied by 
a process of interocular suppression that operates 
in addition to the self-suppression that is common 
in contrast gain control models of contrast 
discrimination (e.g. Legge & Foley, 1980). When 
the same image is in both eyes, the benefit of 
binocular summation is almost exactly offset by the 
doubling of suppression, leaving signal:noise ratio 
and visual performance unchanged (Meese et al, 
2006).  Interestingly then, binocular summation 
does not always lead to binocular advantage. 
 
A similar relationship was seen in fMRI responses 
to grating contrast. At 2% contrast, BOLD 
responses to binocular input were notably larger 
than to monocular input, but at 10% contrast there 
was no difference in response, and this lack of 
additivity was attributed to interocular suppression 
or binocular contrast normalization (Moradi & 
Heeger, 2009). 
 
A functionally important consequence of this 
balance between binocular summation and 
interocular suppression is ocularity invariance. 
Despite the marked difference in contrast 
thresholds, the perceived contrast of supra-
threshold gratings is almost the same for one eye 
and for two eyes (Baker, Meese, & Georgeson, 
2007; Ding, Klein, & Levi, 2013; Legge & Rubin, 
1981). This form of perceptual constancy is likely 
to be important where the view of an object is 
partly obscured by a nearer one, such that part of 
the object’s surface is seen by both eyes while the 
occluded part is seen by one eye (a ‘half-

occlusion’).  Without ocularity invariance this 
switch in viewing conditions across the surface 
could be falsely taken as a change in contrast – a 
texture boundary - on the object itself. 
 
Despite ocularity invariance, and the associated 
lack of binocular advantage in contrast 
discrimination, we found direct evidence that 
binocular summation occurs at all levels of contrast. 
The novel tactic here was to keep suppression 
almost constant by using a binocular pedestal 
grating of contrast C, and then to compare the 
detectability of monocular versus binocular contrast 
increments DC.  A binocular advantage was 
revealed at all contrast levels C, because it was not 
offset by a corresponding increase in suppression 
(Meese et al, 2006). 
 
Beginning with the pioneering work of Legge 
(1984), studies of this kind have aimed to make 
systematic and fairly precise measurements of 
contrast-difference thresholds over a wide range of 
binocular conditions, and from these increasingly 
rich datasets to construct and evaluate models for 
the functional architecture of signal-processing in 
binocular vision  (Baker, Meese, & Summers, 2007; 
Baker, Meese, & Hess, 2008; Ding & Sperling, 
2006; Hou, Huang, Liang, Zhou, & Lu, 2013; 
Huang, Zhou, Zhou, & Lu, 2010; Maehara & 
Goryo, 2005; Meese et al., 2006; Ding & Levi, 
2016). Such models must specify the nature of the 
pathways from each eye, what the relevant signals 
are and how they interact, how the signals are 
combined, what and where the nonlinearities are, 
where the performance-limiting noise occurs, and 
how trial-by-trial perceptual decisions are made on
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Figure 2.   A: Graphical representation of the 11 different contrast discrimination tasks (Table 1). Pedestal contrast C (grey 
bars, dashed lines) may be increased (red) or decreased (blue) by some amount DC in the test interval.  The observer's 2AFC 
task was to identify the test interval.  B: Binocular contrast space. The 11 tasks can be seen as probing the visual system's 
response to changes in binocular contrast in the directions indicated by red lines, labelled with the corresponding condition 
numbers shown in panel A and Table 1. Red circles mark the pairs of pedestal contrasts (cL, cR); these could be in-phase, 
antiphase or monocular. The values of (cL, cR)  were counter-balanced across left and right eyes, and across the sign of 
contrast (+ or -), and this led the 11 basic conditions to be reflected about the positive and negative diagonals, yielding a total 
of 40 distinct test vectors (red lines) for each pedestal contrast C. In our data analysis we assumed symmetry across the eyes, 
and across sign of contrast, and this reduced the number of different tasks back to 11.  
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the basis of one or more available outputs.  
Successful models for these contrast 
discriminations are likely to offer further insight 
into other binocular processes, such as binocular 
fusion, rivalry and stereoscopic vision.   
 
In the present paper we extend the discrimination 
experiments of Meese, Georgeson & Baker (2006) 
with a set of critical new conditions that enable us 
to refine and expand our account of the functional 
architecture of human binocular contrast coding. 
The new experiments include conditions where (i) 
the target is a decrement of contrast rather than an 
increment, (ii) the target is an increment in one eye 
but a decrement in the other eye, and (iii) for each 
type of target, the pedestal gratings are out-of-phase 
('antiphase') in the two eyes, rather than in-phase. 
Combining 6 new and 7 previous datasets gives us 
a total of 13 different discrimination functions (also 
known as TvC [threshold versus contrast] functions, 
or 'dipper functions') that need to be accounted for. 
The 13 functions comprise 11 distinct tasks, plus 
two replicates. This great variety of related 
discrimination tasks puts strong constraints on 
possible models of binocular signal processing.  Put 
simply, we found that many models can fit data 
from some or even most of the eleven tasks; we 
found only one that accurately accounted for all 
eleven tasks at all contrast levels. 
 
1.2 The discrimination tasks 
 
The 11 tasks are defined schematically in Fig 2A. 
Grey bars represent the pedestal contrasts presented 
to one or both eyes; increments of contrast 
magnitude are shown in red, decrements of contrast 
magnitude in blue. Giving a short, unambiguous 
name to each task is not easy, but we have 
attempted to do so (see panel headings in Fig. 2A). 
The names can be cumbersome, so we rely a good 
deal on the numbering of tasks 1-11 throughout the 
paper, and invite the reader to decode the numbers 
via Fig. 2A.  
 
It is also not easy to see much order or structure in 
the 11 conditions of Fig. 2A.  The structure 
emerges clearly, however, when we consider the 
experiment in a two-dimensional binocular contrast 
space, whose axes are (cL,cR) - the contrasts shown 
to the left and right eyes (Fig. 2B). Monocular 
pedestals lie on the cardinal axes, binocular in-
phase pedestals lie on the positive diagonal, and 
binocular antiphase pedestals lie on the negative 
diagonal (red symbols in Fig. 2B). Any change in 
(cL,cR) can be seen as a displacement from the 
pedestal point in some direction through this space. 
Red lines in Fig. 2B are test vectors, defining the 
direction of binocular contrast change for a given 
condition (1-11). For example, condition 2 (BinInc) 
has a binocular in-phase pedestal (top right in Fig 
2B), and a binocular contrast increment that is an 
oblique displacement up and to the right. Condition 
9 (IncDec) has the same binocular pedestal, but an 

increment in the left eye coupled with a decrement 
in the right eye, and this gives a test vector that 
points down and to the right. Counterbalancing 
across left and right eyes, and across absolute sign 
of contrast, reflects the 11 tasks about the positive 
and negative diagonals, yielding a total of 40 test 
vectors. This gives a pleasing symmetry to the 
experimental design, but more importantly it means 
that the set of pedestal positions and test directions 
gives a fairly comprehensive sampling of the 
discriminations that are possible in this space. This 
in turn puts strong constraints on the nature of 
binocular mechanism responses, and these can be 
expressed as response surfaces over the same 
space. The binocular contrast space (Fig. 2B) is a 
domain in which we can express the stimuli, the 
experimental design, the experimental results, and 
possible explanatory models. 
 
1.3 Encoding contrast: monocular and binocular 
channels? 
 
It is self-evident that the optic nerve fibre tracts 
leading from each eye are monocular pathways. 
Although the left- and right-eye layers of the LGN 
have the potential to interact with each other, and 
could be the earliest site for binocular rivalry 
(Haynes, Deichmann, & Rees, 2005), the earliest 
site for binocular summation appears to be the 
primary visual cortex.  In most, perhaps all, 
quantitative models of binocular summation (Ding 
et al., 2013; Ding & Sperling, 2006; Legge, 1984; 
Maehara & Goryo, 2005; Meese et al., 2006; Meese 
& Hess, 2004), it has been tacitly assumed that only 
the binocularly-summed outputs are available to 
later stages of perception and decision, while the 
monocular pathways are not. They serve only as the 
input to binocular combination (Fig. 1a). The 
possibility of monocular outputs has been 
considered (eg. Legge, 1984), but to our knowledge 
there has been no critical discrimination experiment 
that would test for the availability of monocular 
outputs in parallel with the binocular ones (Fig. 1b).  
  
Evidence from visual aftereffects suggests that it 
would be worthwhile to devise a rigorous test for 
monocular outputs. After adaptation through one 
eye, the tilt and motion aftereffects, and the contrast 
threshold elevation effect, can be observed when 
testing the same eye, and to a lesser degree when 
testing the other eye. The usual interpretation of 
such partial interocular transfer (Blake, Overton, & 
Lema-Stern, 1981; Moulden, 1980), and the finding 
of separate monocular and binocular motion 
aftereffects (Anstis & Duncan, 1983), is that 
distinct monocular and binocular neurons have been 
adapted. The monocular outputs might be 
separately available to perception, as in Fig. 1(b), 
but a single-output scheme (Fig. 1a) might also 
explain these aftereffects, provided the monocular 
input units were adaptable. In short, the 
involvement of monocular neurons in early visual 
coding seems very likely, but their functional 
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organization remains unclear.  We aim to clarify 
these and other questions through discrimination 
experiments - a more incisive tool than adaptation. 
 
1.4 The increment-decrement task 
 
We define a monocular mechanism as one that is 
driven by contrast in one eye, but is unaffected by 
the other eye. A key test for the existence of 
separate monocular mechanisms is fairly 
straightforward.  Suppose we perform a 2AFC 
discrimination task in which the non-target interval 
shows pedestal gratings of (say) 10% contrast to 
both eyes, while the target interval shows gratings 
of 12% to one eye but 8% to the other eye.  The 
observer has to identify the target interval. If only 
the binocular summing mechanism exists (Fig. 1a), 
this task should be difficult or impossible because 
there should be little or no change in the binocular 
output between intervals. The extra response to 
contrast increment in one eye should be cancelled 
by the decrement in the other.  Whether the 
cancellation was complete (making the task 
impossible) or partial would depend on the degree 
of nonlinearity in the contrast response before 
summation, but we can reasonably expect the 
contrast response function to be approximately 
linear over a narrow input range (eg 10±2 %), and 
so this increment-decrement task (henceforth 
IncDec, condition 9) should show poor 
performance from a binocular-summing 
mechanism.  A monocular mechanism, on the other 
hand, should suffer no such difficulty because its 
response to the increment should, by definition, be 
unaffected by the decrement in the other eye (Fig. 
1b). In short, performance on the IncDec task may 
reveal the presence, or absence, of specifically 
monocular mechanisms accessible to perception. 
 
2 Methods 
 
2.1 Visual display – conditions 1-6 
 
Achromatic, horizontal, sinewave gratings of 1 
c/deg were shown on a Clinton fast phosphor, high 
brightness CRT monitor at 120 Hz frame rate. The 
images were generated on a PC and displayed via a 
VSG interface card (CRS Ltd) which was 
synchronized with a pair of FE-1 ferro-electric 
shutter goggles (CRS Ltd) that enabled images to 
be shown separately to the left and right eyes on 
alternate frames. It is reasonable to consider such 
fast alternation of raster-scan images between the 
eyes to be effectively equivalent to a simultaneous 
steady presentation to each eye.  At these frame 
rates (60 Hz per eye) no screen flicker is seen.  
Careful photometric measurements through the 
frame-interleaving goggles showed that the degree 
of ‘crosstalk’ between the eyes (the extent to which 
the left eye’s image was visible to the right eye, or 
vice-versa) was negligible. The mean luminance of 
the display was 153 cd/m2, but through the goggles 
this was attenuated by a factor of eight to 19 cd/m2. 

A fixation point (dark dot, 2x2 pixels) was present 
throughout. Viewing distance was 57 cm, at which 
distance there were 28 pixels per deg of visual 
angle. The display luminance was gamma-corrected 
(linearized in relation to pixel greyscale values) 
using the CRS OptiCal photometer. 
 
The gratings were defined by sinusoidal 
modulations of the mean luminance, restricted to a 
central window 5 deg in diameter (see insets to Fig. 
3).  The circular aperture W of the grating was 
smoothed by a 1 deg half-period of a raised sine-
wave. This meant that a grating patch of contrast C 
was reduced to contrast C/2 at a radius of 2 deg, 
and to zero at 2.5 deg.  This reduced truncation 
artefacts – sharp edges that might be a spurious cue 
to detection. Thus the horizontal grating L(x,y) was 
defined by its modulation of the mean luminance 
L0:  
 

𝐿 𝑥, 𝑦 = 𝐿&{1 + 𝑊 𝑥, 𝑦 . 𝐶
± ∆𝐶 sin 2𝜋𝑓𝑦 − 𝜙 } 

 
where f is spatial frequency, f is phase in radians, C 
is the pedestal contrast magnitude, and DC is the 
change in contrast that defines the target interval on 
each trial. Phase relative to the screen centre (y=0) 
was the same in both intervals of a given trial, but 
varied randomly [f = 0, p/2, p, or 3p/2] across 
trials.  We must make a clear distinction between 
phase and polarity.  Whatever the chosen spatial 
phase value, the pedestal grating might have the 
same polarity in each eye (C,C) or the opposite 
polarity (C,-C). For consistency with previous 
work, we also refer to the same-polarity conditions 
as in-phase, and the opposite-polarity conditions as 
antiphase. Finally, for any phase and polarity, the 
target grating might be defined by a contrast 
increment (C+DC) or a decrement (C-DC). An 
increment in one eye might be accompanied by an 
increment, a decrement or no change in the other 
eye. Table 1 lists the full range of 11 different 
tested conditions defined in this way; conditions 12 
and 13 replicate conditions 1 and 2. For 
decremental targets we ensured that DC <= C, so 
that variations in DC never entailed a reversal of 
grating polarity.   
 
2.2 Procedure – conditions 1-6 
 
Detectability of the contrast difference DC was 
assessed with a 2-interval forced-choice staircase 
method. The task was to identify which of two 
200ms presentations, defined by audible tones and 
separated by a 500 ms blank (mean luminance) 
period, contained the contrast difference DC. To 
enable learning and to encourage best performance, 
auditory feedback about correctness (a high or low 
tone) was given after each trial. Trials for a given 
condition (numbers 1-6; table 1) were tested in 
separate sessions, and different pedestal contrasts C 
were tested in different blocks of trials within a 



Georgeson, Wallis, Meese & Baker (2016) Vision Research 
doi: 10.1016/j.visres.2016.08.001 

This post-print version was created for open access dissemination through institutional repositories. 
 

6 

session. Sessions and blocks were randomly 
ordered. The staircase rule reduced contrast by 1 
step after 3 correct trials, and increased it by 1 step 
after each incorrect trial. The step size within each 
block was initially large (8 dB) but reduced to 4 dB 
after the first reversal of staircase direction, and 
then to its final value of 2 dB after the second 
reversal. Each staircase ran for 50 trials.  
 
Observers were two of the authors (SAW, DHB), 
who had much previous experience of contrast 
detection and discrimination experiments, and a 
third less practised observer (ASB). Informed 
consent was obtained and the work was carried out 
in accordance with the Code of Ethics of the World 
Medical Association (Declaration of Helsinki). All 
observers were given about ten minutes practice in 
condition 2 before starting the experiment. We did 
not attempt to define the subjective impressions that 
might be created by the various dichoptic test 
conditions.  Instead, observers were instructed to 
respond so as to maximise the number of correct 
feedback tones and were not informed about which 
condition was being tested in a given session. For 
every left eye/right eye condition defined in table 1, 
we also ran a corresponding right eye/left eye 
condition and the data were pooled to average out 
any ocular asymmetries, which generally appeared 
to be small, perhaps because the spatial frequency 
(1 c/deg) was not high.   
 
 
 

2.3 Analysis – conditions 1-6 
 
For each observer, raw data were pooled across 5 
repeated sessions, and across corresponding left 
eye/right eye conditions.  Psychometric functions 
(cumulative Gaussians, defined by proportion 
correct as a function of log(DC)) were fitted by 
probit analysis, and each fitted function was 
summarized by its threshold value – the contrast 
required to achieve 75% correct. Thus each 
threshold was derived from a total of 500 trials. 
 
2.4 Analysis – conditions 7-13 
 
Thresholds for conditions 7-13 were drawn from 
our previous studies, as listed in table 1. Procedure 
was very similar to that described above, though 
some details differed. The main factors – 2AFC 
staircase procedure, grating orientation and spatial 
frequency, grating patch size, pedestal contrast 
levels – were common to all conditions. Conditions 
9-13 used a mirror stereoscope instead of stereo 
goggles, and 100ms duration instead of 200ms. The 
published thresholds were defined at 81.6% correct 
(d'=1.3) on a fitted Weibull function, but thresholds 
were re-computed here for 75% correct to match all 
the other conditions, and are shown as the 
geometric means of the two observers (MAG, 
TSM).  Conditions 7 and 8 report the geometric 
mean thresholds for 2 observers (DHB, LP) again at 
75% correct.   

 
Table 1:  Pedestal (C) & Test contrast (DC) relations in the 13 conditions 
 

 
Notes: Reference to left and right eyes is nominal; all conditions were counter-balanced across left and right eye 
presentation.  B&M = Baker & Meese (2007); M,G&B = Meese, Georgeson & Baker (2006);  *unpublished data 
from the study of M,G&B. 
 
 

 
 

Cond 
No. 

 Fig.4 
panel 

Source Condition name Test interval Non-test Type of 
pedestal 

No. 
of Ss 

Dur, 
msec L eye R eye L eye R eye 

1 A New MonInc C+DC 0 C 0 Monocular 3 200 
2 A New BinInc C+DC C+DC C C Binocular 3 200 
3 B New BinInc Anti C+DC -(C+DC) C -C  

Antiphase 
3 200 

4 B New IncDec Anti C+DC -(C-DC) C -C 3 200 
5 C New HalfBinInc Anti C+DC -C C -C 3 200 
6 C New HalfBinDec Anti C-DC -C C -C 3 200 
7 D B&M Dich DC C 0 C Dichoptic 2 200 
8 D B&M Dich Anti DC -C 0 -C 2 200 
9 E M,G&B* IncDec C+DC C-DC C C  

Binocular 
2 100 

10 E M,G&B  HalfBinInc C+DC C C C 2 100 
11 E M,G&B* HalfBinDec C-DC C C C 2 100 
12 F M,G&B MonInc C+DC 0 C 0 Monocular 2 100 
13 F M,G&B BinInc C+DC C+DC C C Binocular 2 100 
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Figure 3.  Levels of processing in the model architecture, from the pair of input contrasts (cL,cR) to observed discrimination 
performance (d'OBS). Subscripts L,R,B denote Left eye, Right eye, and Binocular respectively.  The binocular response RB is 
the same as in our earlier model (Meese et al, 2006) and incorporates both interocular suppression (red links) at Stage 1 and a 
nonlinear response function at Stage 2 (not illustrated, but see Appendix 1 for model equations). Superscripts '+' and '-' 
denote separate responses to stimuli of opposite contrast polarity (e.g. gratings of opposite phase). For in-phase pedestals 
(e.g. both '+') the model is relatively simple; only the positive-polarity pathway (shaded) leading to the contrast cue needs to 
be considered. With inputs of opposite polarity to the two eyes, lustre is assumed to be a second possible cue. The two cues, 
contrast and lustre, are perturbed by late noise. The observer is assumed to make use of both cues to perform the 
discrimination task.   
 
3 Model development 
 
In a well-established tradition of modelling (Foley, 
1994; Legge, 1984; Legge & Foley, 1980; Legge, 
1979), the present model greatly extends our earlier 
2-stage binocular channel model (Meese et al., 
2006) particularly by (i) introducing separate 
mechanisms for opposite contrast polarities, not 
previously considered in 2006, but introduced by  
Baker & Meese (2007), (ii) introducing monocular 
mechanisms in parallel with the binocular-summing 
channel, and (iii) introducing signal selection and 

decision rules based on the Minkowski sum, and 
the MAX operator, to handle the multiplicity of 
outputs.  The rationale for these key modifications 
will unfold as we analyze and fit models to the 
results, but first we describe informally the 
architecture (Fig. 3) that emerged as most 
consistent with the full pattern of our findings. 
Appendix 1 gives the full set of equations that 
define the model's responses and behaviour. 
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3.1 Signal processing stages 1 and 2 
 
We assume polarity-specific signals right from the 
start. Responses in each eye proportional to retinal 
contrast are carried by separate channels for 
positive and negative sign of contrast (Fig. 3).  The 
likely neural basis for such a separation is the 
division of retinal ganglion cells into two classes, 
ON-centre and OFF-centre.  
 
The binocular channel, with monocular inputs rL, rR 
and combined output RB, is essentially identical to 
the 2-stage model of Meese et al (2006), but with 
polarity-specificity now made explicit. As in Meese 
et al (2006), the two monocular responses rL, rR  are 
subject to ipsiocular and interocular suppression 
(contrast gain control), and the output RB is subject 
to a form of smoothed thresholding (determined by 
the value of the saturation constant, z), and a 
power-law nonlinearity at higher response levels 
(determined by the difference between exponents in 
the numerator and denominator, p-q).   
 
A major new addition is the introduction of truly 
monocular channels in parallel with the binocular 
ones. These have inputs uL (or uR), with output RL 
(or RR), and are the same as the binocular channel 
in all respects except that any influence from the 
other eye at stage 1 and stage 2 is deleted. This 
proves to be a useful and parsimonious assumption 
that introduces no new parameters. It implies that 
for a monocular input image (e.g. in the left eye), 
RL = RB.  
 
3.2 Signal selection 
 
The two triplets of L,B,R channels thus create 6 
signals (3 for each polarity) that need to be dealt 
with. There are many possibilities.  In the main 
experiment, and in pilot experiments, we found that 
with a binocular in-phase pedestal, detecting a 
decrement of contrast in one eye (condition 11) was 
very much harder than detecting a similar 
increment in one eye (condition 10). For example, 
if the [L,R] pair of pedestal contrasts (in %) was 
[10, 10], then discriminating that from the 
monocular decrement [8, 10] was much more 
difficult than for the corresponding increment [12, 
10].  This reliable finding prompted the idea that 
the visual system might simply use the largest of 
the L,B,R signals - a MAX operator - rather than 
combining them in any more substantial way (Fig. 
1c). As a useful intuition, note that there's no 
difference between max(10,10) and max(8,10) so a 
MAX operator applied to the pair of monocular 
contrasts could never detect the monocular 
decrement, but would detect the monocular 
increment (the max increases from 10 to 12). But 
we must also consider the B channel. Suppose the B 
channel averaged the monocular contrasts, and then 
one signal was selected as max(L,B,R). The 
selected pedestal response then becomes 
max(10,10,10), to be compared with the 

incremental case max(12,11,10), versus the 
decremental case max(8,9,10). The outcome is 
unchanged from the 2-channel example. Thus 
polarity-specific signal selection, R = max(RL, RB, 
RR) was a plausible candidate to be added to the 
output of stage 2. This reduced the six responses to 
two: R+ and R-, representing the positive and 
negative contrasts irrespective of ocularity (Fig. 3). 
For monocular or in-phase inputs, one of R+ or R- 
would always be zero; but for antiphase inputs, 
both would be active. This presents a potential 
conflict that we propose is resolved by creating two 
perceptual cues that are the subjective basis for 
discrimination: contrast and lustre. 
 
3.3 Contrast and Lustre 
 
The simultaneous presence of opposite polarities 
has been studied a good deal in the context of stereo 
vision, binocular brightness and contrast 
perception, binocular summation and binocular 
fusion. There is little or no binocular advantage for 
antiphase signals at contrast threshold (Green & 
Blake, 1981), no evidence for binocular fusion 
(single vision) for antiphase signals (Georgeson & 
Wallis, 2014; Schor, Wood, & Ogawa, 1984), and 
no sense of stereo depth when one image of a 
random-dot stereo pair is reversed in contrast 
(Cumming, Shapiro, & Parker, 1998; Julesz, 1971). 
This large literature on the perception of opposite 
polarities (also see Howard & Rogers, 1995) 
supports our assumption above that binocular 
summation (in the B channels) is polarity-specific, 
but also has two other implications.  
 
First, in earlier work we found that binocular 
antiphase gratings could appear to have about the 
same perceived (matched) contrast as in-phase 
gratings (Baker, Wallis, Georgeson, & Meese, 
2012). But at lower standard contrast levels 
antiphase contrasts appeared lower than in-phase, 
and more similar to monocular gratings. Zhou, 
Georgeson, & Hess (2014) showed that these 
contrast-matching data, and spatial phase-matching 
data, were well explained by a model that included 
a noisy max over monocular and binocular response 
amplitudes, regardless of their spatial phase. We 
adopt the same idea here, using max(R+, R-) as the 
code for contrast (RMAX in Fig. 3). It implies that 
dichoptic contrast perception is determined by 
whichever polarity has the larger response at a 
given time.  
 
Second, we should consider a possible contribution 
from the opposite polarity. Lustre is a kind of shiny, 
metallic appearance that often arises when opposite 
polarities are shown to the two eyes, or rapidly 
flickered over time in one eye (Anstis, 2000; von 
Helmholtz, 1925). For references to 19th and 20th 
century research, see Bixby (1928), Mausfeld, 
Wendt, & Golz (2014). Wolfe & Franzel (1988) 
found that visual search for a lustrous target 
amongst non-lustrous distractors was rapid and 
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independent of distractor set size, implying parallel 
search, and suggesting that lustre, like contrast, 
might be a basic feature in early vision. 
Interestingly, search for rivalrous targets did not 
have these characteristics, suggesting that rivalry is 
not a basic feature. Lustre may be "vision’s 
response to two conflicting signals from one region 
of the visual field" (Anstis, 2000) and it could be a 
second cue for discrimination in those of our tasks 
that involve antiphase gratings. 
 
How should we model the response to lustre?  We 
begin with the working hypothesis that lustre is, in 
some manner, a perception of light and dark at the 
same time. This is consistent with many earlier 

observations (von Helmholtz, 1925), and subjective 
descriptions (e.g. Bixby, 1928) and previous 
experiments (Anstis, 2000). It suggests that in the 
model we should create a signal that pools over (R+, 
R-). Suppose, for example, that this signal (RMIX) 
was the quadratic sum of (R+, R-).  RMIX would pool 
responses to opposite polarities, but it would also 
respond to non-lustrous inputs (R+ or R- alone). To 
create a more specific response to lustre (RLUSTRE), 
we need to remove the non-lustrous component, 
and this idea suggests a general formulation (Fig. 
3): 𝑅9:;<=> = 𝑅?@A − 𝑅?BA .  The nature of RMIX 
remains to be determined, but with the requirement 
that for non-lustrous inputs 𝑅?@A = 𝑅?BA.   

 
 
 

 
 
Figure 4.  Experimental discrimination thresholds (symbols) and model fitting (curves). A-C: new data (conditions 1-6); 
geometric mean thresholds across 3 observers. D-F: data re-plotted from our previous studies (conditions 7-13, see Table 1); 
geometric means across 2 observers. Model fit was excellent: RMS error = 1.16 dB; R2 = 0.984. Black and red horizontal 
dashed lines are the model's monocular and binocular contrast thresholds respectively. Oblique dashed line is the locus of 
points where DC = C; it is the upper limit of testable DC values for contrast decrements (conditions 4,6,9,11).  Binocular 
contrast increment detection (condition 2 or 13, red curve) is a useful baseline against which to judge other conditions. This 
baseline is copied into the other panels as a red dashed curve (curve 2 into panels B,C,D; curve 13 into panel E).  
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4 Results 
 
4.1 ‘Dipper’ functions 
 
Results from the 11 different monocular, 
binocular and dichoptic contrast discrimination 
tasks (Fig. 2A) are summarized in Fig. 4 as log-
log plots of just-discriminable contrast change 
DC versus pedestal contrast C. Thirteen separate 
'dipper functions' are shown, because conditions 
1,2 replicated conditions 12,13 (see Table 1). 
Some key features of the results in Fig. 4 are: 
 
• For in-phase gratings, binocular advantage 
occurred only at low contrasts. Binocular 
contrast discrimination thresholds (condition 2) 
were lower than monocular (condition 1) only for 
low or zero pedestal contrasts. This is not new, 
but it reinforces the soundness of similar findings 
by Legge (1984), Maehara & Goryo (2005), and 
Meese et al (2006) whose data are re-plotted here 
as conditions 12, 13. There was no binocular 
advantage when the pedestal was visible, above 
about 1% contrast. And yet, when the pedestal 
was binocular, thresholds for increments in one 
eye (condition 10, termed 'half-binocular' 
increments) were about a factor of 2 (mean 
5.2dB) higher than for binocular increments on 
the same binocular pedestal (condition 13), 
implying binocular summation across the whole 
range of contrasts. These results together imply 
that binocular summation can  confer a binocular 
advantage, but does not always do so (cf. Meese 
et al, 2006).  
 
• For antiphase grating detection without a 
pedestal, there was only a very small binocular 
advantage over monocular detection (mean 0.89 
dB), consistent with previous studies. Binocular 
summation is evidently phase- or polarity-
specific (Cogan, 1987; Cohn & Lasley, 1976; 
Green & Blake, 1981), and that rules out 
binocular energy summation as a candidate 
mechanism, since that would show binocular 
advantage for antiphase as well as in-phase 
(Westendorf & Fox, 1973).   
 
• For antiphase pedestal gratings, thresholds for 
discriminating an increase of contrast in both 
eyes (condition 3) were equal to those for 
increments on a monocular pedestal (condition 
1), even with low contrast pedestals. The mean 
threshold difference across all pedestal levels 
was tiny and insignificant (0.35 dB). It is perhaps 
surprising that, in the face of possible rivalry, 
antiphase discrimination thresholds were not 
higher than corresponding monocular thresholds. 
It could be that antiphase signals simply fail to 
sum, but do not cancel each other out. This could 

be achieved by half-wave rectification before 
summation. Alternatively, antiphase signals 
might cancel each other in a binocular summing 
mechanism, while performance is carried by 
monocular channels in parallel with the binocular 
ones (Fig. 1b). These questions cannot be 
answered from the data alone, but can be 
addressed by modelling. 
 
• Despite the lack of antiphase binocular 
advantage just described (condition 3 vs 1), we 
found that thresholds for antiphase binocular 
increments (condition 3) were moderately but 
systematically better than the corresponding half-
binocular increments (condition 5), by an 
average of 2.7 dB, perhaps implying some weak 
form of antiphase summation.   
 
• If only the binocular summing mechanism B 
existed (Fig. 1a) then we should make two 
predictions, both of which turn out to be 
contradicted by the data. (i) For in-phase 
pedestals, it seems likely that the combined 
increment-decrement (condition 9) should be 
especially hard to detect, because opposite 
changes would cancel in the binocular sum or 
binocular average (see Introduction). In the 
experiment, this was not so; thresholds for 
condition 9, averaged over the 4 pedestal 
contrasts higher than 5%, were only slightly 
(1.5dB) higher than for the 'half-binocular' 
increment (condition 10).  (ii) Conversely, it is 
reasonable to expect increments and decrements 
to be about equally detectable by the B 
mechanism, but in fact 'half-binocular' 
decrements (condition 11) were much harder to 
see than 'half-binocular' increments (condition 
10). Thresholds were a factor 2 (6.4dB) higher 
than for the corresponding increments (condition 
10) (again averaged over the 4 highest pedestal 
contrasts). In short, the condition that should be 
easy for the B mechanism is difficult, and vice-
versa. These two results imply that, even for in-
phase gratings, the B mechanism is not alone. 
Parallel monocular mechanisms seem likely. But 
in highly nonlinear models even simple intuitions 
of this kind can be misleading or depend heavily 
on other unrecognized assumptions. To draw 
firmer conclusions, we need to go beyond 
intuition and be guided by more precisely 
formulated, testable models. 
 
4.2 Model fitting  
 
Discrimination thresholds in dB (means of 2 or 3 
subjects; Table 1) from all 13 dipper functions 
(11 different tasks, N=111 data points) were 
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fitted in the same run of the model, with 9 free 
parameters.  RMS error was 1.16 dB, R2 = 0.984, 
an excellent overall fit. Best-fitting parameters 
are given in Table 2. 
 
Curves in Fig. 4 are the threshold curves 
generated by the best-fitting model. The match 
between model and data is strikingly good across 
the whole dataset, with no local anomalies.  This 
is important, because a low RMS error could 
occur when (say) 9 of the 11 tasks fit very well, 
but two fit poorly. It was not difficult to find and 

reject models of that kind, and not easy to find 
the one that fitted well everywhere. The 
functional architecture (Fig. 3) and the parameter 
values (Table 2) are both of great importance. 
And yet there is still an explanatory gap: we need 
to understand how the proposed mechanisms and 
processes lead to correct predictions about the 
observer's behaviour.  To do this we interrogate 
the model in revealing ways, by representing 
mechanism responses in binocular contrast 
space. 

 

 
Figure 5.  Each row represents responses at different stages of the model, mapped over the binocular contrast space. A,B,C: 
the three response maps from stage 2 (Fig. 3), representing positive contrast polarity in the channels for left-eye, binocular 
and right-eye respectively.  E: These three maps are combined via the MAX-like operator, to create the R+ map. D: The 
corresponding L,B,R maps for negative polarity (not shown) are combined to form the R- map. H: The responses R+, R- are 
similarly MAX-ed to create the output cue RMAX which we associate with the perception of contrast. G: The maps R+, R- are 
pooled again, in a way that is less MAX-like in the 2nd and 4th quadrants, to form RMIX. I: The second perceptual cue, 
RLUSTRE, is formed as the difference between panels G and H; RLUSTRE = (RMIX - RMAX).  
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Table 2: Parameters used in the fitted model 
n 30.914 

m 1.31356 

s 1.29675 

p 6.41616 

q 5.19607 

z 0.01297 

s 0.14873 

a 4.3227 

z2 0.15281 

Note: the model in principle has 8 free parameters. 
The ninth parameter (z2) substitutes for z in 
conditions 9-13 only, for pragmatic reasons 
explained in Appendix 1 (Fitting the model). 
 
4.3 Model behaviour: mapping the binocular 
contrast-response surfaces 
 
Mechanism responses were computed from the 
model equations (Appendix 1) using the best-fitting 
parameters (Table 2), and visualized as 3D surfaces 
in binocular contrast space (Fig. 5). That space can 
be divided into four quadrants, defined in Fig. 5F. 
The monocular response 𝑅9C  (Fig. 5A) increases 
with positive left-eye contrasts (first and fourth 
quadrants), but is insensitive to any right-eye 
contrasts. Its right-eye counterpart ( 𝑅=C ) is 
equivalent, but rotated by 900 (Fig. 5C). The 
binocular channel (𝑅DC ) shares one quadrant with 
each of the monocular channels, and (by design) 
shows binocular interaction only in the first 
quadrant where both contrasts are positive (Fig. 
5B).  The 𝑅C response (Fig. 5E) can be envisaged 
as the envelope of these three surfaces. Note how 
its surface shape in the first quadrant differs from 
all three of the input surfaces. The 𝑅E  map (Fig. 
5D) is a reflection of 𝑅C  about the negative 
diagonal. 𝑅C and 𝑅E are combined in two ways to 
form 𝑅?@A  and 𝑅?BA  (Figs. 5G, 5H). 𝑅?@A  and 
𝑅?BA are identical in the first and third quadrants, 
but differ markedly in the second and fourth 
(opposite-sign) quadrants, where  𝑅?@A  shows 
substantial, roughly quadratic, combination of left- 
and right-eye contrasts, while 𝑅?BA  is close to 
winner-take-all. This difference creates the lustre 
response (Fig. 5I), present only in the opposite-sign 
quadrants. 
 
4.4 In-phase pedestals 
 
The value of these maps should now become clear 
as we show how model predictions and observed 

discrimination thresholds can be understood and 
compared directly on the model response surface. 
Fig. 6A shows the 1st quadrant of the RMAX surface 
in grey, and several iso-height contours (lines of 
constant response) are highlighted.  White points 
represent the pedestals, and the outermost black 
curve represents the response level evoked by the 
highest pedestal contrast (31.6%). In signal 
detection theory, it follows from the definition of d' 
that to be just-distinguishable from the pedestal, 
any test condition must evoke a mean response that 
is one standard deviation (s) higher or lower than 
the mean pedestal response. The locus of all such 
threshold points is therefore the pair of surface 
contours (red in Fig. 6A) whose height is s above 
or below the pedestal contour (black). If and when 
RMAX is the cue (decision variable) used by the 
observer, then observed thresholds should lie on 
these contours. More precisely, they should lie at 
the intersection of the test vectors (white) and the 
threshold contours (red). Red symbols in Fig. 6A 
represent observed thresholds on each test vector 
for conditions 9,10,11,13, and it is clear that they 
lie very close to the model's threshold contours. 
Similarly good agreement between model and data 
holds for the lower pedestal contrasts shown in Fig 
6A (orange and green curves), and the even lower 
pedestals plotted in Fig. 6B. The surface contours 
change shape as contrast is reduced, but the data 
hug the model curves about equally well at all 
contrast levels. 
 
This representation of data and model in binocular 
contrast space reveals a functional relation between 
different test conditions that is not evident from the 
'dipper functions' alone. For example, returning to 
the highest pedestal contrast (red in Fig 6A), we can 
see that thresholds for condition 9 (IncDec) are 
higher than condition 13 (BinInc) because the test 
vector for condition 13 takes the shortest route to 
the threshold contour, while in condition 9 it passes 
rather obliquely across the surface, and so requires 
a greater contrast change to reach the same contour.  
We can also infer that condition 9 was detected as 
an increment, like conditions 10 and 13, but the 
decrement in the other eye shifted the direction of 
change, and made the task harder. Condition 11 
(monocular decrement on a binocular pedestal) was 
even more difficult because the test vector ran 
almost parallel to the surface contours, rather than 
across them, and so much greater contrast change 
was needed to reach the threshold contour.  We can 
also infer that condition 11 was seen as a decrement 
in contrast, not an increment. Threshold for the 
corresponding increment (condition 10) was almost 
10dB lower at this pedestal contrast, because its test 
vector enjoyed a much more direct route to the 
threshold contour.  
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Figure 6.  How the response surfaces (Fig. 5) can be used to understand and predict discrimination performance. A,B: Close 
relation between the 1st quadrant of the model output surface RMAX (Fig. 5H; rendered in grey here) and the discrimination 
thresholds for in-phase pedestals (where cL = cR, conditions 9,10,11,13). A: White points represent the 3 highest pedestal 
contrasts (10.0, 17.8, 31.6%), each surrounded by a cluster of 7 data points (4 independent points, plus 3 mirrored across the 
positive diagonal) that represent the pairs of L,R contrasts that are just discriminable from the binocular pedestal in each of 
the 7 test directions (Fig. 2B).  Thin black curves are the 3 iso-response contours of the RMAX surface that pass through the 3 
white pedestal points. Each pair of coloured curves (green, orange, red) represents the locus of all just-discriminable (d'=1) 
responses that lie one noise unit (s) above, or below, the corresponding pedestal response level (black curve). If the model is 
correct, the observed discrimination thresholds (green, orange, red circles) should lie on or close to these curves.  A very 
close fit is observed.  B: As panel A, but zoomed-in to low contrasts, illustrating data for 3 lower pedestal contrasts (1.8, 3.2, 
5.6%). C,D: As panels A,B, but for the 4th quadrant of the RMAX surface, illustrating results for antiphase pedestals (where cR 
= -cL, conditions 3,4,5,6). Thresholds in conditions 3,4,5 fell close to the surface contours predicted by RMAX but for condition 
6 they did not. Condition 6 best reveals the perceptual contribution made by lustre rather than contrast - see Fig. 7. 
 
At lower pedestal contrasts (Fig 6B) the surface 
contours change shape, exhibiting a wider range 
over which roughly linear summation of contrasts 
occurs (implied by approximately left oblique 
surface contours), and as a result the thresholds for 
conditions 10 and 11 become much more nearly 
equal. Interestingly, there are some test directions 
lying between conditions 9 and 11 that must be 
expected to have immeasurably high thresholds, at 
any pedestal contrast, because their test vectors 
would never intersect the threshold contour. 

So far then, we have seen that the discrimination 
thresholds plotted in binocular contrast space give 
surprisingly direct information about the 3D shape 
of the response surface - including both the shape 
of surface contours and their vertical spacing in a 
fairly wide neighbourhood around each pedestal 
point.  This conclusion should be sound when only 
one cue - hence a single response surface - is 
involved in the task.  But we now turn from in-
phase to antiphase pedestals, where two cues appear 
to contribute to performance. 
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Figure 7.  Antiphase conditions: how lustre contributes to performance in conditions 4, 6, 8, but not conditions 3 or 5.  A,B: 
Plotting conventions and experimental data are as Figure 6C,D, but the model surface is RLUSTRE rather than RMAX. Note: 
Coloured contours here represent a predicted discriminable decrease of lustre. Decreases were important. Threshold contours 
for discriminable increases of lustre are not shown, because for antiphase pedestals any increase of lustre (condition 3) was 
too small to make any practical contribution to observed performance.  Thresholds for condition 6 are close to the surface 
contours predicted by lustre at all 3 contrasts (green, orange, red) in A, and at 2 of the 3 lower contrasts (orange, red) in B. At 
the lowest pedestal contrast in B (green, 1.8%) the lustre cue was too weak to generate a threshold contour, and this was 
matched by absence of a reliable experimental threshold for condition 6 at this contrast level. Thresholds for condition 4 were 
close to the lustre predictions at higher contrast (A) but less so at lower contrast (B). In conditions 3 and 5, thresholds were 
markedly better (lower) than predicted by lustre.  C,D: An increase of lustre explains performance in test condition 8 
(pedestal in one eye, antiphase test grating in the other eye), except at very low contrast. Pedestal points (white) now lie on 
the cL or cR axes, where RLUSTRE =0. Increasing test contrast DC increases lustre (along the white lines). Observed 
discrimination thresholds (coloured symbols) were mostly very close to the model's threshold contour for detecting lustre 
(yellow curve, defined by d'=1 and RLUSTRE =s; same contour for all the pedestal contrasts of condition 8). At the lowest 
pedestal contrast (1.8%, green, panel D) lustre was again too weak to be detected.  
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4.5 Antiphase pedestals and the lustre cue 
 
Figs. 6C and 6D present the same form of analysis 
as Figs 6A,B, but for the antiphase pedestals. 
Threshold points for conditions 3,4,5 fell close to 
the RMAX contours at all six pedestal levels. This 
consistency of shape (the 'rounded square' corner) 
strongly implies that the surface shape does not 
change much with contrast level. But thresholds for 
condition 6 (monocular decrement) consistently 
failed to fall on the predicted contours. This 
deviation is most obvious at the lower pedestal 
contrasts (Fig. 6D), but even at the higher contrasts 
(Fig. 6C) we should emphasize that the test vectors 
for condition 6 run parallel to the threshold 
contours, and so no adjustment of DC could take the 
threshold points any closer. The RMAX surface thus 
predicts an immeasurably high threshold at all 
pedestal levels in condition 6, but the observed 
thresholds were only 5-6dB above their incremental 
counterpart (condition 5): clearly higher, but not a 
catastrophe. 
 
Figs. 7A and 7B show the same threshold data 
points as Figs 6C,D, but now plotted in relation to 
the RLUSTRE surface. Data points for condition 6 fell 
very close to the threshold contours representing a 
decrease in lustre, and did so consistently at the 5 
pedestal levels for which reliable data were 
obtained. At the lowest pedestal contrast (1.8%) we 
did not obtain reliable discrimination thresholds 
across the three observers, but this also agreed with 
the model since the lustre response at this low 
contrast was too weak to generate a threshold 
contour. On the other hand, conditions 3,4,5 
(already well explained by RMAX) generally did not 
fall close to the threshold contours for lustre.   
 
Lastly, Figs. 7C,D show the lustre analysis for 
condition 8 (dichoptic antiphase). Here the 
monocular pedestal points lie on the cL or cR axis, 
where lustre is zero, and increasing DC increases 
the model's lustre response. The threshold contour 
for condition 8 (yellow) is defined by RLUSTRE = s, 
and is necessarily the same for all pedestal 
contrasts. Data for the three higher pedestal 
contrasts (Fig. 7C) fell very close to this contour, as 
did the data for two of the three lower contrast 
pedestals shown in Fig. 7D. 
 
In summary, most of the antiphase data are 
accurately accounted for by the contrast cue, RMAX, 
and the remainder are well explained by the lustre 
cue. Fig. 8 helps to clarify and quantify this key 
point. Here we computed performance and 
discrimination thresholds based on the two cues 
separately. In conditions 3 and 5, thresholds from 
lustre (dashed curves) were far too high at all 
contrasts, but thresholds from RMAX (solid, coloured 
curves) closely matched the data. The reverse was 
true for condition 6, where, as discussed above 
(Fig. 6C,D), no threshold could be measured for 

RMAX, but the data closely matched the thresholds 
from lustre. In general lustre was too weak to be 
useful at low pedestal contrasts but, in conditions 8 
and 4, cue use depended on contrast level. In 
condition 8, lustre was the more effective cue at 
higher pedestal contrasts, but RMAX was the only 
useful cue at low contrasts, below 3%. In condition 
4, both cues were useful at higher contrasts. 
Conditions 8 and 4 (Fig. 8) illustrate how efficient 
use of the contrast and lustre cues together (thick 
grey curves) provides a more precise account of the 
results than either cue alone.  
 
5 Discussion 
 
We measured the human visual system's ability to 
distinguish changes in contrast for eleven different 
monocular, binocular and dichoptic (antiphase) 
conditions, across a wide range of contrast levels. 
To our knowledge, this is the most comprehensive 
study of contrast discrimination to date, and it 
provides a stringent test for models of binocular 
contrast processing.  We found that the most useful 
way to visualize the tasks, the model responses and 
experimental data was in binocular contrast space 
(Figs. 2, 5, 6, 7). The response of any mechanism 
can be rendered as a 3D surface in this space (Fig. 
5), and if visual performance depends mainly on 
that mechanism then discrimination thesholds for a 
given pedestal should fall on a specific pair of iso-
response contours on that surface. For binocular in-
phase pedestals that was found to be correct: a 
single response surface (RMAX) captured all the data 
points very well (Fig. 6A,B). The clusters of data 
gave direct information about the surface shape in 
quite a large neighbourhood around each pedestal 
point.  
 
5.1 Contrast cue from monocular & binocular 
channels 
 
In our model, the RMAX surface arises as the 
response envelope (max) over six input mechanisms 
- the left-eye, right-eye, and binocular channels for 
positive contrast and for negative contrast (Fig. 5, 
stage 2).  This model incorporates the binocular 
channel that we proposed previously (Meese et al, 
2006), and extends it by adding the parallel 
monocular channels.  This extension did not add 
any free parameters. It is supported by our finding 
that when the model was re-fitted without the 
monocular channels (their responses were set to 0) 
the fit was poor for conditions 9 and 11, but good 
for all other conditions including antiphase 
pedestals (Fig. S7). Success for the antiphase 
conditions, without the Mon channels, rests on (i) 
the existence of separate channels for the two 
polarities, so that out-of-phase cancellation does not 
occur in the binocular responses, and (ii) the fact 
that Mon and Bin channel responses are the same 
for antiphase conditions (Fig. 5), so that removing 
Mon channels had no effect on model responses in 



Georgeson, Wallis, Meese & Baker (2016) Vision Research 
doi: 10.1016/j.visres.2016.08.001 

This post-print version was created for open access dissemination through institutional repositories. 
 

16 

 

 
Figure 8.  Summary (1). How the two cues (RMAX, RLUSTRE) contributed to discrimination performance in the antiphase 
conditions. Data re-plotted from Fig. 4, conditions 3-8. Using the best-fit parameters (Table 2), model thresholds were 
derived using only RMAX as the decision variable (coloured solid curves) or only RLUSTRE (coloured dashed curves). Neither 
cue alone could explain performance overall, but performance was very well explained when we assumed that the observer 
could use both cues (full model; thick grey curves). Lustre was markedly the better cue for condition 8,  and the only useful 
cue in condition 6, but contrast (RMAX) was much the better cue in conditions 3 and 5 and of variable benefit in condition 4. 
The lustre cue is absent when contrast polarity is the same in both eyes; hence contrast (RMAX) was the only available cue for 
condition 7 here, and for conditions 1,2,9,10-13 (Fig. 4).  
 
the antiphase quadrants. On the other hand, without 
the Mon channels, in-phase thresholds for condition 
9 were predicted to be 2 to 3 times higher than 
observed, and those for condition 11 were up to a 
factor of two lower than observed. In addition, 
thresholds for half-binocular increments and 
decrements (conditions 10 and 11) were predicted 
to be the same (Fig. S7), quite unlike the data where 
the decremental thresholds were 2-3 times higher 
than the incremental. These data (conditions 
9,10,11) were very well fitted, however, when the 
monocular channels were included (Fig. 4E). Those 
mechanisms correctly influenced the shape of the 
response surface in regions away from the positive 
diagonal (Fig. 6A,B), not examined in any earlier 
studies. Thus the need for a monocular contribution 
was revealed most directly by the in-phase 
pedestals with monocular contrast decrements 
(conditions 9 and 11). 
 

Conversely, when the model was re-fitted without 
the binocular channels the resulting fit was 
generally very poor and unsatisfactory (RMS error 
was 3.81 dB, three times larger than the best-fitting 
model). In this model framework, then, both the 
monocular and binocular channels made essential 
contributions to performance.  But unlike contrast 
and lustre, they did not act as separate or 
independent cues. Instead it was their highly 
nonlinear interaction (the max) that accounted for 
observed performance.  
 
Having established that both are necessary, we can 
now ask: what contribution do the monocular and 
binocular channels make to performance of the full 
model? We took the best-fitting full model and 
simply switched off (set to 0) the responses of 
monocular or binocular channels at stage 2 to find 
out what impact this had on predicted thresholds for  
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Figure 9.  Summary (2). How the monocular and binocular responses contributed to discrimination performance in the in-
phase conditions. Data re-plotted from Fig. 4, conditions 1,2,7,9-11. Using the best-fit parameters (Table 2), model 
thresholds were derived using only binocular channels (coloured solid curves) or monocular channels (coloured dashed 
curves). Performance overall was well explained only when both kinds of channel contributed to the contrast cue (RMAX) 
(thick grey curves). Their contributions occurred in different regions of binocular contrast space (Fig. S5). Unlike contrast 
and lustre (Fig. 8) they did not act as separate cues.  
 
in-phase conditions (Fig. 9). For example, deleting 
the monocular channels left predictions unchanged 
in conditions 1 and 2 (Fig. 9; Mon Inc, Bin Inc), so 
we infer that the binocular channels were sufficient 
for those two conditions, and largely so for 
condition 10 (HalfBinInc) as well.  On the other 
hand, the monocular channels contributed to the 
good fit for conditions 7,9,11, because without 
them the 'Bin only' predictions deviated from the 
data. Similarly, the binocular channels were 
necessary in conditions 2,7,9,10,11 where the 'Mon 
only' predictions were insufficient (Fig. 9). 
Performance overall was well explained only when 
both kinds of channel contributed to the contrast 
cue (RMAX) (thick grey curves).  
 
Interestingly, Fig. 9 shows us that in some cases 
observers would have done better to use the 
monocular channels alone (conditions 9 & 10, low-
medium contrasts), or the binocular channels alone 
(conditions 7 & 11, high contrasts). The max 
operator explains the observers' inability to do this: 
observers cannot freely select the most useful of 
these channels, and only have access to the highest 

value amongst them. This implies that the max 
operation is a hard-wired or obligatory process. 
  
5.2 Contrast-matching 
 
If we are correct that RMAX represents contrast, and 
we have inferred its response surface shape 
correctly, then we can make a strong prediction: the 
contours of the RMAX surface should not only predict 
contrast discrimination, but should also predict 
results on dichoptic contrast-matching (Baker et al., 
2007, 2012). Fig. 10 shows that this prediction is 
accurately upheld. Data points of a given colour 
represent pairs of dichoptic contrasts that all match 
the same fixed binocular standard contrast (Fig. 
10A) or monocular standard (Fig. 10B). Since they 
all produce the same response level, each set of 
points must lie on the same iso-response contour. 
Thick black contours (Fig. 10A) show that data 
from Baker et al (2012) fell very close to the model 
contours for all four standard contrast levels, with 
no free parameters. Fig. 10B shows similar 
contrast-matching data from another laboratory 
(Ding et al., 2013) again falling close to the RMAX 

 

0 1 10 100
0.1

1

10

100

d’=1.0

//

Pedestal contrast (%)

6
C

 th
re

sh
ol

d 
(%

)
1. Mon Inc

 

 

0 1 10 100
0.1

1

10

100

d’=1.0

//

Pedestal contrast (%)
6

C
 th

re
sh

ol
d 

(%
)

2. Bin Inc

 

 

0 1 10 100
0.1

1

10

100

d’=1.0

//

Pedestal contrast (%)

6
C

 th
re

sh
ol

d 
(%

)

7. Dich

 

 

0 1 10 100
0.1

1

10

100

d’=1.0

//

Pedestal contrast (%)

6
C

 th
re

sh
ol

d 
(%

)

9. IncDec

 

 

0 1 10 100
0.1

1

10

100

d’=1.0

//

Pedestal contrast (%)

6
C

 th
re

sh
ol

d 
(%

)

10. HalfBinInc

 

 

0 1 10 100
0.1

1

10

100

d’=1.0

//

Pedestal contrast (%)

6
C

 th
re

sh
ol

d 
(%

)

11. HalfBinDec

 

 

Bin & Mon
Bin only
Mon only

Bin & Mon
Bin only
Mon only

Bin & Mon
Bin only
Mon only

Bin & Mon
Bin only
Mon only

Bin & Mon
Bin only
Mon only

Bin & Mon
Bin only
Mon only



Georgeson, Wallis, Meese & Baker (2016) Vision Research 
doi: 10.1016/j.visres.2016.08.001 

This post-print version was created for open access dissemination through institutional repositories. 
 

18 

 
Figure 10.  Contrast matching for edges (A) and gratings (B).  A:  Solid circles show means of 2 subjects (DHB, SAW) from 
Baker et al 2012, Fig. 6. These data were mirrored about the positive diagonal. Two subjects (open diamonds and squares; 
not mirrored) viewed test and standard images that were single, sharp, step edges, 1 deg long, shown for 200 ms with 4 
standard binocular contrasts (5, 10, 20, 40%; red, green, blue, cyan). Model parameters (Table 2) were used to create the 
RMAX response surface (grey). Black contours are the 4 iso-response contours that predict where the contrast-matching data 
should fall.  B: Solid circles show means of 4 subjects from Ding et al 2013, their Figs. 9 and10. Test and standard images 
were sinewave gratings, with 4 standard monocular (left-eye) contrasts (6, 12, 24, 48%; red, green, blue, cyan). Two subjects 
(JS, KT; open diamonds and squares) viewed test durations of 117 ms; the other two (CG, CF; open circles and triangles) 
were tested at 1000ms. Spatial frequency = 0.68 c/deg, phase disparity = 0. Data were not mirrored about the diagonal. In B, 
just two minor changes were made to the model: to capture the greater linearity at low contrast (6%, red) parameter s was 
increased from 1.3% to 2.5% contrast, and to capture a slight left/right asymmetry in these mean data, we assumed a slight 
difference in contrast gain at the linear front-end of the model: the right eye's initial response to contrast was increased by 5% 
(i.e. 𝑐=C = 1.05𝑐=).     
 
surface contours (but with two minor parameter 
adjustments; see figure legend for details).  Note 
how the surface contours, and the data, change 
shape with contrast level, showing more 
pronounced 'winner-take-all' behaviour at higher 
contrasts (replicated by Ding & Levi, 2016, their 
Fig. 6). These two analyses - on a task that 
explicitly requires judgement of contrast - provide 
independent confirmation that the RMAX surface 
represents the contrast response of the binocular 
visual system. Note also that the data did not fall 
close to the surface contours of the binocular 
channel alone.  That surface (Fig. 5B) exhibits a 
strong curvature (the Fechner paradox) that is not 
seen in the contrast-matching data, and which is 
eliminated in the model response when the 
monocular channels make their contribution to R+, 
inherited by RMAX. 
 
Contrast-matching gives us rather precise 
information about the 2-D shape of the surface 
contours, but not about their vertical spacing or the 
steepness of the surface. Conversely, the 
discrimination tasks (Fig. 6A,B) sampled the 
surface contours more sparsely, but with the 
assumption of late additive noise (s) they give us 
richer information about the 3-D surface shape and 
steepness. It is not trivial that both tasks are 

consistent with a single response surface. Hence the 
model surface in Fig. 10A (same surface as Fig 
6A,B) unites both forms of evidence into a single 
picture of the binocular contrast response for 
horizontal, in-phase (zero disparity) image pairs. 
 
5.3 Previous studies at detection threshold 
 
No previous studies have tested suprathreshold 
discriminations with antiphase pedestals, but 
several have compared detection thresholds 
(without a pedestal) for test stimuli of the same or 
opposite polarity. Fig. 11 shows a quantitative 
comparison (see figure legend for details). Despite 
large differences between the stimuli and methods 
used, there is broad agreement across studies that 
stimuli of the same polarity (1st and 3rd quadrants) 
combine almost linearly at detection threshold, 
while those of opposite polarity are close to winner-
take-all.  Our model was fitted to our entire dataset, 
but it clearly fits our threshold data (red and green 
symbols) very well (grey curve) and also gives a 
good account of two earlier studies. Other models 
can fit these data (Cogan, 1987; Cohn & Lasley, 
1976), but our proposals have the merit of being 
tested and supported by a much wider range of 
conditions than was previously available. 
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Figure 11.   Dichoptic detection thresholds compared 
across studies. Threshold values are scaled so that the 
average monocular threshold = 1 for each study. 
Diamonds: data from Cohn & Lasley (1976), their Fig. 1, 
subject PN. Stimulus was a light spot, 10 min arc 
diameter, briefly incremented or decremented; method of 
adjustment (1 run).  Open squares: as diamonds, but 
subject SK (median of 7 runs). Open circles: data from 
Cogan (1987), his Fig. 7; mean of 6 subjects. Stimulus 
was a briefly flashed increment or decrement (2 msec) of 
a luminous field 12 deg in diameter; method of 
adjustment. Red circles: data from our main experiment, 
with zero-contrast pedestal; means of the 3 subjects (4 
independent points, 4 mirrored).  Green squares: further 
data from our laboratory; means of 5 undergraduate 
subjects (no mirroring), tested in conditions very similar 
to the main experiment (horizontal, 1 c/deg gratings, 
2AFC), except stimulus duration was 500ms. Thin curves 
are model RMAX iso-response contours spaced at equal 
intervals of monocular contrast from 0 to 2%; parameters 
as Table 2. For the model curves, axis values represent 
percent contrast; thick grey curve is the iso-response 
contour at 1% monocular contrast.  

 
5.4 Monocular and binocular regions of binocular 
contrast space 
 
From the fitted model, we can determine where in 
binocular contrast space the monocular and 
binocular channels make their contribution to RMAX. 
This is illustrated in Fig. S5 (supplementary 
material). At high contrasts (say, 20-50%), the 
binocular channel response dominates only in a 
surprisingly narrow region where the left and right 
contrasts are nearly equal (Fig. S5A). Outside this 
region, interocular suppression causes the binocular 
response RB to fall below the monocular ones (RL or 
RR) and then it is the monocular channels that 
deliver the contrast cue via RMAX. At low contrasts, 
however, interocular suppression is relatively weak 
(because the constant s in eqn. 4 is then relatively 
strong), and the binocular channel gains influence 
over a much wider range of interocular contrast 
ratios (Fig. S5B).  As a result, binocular summation 
is much more directly evident at low contrasts both 
in the discrimination data (Fig. 4A) and detection 
data (Fig. 11), and in the oblique orientation of the 
RMAX surface contours at low contrasts (Figs. 6B, 
11, S5B). 
 
5.5 Model variants 
 
The 6-channel 2-cue model accounts for 
performance on a great variety of dichoptic 
discrimination and contrast-matching tasks with 
unusual accuracy.  Yet, as with any model, one can 
ask which features of the model are necessary and 
which are optional.  We saw above that the parallel 
architecture of monocular and binocular channels 
was not optional. 
 
Firstly, we show that it's not crucial for the 
interocular suppressive terms to be polarity-

specific. We re-fitted the model, putting Eqn. 1a in 
place of Eqn. 1:  
 

𝑟9C =
𝑐9C J

𝑠 + 𝑐9C + 𝑐=C + 𝑐9E + 𝑐=E
, 	𝑟9E

=
𝑐9E J

𝑠 + 𝑐9C + 𝑐=C + 𝑐9E + 𝑐=E
								 1𝑎  

 
and similarly for Eqn. 2. The suppression 
(denominator terms) could then arise from either 
polarity. This caused substantial suppression of the 
binocular channel response surfaces in the 2nd and 
4th quadrants, but that did not carry through to later 
stages because it was effectively hidden by the 
monocular channel responses. There was little 
change in the R+, R- or  RMAX maps, and essentially 
no change in the fitted parameters or the predicted 
pattern of thresholds.  Goodness of fit (RMS error) 
was unchanged at 1.16dB.  
 
Secondly, we addressed an important question 
about binocular summation within the binocular 
channel.  Like-polarities sum, but do opposite 
polarities cancel ? At low contrasts, binocular 
thresholds were much lower than monocular ones 
(Fig. 4A), but when the gratings were out of phase, 
binocular thresholds were very similar to 
monocular ones (Fig. 4B, Fig. 11). This implies 
polarity-specific summation, as in Eqn. 7. To 
introduce the possibility of cancellation, we 
introduced a 'push-pull' arrangement familiar to 
cortical physiologists, where inputs of the non-
preferred polarity carried a negative sign, rather 
than being ignored. This creates quasi-linear, signed 
summation, before half-wave rectification. Thus we 
replaced Eqn. 7 with Eqn. 7a, creating push-pull 
inputs (bracketed terms), which were set to 0 if 
negative (i.e. half-wave rectification): 
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𝑅DC =
(𝑟9C + 𝑟=C − 𝑟9E − 𝑟=E)P

𝑧 + (𝑟9C + 𝑟=C − 𝑟9E − 𝑟=E)R
, 		𝑅DE

=
(𝑟9E + 𝑟=E − 𝑟9C − 𝑟=C)P

𝑧 + (𝑟9E + 𝑟=E − 𝑟9C − 𝑟=C)R
	.							(7𝑎) 

 
We then re-fitted the model and the outcome was 
very similar to that just described for Eqn. 1a. 
There was a dramatic change in the binocular 
channel response - cancellation between opposite-
polarity inputs - but almost no change in later 
stages of response (see Fig. S9) and no change in 
the predicted thresholds or goodness of fit. Again 
the monocular responses switched in, via the max 
operator, when the binocular response fell away. 
The same was true when both variants (Eqns. 1a 
and 7a) were applied together. 
 
In short, these two analyses show that several 
aspects of the binocular channel remain hidden 
from us. In antiphase conditions monocular channel 
responses play an important role, and because of 
this the data cannot tell us whether the binocular 
channel receives suppression from, or negative 
input from, the non-preferred polarity. The 
modelling reveals more clearly what we don't 
know, and why.  
 
5.6 Contrast & Lustre 
 
Our second set of key findings concerns antiphase 
pedestals.  Here, despite intensive effort, we could 
not find a single response surface that accounted for 
all the observed thresholds. Instead we propose that 
two response surfaces - representing two different 
subjective cues, contrast and lustre - are needed to 
understand performance in antiphase conditions. 
Depending on the direction of change in binocular 
contrast space, some antiphase conditions (3,4,5) 
relied wholly or mainly on the contrast cue, while 

other conditions depended on lustre, responding to 
contrast changes that either decreased lustre 
(condition 6) or increased it (condition 8). The two 
response surfaces are rendered as contour maps in 
Figs. 5H, 5I. The RMAX and RMIX surfaces are 
identical when both eyes view the same contrast 
polarity. Hence the lustre map (RMIX - RMAX, Fig. 5I) 
is zero for in-phase gratings (1st and 3rd 
quadrants), but is positive in the 2nd and 4th 
quadrants, and peaks when the two eyes view equal 
and opposite contrasts (cL=-cR).  
 
When the model was re-fitted with the lustre cue 
removed (set to zero), the fit was poor in many 
conditions, especially for antiphase pedestals (Fig. 
S6). Overall RMS error was more than doubled (to 
2.6 dB), and in a nested-model comparison the fit 
was significantly worse than the full model 
[F(1,102) = 422.9, P<0.00001].  Thus, within our 
model framework, the lustre cue was necessary to 
explain performance accurately in the antiphase 
conditions. 
 
In a study of binocular rivalry between opposite 
polarities, Whittle (1965) conjectured that "Lustre 
... occurs when stimuli to both rivalry (contours of 
opposite sign) and fusion (contours of the same 
sign) are presented."  Our antiphase gratings do not 
contain contours of the same sign in the same 
location, but our scheme could still satisfy Whittle's 
conjecture. RMAX might be the code normally 
associated with single vision (either by fusion or by 
suppression; Georgeson & Wallis, 2014), while 
RLUSTRE is the signal that encodes the simultaneous 
presence of opposite signs. We now consider 
whether any other evidence supports this view that 
lustre arises solely from opposite polarities, and not 
more generally from the ability to sense differences 
in contrast (Formankiewicz & Mollon, 2009). 

 

 
Figure 12.  Ratings of lustre (symbols; from Anstis, 2000, Fig 2a, re-plotted in a new format), are compared with predictions 
based on RLUSTRE, computed for the conditions of Anstis's experiment and scaled to the range 0-10. A: Binocular lustre. Each 
data point represents subjects' mean lustre rating for a dichoptic pair of achromatic spots with different luminances. We 
converted the spot luminances to Michelson contrast (cL,cR) in percent, and plotted the results in binocular contrast space. 
Predictions based on RLUSTRE are shown without luminance noise (dashed curve), and with luminance noise (solid grey 
curve). B: As A, but for 'monocular lustre', where the same spot was shown to each eye, but spot contrast switched between 
c1 and c2 over time at 16 Hz. For consistency, the same model was applied to both A and B, and it assumed temporal 
smoothing of the R+ and R- signals before RLUSTRE was computed. Temporal smoothing was a key factor at 16Hz (B), but has 
no effect at 0 Hz (A). See Discussion Lustre judgements for details. 
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%PARAMETERS FOR THE LUSTRE-OVER-TIME MODEL (Gamma noise distrib for lum) 
noiseCV = 0.7; % Luminance noise as CV = SD/mean; 0 on the first loop (j==1) 
IntervalDurSEC = 40; 
IntervalDurMsec = 1024*IntervalDurSEC; 
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% expt_type = 'Monocular'; main_figno = 51; 
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5.7 Lustre judgements 
 
Despite much observation and discussion, the 
relations between lustre, gloss, rivalry and 
transparency are poorly understood, and there have 
been few quantitative studies to define the 
necessary conditions for lustre. Anstis (2000) asked 
subjects to rate their impressions of lustre for 
dichoptic pairs of achromatic spots, with different 
luminances that were higher and/or lower than the 
background luminance. Several background levels 
were used. We converted his spot luminances to 
Michelson contrast (cL,cR), and plotted the mean 
lustre ratings in binocular contrast space (Fig. 12A). 
Lustre was highest when the spots had opposite 
contrast polarity, as our model predicts, but was 
also fairly high at adjacent points lying in the first 
and third quadrants, where contrasts were different, 
but of the same sign. RLUSTRE (by design) predicted 
lustre (dashed curve) only when the spots had 
opposite contrast polarities - at just one point in the 
2nd quadrant for this experiment. But when noise 
was added to all luminance levels (both target and 
background; gamma distribution, s.d. = 0.7*mean) 
this perturbed the contrast values, and so some 
same-polarity pairs became opposite-polarity, at 
least some of the time. Averaged over many 
samples, the grey curve shows that the resulting 
mean value of RLUSTRE fitted the data very 
satisfactorily. We conclude that lustre is mainly 
induced by opposite signs of contrast, and that 
luminance noise can explain why lustre diffuses 
into the same-polarity quadrants (Fig. 12A).  As 
Helmholtz remarked: "If one eye sees black, and 
the other eye sees white [in corresponding 
locations] the impression will be that of a surface 
shedding a pale lustre" (von Helmholtz, 1925, 
p.514). 
 
Anstis (2000) also examined 'monocular lustre', 
where the same spot was shown to both eyes, but 
spot contrast switched between c1 and c2 over time 
at 16 Hz. The lustre ratings (Fig. 12B) showed a 
very similar pattern to binocular lustre. Monocular 
lustre can thus occur when different contrasts are 
alternated over time. In our model two separate 
signals, R+ and R-, carry information about 
opposite signs of contrast, and if these signals are 
temporally smoothed then the alternating R+ and R- 
signals will come to overlap in time, and so 
generate a lustre response. To test this idea against 
Anstis's data, we implemented a dynamic version of 
the model that assumed temporal smoothing of the 
R+ and R- signals (low-pass filtering; integration 
time about 50 ms) before RLUSTRE was computed. 
This smoothing produced a time-varying lustre 
response, and lustre rating was taken to be 
proportional to the time-averaged value of RLUSTRE. 
With the input luminances perturbed by noise as 
before, there was a good fit between model and data 
(Fig. 12B).  This provides some direct support for 
our model of lustre (Fig. 3), and shows how 

binocular and monocular lustre can arise from the 
same set of mechanisms. 
 
5.8 Limitations & future challenges 
 
Like many previous models, the present one treats 
the ocular contrasts cL, cR as the system's input 
values. Luminance contrast, for this model, is a 
pointwise primitive quantity. We have not tried to 
give any account of how the retina derives these 
contrast values from photoreceptor responses, and 
we have not explicitly represented the variation of 
stimuli and responses across visual space. The 
present model therefore cannot deal with phase 
disparities other than 0 and 180O. A more complete 
model would include the spatial (x,y) dimensions, 
and could then address other types of experiment 
such as the judgment of binocular spatial phase 
(Ding & Sperling, 2006) or the binocular fusion of 
edges (Georgeson & Wallis, 2014). Meese & Baker 
(2011) on the other hand, did include early, 
monocular spatial filtering in their model for 
binocular summation and spatial summation of 
contrast. They concluded that local, phase-specific, 
binocular summation of contrast responses precedes 
a second-stage of broader spatial summation that 
generalizes across both spatial phase and spatial 
position, and is followed by a third stage output 
nonlinearity. Their first and third stages correspond 
closely to the two-stage binocular channel of Meese 
et al (2006) that is also embedded in the present 
model.  
 
Why should we need to include parallel monocular 
channels, when no previous study of contrast 
discrimination has needed them?  This is a key 
question, and we think the answer is that we used a 
more comprehensive range of test directions in 
binocular contrast space, around each pedestal point 
(Fig. 2B). It was the conditions involving contrast 
decrements (9 and 11) - not tested in any previous 
studies - that revealed the need for monocular 
channels. We also showed that evidence from 
contrast matching experiments (Fig. 10) is not 
consistent with our binocular channel's response 
surface alone (Fig. 5B), but directly favours the 
RMAX surface that emerges from max-like selection 
across the monocular and binocular channel 
responses.   
 
We recognize that other front-ends to the model 
might be possible. A set of input equations that 
combined left and right eye inputs in a different 
way, but gave rise to the same R+ and R- maps, and 
hence the same RMAX and RMIX maps, would be 
functionally equivalent to our model (Fig. 5). For 
example, the DSKL model 3c (Ding et al, 2013), an 
elaborated version of the Ding & Sperling (2006) 
model, gives a good account of dichoptic spatial 
phase and contrast perception. It produces the 
appearance of winner-take-all (WTA) behaviour 
between the eyes (similar to the rounded-square 
binocular-response contours of Fig. 6A or Fig.10), 
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but unlike our model it does not take the max over 
monocular and binocular channels to achieve this 
WTA effect. Instead the DSKL model re-shapes the 
left and right eye input amplitudes before binocular 
summation, using a combination of interocular 
suppression and interocular facilitation or gain 
enhancement.  This approach readily handles 
dichoptic spatial phase perception, but at the cost of 
two extra free parameters, along with the 
conceptual complexity of several interacting gain-
control mechanisms.  
 
It would be parsimonious if the complexities of 
binocular interaction could all be handled in this 
way, by elaborating the mechanism of binocular 
summation. But antiphase gratings reveal a limit to 
this approach. A core assumption (Ding & Sperling, 
2006; Ding & Levi, 2016) has been that only the 
summed output is available (Fig. 1a). On this view, 
binocular interactions of various kinds modify the 
monocular signal amplitudes, and these modified 
sine-wave signals are then summed arithmetically. 
But if gratings of equal contrast are presented to the 
two eyes then whatever forces shape the left- and 
right-eye amplitudes they must by symmetry 
remain equal. And those equal-and-opposite 
sinewaves must then completely cancel each other 
in the sum.  Hence antiphase gratings should be 
invisible, but they are not. Detection thresholds 
(Fig. 11) and contrast-matching data imply that we 
see one or other of the monocular contrasts (Baker 
et al., 2012). An additional mechanism seems 
inevitable. 
 
We have shown here that having separate 
mechanisms for opposite polarities prevents such 
cancellation and, via the contrast and lustre cues, 
enables a good account of antiphase contrast 
discrimination. This was true whether the 
monocular channels were explicitly included (Fig. 
4) or not (Fig. S7).  Nevertheless, the monocular 
channels in our model were essential: they created 
the winner-take-all effect that was vital for 
understanding both contrast discrimination and 
matching for dichoptic in-phase gratings. And in a 
variant of our model where antiphase cancellation 
was included (Eqn. 7a, above), the monocular 
channels became essential for antiphase conditions 
as well. 
 
Future work, however, should examine another 
interesting possibility - that binocular difference 
channels (Cohn & Lasley, 1976; Cohn, Leong, & 
Lasley, 1981; Jennings & Kingdom, 2016; May, 
Zhaoping, & Hibbard, 2012) play a role in these 
discrimination tasks. In one sense, our model 
already contains a 'difference channel', because 
RLUSTRE is a response to the presence of opposite 
contrasts in the two eyes, but it does not respond 
more generally to a simple contrast difference 
where the polarity is the same in both eyes. Another 
possibility is that the monocular channels in our 
model might be replaced by opponent channels that 

compute ocular contrast difference (L-R, and R-L).  
This has yet to be explored. 
 
The experiments here are spatially one-
dimensional; they do not consider 2-D interaction 
effects such as cross-orientation suppression. 
Previous experiments have shown that cross-
orientation suppression takes place both within and 
between the eyes, placing those monocular and 
dichoptic suppressive influences at stage 1 of the 
two-stage model (Baker, Meese & Summers, 2007; 
Meese & Baker, 2009). This is readily 
accommodated by stage 1 of the binocular pathway 
here, though whether the purely monocular 
channels exhibit cross-orientation suppression also 
remains to be explored.   
 
The present model has no spatial dimension, and 
we expect that extending it from a model of 
contrast coding to a model of binocular spatial 
vision will lead to new and interesting theoretical 
developments (cf. Ding & Levi, 2016). 
 
6 Conclusions 
 
The 6-channel 2-cue model described here (Fig. 3) 
accounts very well for eleven forms of binocular 
contrast discrimination function. The model 
subsumes our earlier one (Meese et al, 2006) that 
had binocular summation and interocular 
suppression but no monocular channels in parallel 
with the binocular ones. With only two extra free 
parameters (n,a) it explains several key effects 
where the earlier model failed. It is parsimonious 
because contrast gain parameters (m,s,z,p,q) are the 
same for all channels. Lustre emerged as an 
important additional cue in some, but not all, 
antiphase discrimination tasks.  
 
In brief, the theoretical questions we posed about 
contrast coding in binocular vision, and the model-
based answers we propose, are these: 
 
1. Do we have separate, parallel, monocular & 

binocular pathways?  Yes, up to a point 
2. Do we have separate pathways for opposite 

contrast polarities?  Yes 
3. Do the monocular pathways have suppressive 

interactions between eyes?  No 
4. Do the binocular pathways have suppressive 

interactions between eyes?  Yes 
5. Is binocular summation polarity-specific?  Yes 
6. Does binocular summation entail cancellation 

between opposite polarities? Can't tell 
7. Is interocular suppression polarity-specific? 

Can't tell 
8. Do we have independent perceptual access to 

these early pathways?  No, only to the max 
9. How many perceptual outputs or cues are used 

in these tasks? Two: contrast and lustre  
10. Do we have independent perceptual access to 

these two cues? Yes 
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Appendix 1 

 
Model equations 
 
These equations define the model fitted to the data 
in Figures 4-9. Possible variations on  this model 
are considered in the Discussion section Model 
variants. 
 
Input: Polarity-specificity 
We first separate each eye's contrast value into two 
sign-specific parts, both of which are non-negative: 
 

; 

; 

 
and similarly for the right eye. 
 
Stage 1     
• The first stage of the polarity-specific binocular 
channels is driven by the contrast in one eye, but 
has divisive contrast gain control from the same 
polarity in both eyes: 
 

𝑟9C =
𝑐9C J

𝑠 + 𝑐9C + 𝑐=C
, 	𝑟9E =

𝑐9E J

𝑠 + 𝑐9E + 𝑐=E
								 1  

 

𝑟=C =
𝑐=C J

𝑠 + 𝑐9C + 𝑐=C
, 		𝑟=E =

𝑐=E J

𝑠 + 𝑐9E + 𝑐=E
								 2 . 

 
Note that each of these responses can be de-
composed into two parts, an ocular weighting term 
driven by relative contrast in the two eyes, coupled 
with a compression of the input contrast, where all 
contrast terms refer only to the preferred polarity.  
Thus we can re-write 𝑟9Cas: 
 

𝑟9C = 𝑤9C(𝑐9C	)JEU													(3) 
 
where 

𝑤9C =
𝑐9C

𝑠 + 𝑐9C + 𝑐=C
										(4) 

 
and similarly for the other 3 expressions of Eqns 1, 
2. 

 
• The first stage of polarity-specific monocular 
channels for Left and Right eyes is the same as 
equations 1, 2 above, except that interocular 
suppression is deleted: 
 

, ,      (5) 

,        (6). 

 
Stage 2 
 
• The second stage of the binocular channel sums 
like-polarity responses from the two eyes (e.g. 
𝑟9C, 𝑟=C ), and the sum is subjected to a response 
nonlinearity (Legge & Foley, 1980), which acts like 
a smooth threshold at low response levels and a 
power law transformation with exponent (p-q) at 
high response levels: 
 

𝑅DC =
(𝑟9C + 𝑟=C)P

𝑧 + (𝑟9C + 𝑟=C)R
, 		𝑅DE

=
(𝑟9E + 𝑟=E)P

𝑧 + (𝑟9E + 𝑟=E)R
		.						(7) 

 
From Eqns. 3 and 7, we note that power-law 
transformations at stages 1 and 2 are in series.  In 
simple monocular or binocular viewing this is 
equivalent to a single power-law whose exponent is 
the product of the two exponents (m-1)(p-q).   
 
• The second stage of the monocular channels is 
like Eqn. 7, but opposite-eye terms are again 
deleted: 
 

𝑅9C =
(𝑢9C	)P

𝑧 + (𝑢9C	)R
, 		𝑅9E =

(𝑢9E	)P

𝑧 + (𝑢9E	)R
	,							(8) 

  

𝑅=C =
(𝑢=C	)P

𝑧 + (𝑢=C	)R
, 		𝑅=E =

(𝑢=E	)P

𝑧 + (𝑢=E	)R
	.							(9) 
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Signal selection 
 
MAX operators play an important role in 
hierarchical models of visual object recognition 
(Riesenhuber & Poggio, 1999), and their 
implementation in cortical circuits of V1 and V4 is 
an active area of theoretical and physiological 
research (Gawne & Martin, 2002; Lampl, Ferster, 
Poggio, & Riesenhuber, 2004; Yu, Giese, & 
Poggio, 2002). As introduced above, we resolved 
the three responses (subscripted L,R,B) into one, via 
a MAX-like operator, and did this separately for 
each polarity to create just two polarity-specific 
responses. We implemented the MAX operation via 
a Minkowski sum (power sum) with a high 
exponent n.  Thus the two responses are: 
 

 ,     

.    (10)
 

 

 

 
 
Figure A1.  Minkowski sum emulates the mean output of 
a noisy MAX operator. We consider combining two 
variables (envisaged as neural responses) y1, y2 (blue, 
green). At each point x, we combine y1, y2 in two ways to 
produce an output y: (i) as a Minkowski sum with no 
noise, 𝑦 = (𝑦U[ + 𝑦\[)U/[  (coloured curves, where 
exponent n=4,6,30), and (ii) as the output of a MAX 
operator, 𝑦 = 𝑚𝑎𝑥(𝑦U + 𝜖U, 𝑦\ + 𝜖\) , averaged over 
many independent samples 𝜖U, 𝜖\	of zero-mean Gaussian 
noise N(0,si). Black dashed curves show that, provided 
n>2, this mean output of the MAX operator closely 
matches the Minkowski sum when the noise standard 
deviation si is proportional to the mean input yi and 
inversely related to the Minkowski exponent n:  𝜎a =
(4/3)𝑦a/𝑛, (𝑖 = 1,2). Error bars at y1=y2=1 show ±1 s.d. 
of the noise for n=30. Lower exponents in the Minkowski 
sum correspond to higher noise levels in the MAX 
operator, and in both cases the combined output value is 

higher than the simple noise-free maximum, 
𝑚𝑎𝑥(𝑦U, 𝑦\) . Deviation of y from the simple max is 
greatest when 𝑦U = 𝑦\ , and at this point 𝑦 = 2U/[𝑦U . 
Equivalently, we may say that for two equal signals the 
summation gain factor is 21/n. Conclusion: when a model 
uses the Minkowski sum as a formalism for combining 
signals, it could be interpreted equally well as the 
nonlinear sum (power sum) of the signals, or as the mean 
output of a MAX operator with noisy inputs. 
 
We found that the Minkowski sum (with n as a free 
parameter in the model fitting) gave much better 
fits than a simple max operation. We show in Fig. 
A1 that there is an interesting and perhaps 
unsuspected relation between the Minkowski sum 
and the max operator. The Minkowski sum (with no 
noise) is almost exactly equal to the mean output of 
a true max operator where each of the input signals 
is noisy (Fig. A1).  Higher noise tends to raise the 
mean output in a way that is equivalent to a lower 
Minkowski exponent n.  Thus the response R+ or 
R- in eqn. 10 may be interpreted as the average of 
the max of 3 noisy input signals. This average is 
slightly higher than the max of the 3 inputs without 
noise and this feature seems to be important in 
capturing the observed human performance. Fig. S1 
(Supplementary Material) gives some further 
insight into this. 
 
Perceptual cues: 1. Contrast 
 
To derive a code for contrast from the six stage 2 
outputs, we take the max (see rationale above) and 
this can be implemented as a second Minkowski 
sum with exponent n, taken over R+ and R- (see Fig. 
3): 

         (11),  

 
where n is expected to be large (eg. n>20). This 
single number, RMAX, is the model's internal 
representation or code for luminance contrast. 
 
Perceptual cues: 2. Lustre 
 
Following our rationale and formulation of lustre 
(above) we used a general Minkowski sum for 
pooling the two polarity-specific responses: 
 

       (12),  

 
where a is a free parameter, expected to be 
relatively small (eg. a<5) to give more substantive 
pooling than the MAX operator. We then defined 
the response to lustre as: 
 

𝑅9:;<=> = 𝑅?@A − 𝑅?BA									(13). 
 
Eqns. 12,13 satisfy our requirement for selectivity 
of RLUSTRE. For a non-lustrous input (ie. opposite 
polarities not present), either R+ = 0 or R- = 0, and 
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∑
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1/n

RMIX = (R+ )a + (R− )a{ }
1/a



Georgeson, Wallis, Meese & Baker (2016) Vision Research 
doi: 10.1016/j.visres.2016.08.001 

This post-print version was created for open access dissemination through institutional repositories. 
 

27 

from Eqns. 11,12 this implies 𝑅?@A = 𝑅?BA, hence 
𝑅9:;<=> = 0, as required. 
 
Decision processes: sensory cues, noise & observer 
strategies 
 
Discrimination performance (d') for a given (test, 
pedestal) pairing can be defined separately for the 
two cues: 
 
𝑑′fgh<=B;< = 𝑎𝑏𝑠[	𝑅?BA(𝑡𝑒𝑠𝑡 + 𝑝𝑒𝑑) −
𝑅?BA(𝑝𝑒𝑑)]/𝜎								(14), 
 
𝑑′9:;<=> = 𝑎𝑏𝑠[	𝑅9:;<=>(𝑡𝑒𝑠𝑡 + 𝑝𝑒𝑑) −
𝑅9:;<=>(𝑝𝑒𝑑)]/𝜎				(15). 
 
This is a late-noise model, in which both cues are 
perturbed by additive Gaussian noise. Observed 
performance (d'OBS) depends on how efficiently the 
observer can make use of the two cues. We 
assumed that the two cues were independently 
noisy but with the same noise variance (s2), and 
that the observer could make good use of both cues: 
 

𝑑′gD; = 𝑑′fgh<=B;<
\ + 𝑑′9:;<=>

\						(16). 
 
This quadratic sum represents optimal use of the 
cues (Green & Swets, 1966). It is an important, 
parameter-free, benchmark but was not a crucial 
assumption for our dataset. In practice, we found 
almost the same model performance with sub-
optimal cue combination, represented by a 
Minkowski sum of d' values with higher exponents, 
from 2 (optimal) to 200 (representing the max of 
the two d' values). The exponent value is most 
crucial when the two d' values are very similar and 
that occurred only in condition 4. 
 

Fitting the model 
 
The equations fully define the model, and allow us 
to compute model performance (d'OBS) for any 
specified test condition with pedestal contrast C and 
contrast change DC. For each C, d' was computed 
for a wide range of values of DC at 1.3 dB intervals, 
and the threshold value of DC, where d'=1, was 
found by interpolation. Root-mean-square (RMS) 
error between model and observed thresholds was 
computed in dB, and model parameters were 
adjusted by the Simplex algorithm (fminsearch in 
Matlab) to find the lowest RMS error. Multiple 
fitting runs (usually 20) were done with starting 
values randomly jittered around a plausible set of 
initial values, to ensure that the best-fit did not 
represent a local minimum in the error surface.  
There were in principle 8 free parameters 
[n,m,s,p,q,z,s,a]. Six of these had the same 
meaning as in our earlier binocular-channel model 
(Meese et al, 2006), while two new ones (n, a) 
defined the form of pooling in the max and mix 
operators (Eqns. 11, 12). A ninth free parameter (z2) 
was a pragmatic addition. Conditions 9-13 were 
drawn from our study in which stimulus duration 
was 100ms rather than 200ms (see Table 1) and, 
perhaps for this reason, contrast thresholds in the 
low pedestal-contrast region (below 1%) were 
about 3dB higher than observed for conditions 1-8. 
We found that just one change - allowing a higher 
value (z2) in place of z for conditions 9-13 - was a 
simple and sufficient compensation for the 
procedural differences between the three studies 
that formed our dataset. Great explanatory power, 
including the power to reject unsatisfactory 
explanations, was gained by requiring the model to 
fit data from so many different conditions (total 
N=111 data points) simultaneously. 
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Supplementary Material 
 

 
Figure S1.  Diagnostic diagrams for the fitted model reveal which signals are important in which conditions.  Each panel 
shows the six stage-2 responses (thin curves, red, green, blue; see legend), as a function of DC for a given task (conditions 1-
11) at the highest pedestal contrast (32%). Some responses may be low or zero, hence off the scale. The 6 channel responses 
are accessible to perception only via the MIX and MAX operators (Fig. 3) that lead to outputs RMAX and RLUSTRE. Thick grey 
curve shows the output RMAX, while the thick purple curve that would show RLUSTRE is well below the plotted range here (but 
shown in Figure S2). The dashed horizontal grey lines show the RMAX output level for the pedestal-only interval (DC=0).  Red 
spot marks the discrimination threshold point, in cases where RMAX is a strong determinant of performance.  In these cases, 
RMAX deviates from its own pedestal level by an amount approximately equal to the noise level, representing a threshold level 
of discrimination performance, d'=1. In conditions 6 and 8, the red spot is absent because RLUSTRE was the important cue (see 
Fig. S2). Note how in some tasks (7 and 11) sensitivity is quite poor (threshold DC is high) because potentially useful signals 
(B+, blue; L+, red) are largely vetoed by the first MAX operator. 
 

 
Figure S2.  Diagnostic diagrams exactly like Fig S1, but plotting a low response range to illustrate RLUSTRE. Dashed purple 
lines are the lustre response to pedestal-only. Six conditions (1,2,7,9-11) involved no negative polarity input, and so the 
negative-channel responses, along with RLUSTRE, are zero. But in the five conditions (3,4,5,6,8) that involve antiphase 
contrasts, there were significant changes (increments or decrements) in the lustre response with increasing DC, and in two or 
three of these (conditions 6,8 and sometimes 4), lustre was the important cue for discrimination, according to the model. 
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Figure S3.  Model psychometric functions from the combined use of contrast and lustre responses shown in Figs. S1, S2. 
Pedestal contrast 32%. Grey spot marks the conventional discrimination threshold for DC (75% correct). 

 
Figure S4.  Why not use a perfect max operator ? This figure is similar to Fig. 6 in main text, but with one change to the 
model: parameter n = 300 instead of n = 31. This created an almost perfect max operator instead of the 'soft' or noisy max 
operator (Fig. A1).   This gave the RMAX response surface sharper corners. This generally had a minor influence, except for 
condition 11 at the two highest contrasts (panel A), where the surface was now so flat in the direction of change (white 
vector) that predicted performance saturated and could never reach threshold. In short, the 'soft max' operator (n=31) fits 
better, and could be interpreted as the operation of a 'hard' max along with noisy inputs. 
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Figure S5.  Difference maps show the distinct regions of 
binocular contrast space within which the model's 
monocular and binocular channels delivered the contrast 
cue, RMAX. (A) bin-mon response differences mapped 
over a broad contrast range (0-50%), and (B) zoomed-in 
to low contrasts (0-5%). Yellow-red regions show where 
the binocular channel response was greater, and hence 
determined the value of RMAX.  Cyan-blue regions show 
where the monocular response was greater. White 
contour marks the boundary between them (i.e. bin-mon 
difference = 0).  Note how at high contrasts (A) binocular 
responses were dominant only when left and right eye 
contrasts were nearly equal. At low contrasts (B) the 
influence of binocular responses expanded to cover a 
wide range of left-right contrast pairings. When polarities 
were opposite in the two eyes, mon and bin responses 
were equal everywhere in the 2nd and 4th quadrants 
(light green). Defining the difference map: Rmon was 
defined at each (cL,cR) point as the largest of the 4 
monocular channel responses, i.e. max(RL

+, RR
+, RL

-, RR
-), 

and similarly Rbin was defined as max(RB
+, RB

-). The 
difference (colour-coded) is shown in units of the noise 
standard deviation, i.e. as (Rbin-Rmon)/s. For reference, 
black contours are the iso-response contours of RMAX, 
whose heights are spaced in steps of size s.  

 
 
 
 

 
 
Figure S6.  Lustre cue was necessary for a good model fit. Same as Figure 4 of the main text, except that the model was re-
fitted with the response to Lustre removed (set to zero). Model performance now depended solely on the Contrast cue (RMAX). 
Although overall R2 was high (R2=0.916, N=111; RMS error = 2.63 dB), this model showed a poor fit to the data in 
conditions 4, 9, 11, and to some extent in 5, 6, 8. An F-test comparing the fits of the two nested models (nine free parameters 
with Lustre vs eight without Lustre) was hugely significant [F(1,102) = 422.9, P<0.00001], meaning that Lustre significantly 
improved the fit. Best-fitting parameters with no Lustre were: n = 6.096; m = 1.396;  s = 1.642; p = 5.275; q = 4.340; z = 
0.021; s = 0.144; a =  (irrelevant; no effect); z2 = 0.167. 
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Figure S7.  Monocular channels were needed for a good fit to the whole dataset. Like Fig. 4 of the main text, except that the 
model was re-fitted with monocular channel responses set to zero at stage 2. Model performance depended on the Contrast 
and Lustre cues delivered by the binocular channels. Overall R2 was high (R2=0.942, N=111; RMS error = 2.19 dB), and this 
model showed a good fit to the data in all conditions except 9 and 11 where the fit was poor. No nested F-test comparison 
with the full model was possible in this case, because both models had the same number of free parameters, and differed only 
in the presence or absence of the monocular channels. Best-fitting parameters without monocular channels were: n=32.25; 
m=1.29;  s=4.25; p=4.50; q=3.58; z=0.0023; s=0.0984; a=4.09; z2=0.027. 
 
 
 

 
Figure S8.  To confirm the effects shown in Figures S6, S7 the model was re-fitted with both changes together: no Lustre 
and no monocular channels. Model performance depended solely on the Contrast cue (RMAX) delivered by binocular channels. 
Overall R2 was high (R2=0.917, N=111; RMS error = 2.61 dB), but this model again showed a poor fit to the data in 
conditions 4, 9, 11, and to some extent in 5, 6, 8, rather similar to the effect of removing Lustre alone (Fig. S6). An F-test 
comparing the fits of the two nested models (this one vs the full model of Fig. 4) was hugely significant [F(1,102) = 415.0, 
P<0.00001]. Best-fitting parameters were: n=6.301; m=3.186;  s=28.56; p=1.221; q=1.055; z=0.0696; s=0.119; 
a=(irrelevant; no effect); z2=0.253. 
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Figure S9.  Model response surfaces, like Fig. 5 of the main text - except that the model was re-fitted with binocular 
channels that responded to the difference between opposite-polarity inputs (Eqn. 7a). In panel B, note the cancellation of 
binocular-channel responses to inputs that have opposite-polarity (quadrants 2 and 4). However, because of the max operator, 
the monocular responses win the day, and this cancellation does not carry through to later response stages (D,E,G,H), and has 
almost no effect on fitted parameters (F) or predicted thresholds. We therefore cannot determine from the data whether such 
cancellation occurs or not; see Sec 5.5 of main text. 
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