
A Novel Adaptive Weight Selection Algorithm for Multi-Objective
Multi-Agent Reinforcement Learning

Kristof Van Moffaert, Tim Brys, Arjun Chandra, Lukas Esterle, Peter R. Lewis and Ann Nowé

Abstract— To solve multi-objective problems, multiple re-
ward signals are often scalarized into a single value and further
processed using established single-objective problem solving
techniques. While the field of multi-objective optimization has
made many advances in applying scalarization techniques to
obtain good solution trade-offs, the utility of applying these
techniques in the multi-objective multi-agent learning domain
has not yet been thoroughly investigated. Agents learn the
value of their decisions by linearly scalarizing their reward
signals at the local level, while acceptable system wide behaviour
results. However, the non-linear relationship between weighting
parameters of the scalarization function and the learned policy
makes the discovery of system wide trade-offs time consuming.

Our first contribution is a thorough analysis of well known
scalarization schemes within the multi-objective multi-agent
reinforcement learning setup. The analysed approaches intel-
ligently explore the weight-space in order to find a wider
range of system trade-offs. In our second contribution, we
propose a novel adaptive weight algorithm which interacts with
the underlying local multi-objective solvers and allows for a
better coverage of the Pareto front. Our third contribution is
the experimental validation of our approach by learning bi-
objective policies in self-organising smart camera networks. We
note that our algorithm (i) explores the objective space faster
on many problem instances, (ii) obtained solutions that exhibit
a larger hypervolume, while (iii) acquiring a greater spread in
the objective space.

I. INTRODUCTION

Many optimization problems that need to be solved nowa-
days are in essence tasks that involve more than one ob-
jective. Multi-objective reinforcement learning (MORL) is
an extension to reinforcement learning (RL) where the envi-
ronment provides the agent with multiple feedback signals.
Usually in MORL, a weighted linear scalarization function is
used to translate the original multi-objective problem into a
single-objective problem. The weight parameters wo 2 [0, 1]
are preference factors that identify the relative importance
of objective o, with

Pm
o=1 wo = 1 for m objectives. The

goal of MORL is to search the policy space and eventually
find policies that provide different trade-offs between the
objectives. In a multi-agent environment however, finding
system-wide trade-offs is still an open question.

Let us highlight the difficulties by considering the follow-
ing example. A system engineer wants to optimize packet
latency and energy consumption in the routing of his wireless

Kristof Van Moffaert, Tim Brys and Ann Nowé are with the De-
partment of Computer Science, Vrije Universiteit Brussel, Brussels, Bel-
gium (email: {kvmoffae,timbrys,anowe}@vub.ac.be). Lukas Esterle is
with the Alpen-Adria Universität Klagenfurt and Lakeside Labs (email:
lukas.esterle@aau.at). Arjun Chandra is with the University of Oslo (email:
chandra@ifi.uio.no) and Peter R. Lewis is with Aston University (email:
p.lewis@aston.ac.uk).

sensor network. In such problems where multiple objectives
need to be optimized at the same time, it is not always clear
from the problem description (if any) how the objectives
influence each other and which parameter values are required
to obtain the requested balance. Let us say that the engineer
is interested in policies that focus on optimizing the packet
latency for 60% and 40% on reducing the energy consump-
tion. Naively, the engineer would set w1 equal to 0.6 and w2

to 0.4 for the two objectives. A first difficulty arises as the
linear scalarization function has the fundamental limitation
that the correspondence between weights and policies is
not clear. More precisely, a uniform sampling of weights
usually does not result in a uniform sampling of the Pareto
optimal set [1], due to different scalings, and the shape
of the Pareto front. Secondly, the wireless sensor network,
being a cooperative multi-agent infrastructure, introduces an
additional level of complexity as the agents can influence
each other. The quality of the global solution depends on the
local interactions by these agents. These problems require
system designers to spend a lot of time on fine-tuning the
scalarization weights, in order to find a range of trade-off
policies they can then choose from.

The contributions in this paper are threefold. Firstly, we
analyse several algorithms that explore the weight space
in either a predefined or adaptive manner to obtain trade-
off solutions given a limited number of scalarizations to
try. Our results highlight their shortcomings in terms of
spread in the objective space. Secondly, we propose a new
adaptive weight algorithm (AWA) which obtains improved
trade-off solutions in terms of hypervolume and spread, when
compared to the state-of-the-art. Finally, we apply these
algorithms on a multi-objective multi-agent smart camera
problem, where the goal of the agents is to cooperate in
order to optimize two system-wide conflicting objectives.
We are able to improve over the standard weight selection
procedures on several quality indicators from the multi-
objective optimization field. AWAs guide the multiple agents
from the top-down towards executing their individual action
selection procedures, giving rise to highly expressive system
wide behaviours. This expressiveness can help practitioners
with an insightful deployment of agents within real world
scenarios that resemble the ones analysed.

This paper is organized as follows. In Section II, we de-
scribe necessary concepts such as multi-objective reinforce-
ment learning. In Section III, we empirically evaluate the
current methods in a multi-objective multi-agent simulator
and highlight their shortcomings. In Section IV, we present
our novel algorithm for steering the weights of the underlying

optimization algorithm along with experimental results. In
Section V, we summarize the paper and form conclusions.

II. RELATED WORK

A. Multi-objective reinforcement learning
Multi-objective reinforcement learning (MORL) is an ex-

tension to standard reinforcement learning where the envi-
ronment consists of two or more feedback signals, i.e.

R(si, ai) = [R1(si, ai), . . . , Rm(si, ai)] (1)

where m is the number of objectives. In MORL, a solution
is a policy ⇡, evaluated by its expected return J⇡ , a vector
of expected discounted returns for each objective. Thus,

J⇡ ⌘

"
E

" 1X

t=0

�

t
R1(st,⇡(st))

#
, . . . , E

" 1X

t=0

�

t
Rm(st,⇡(st))

##

(2)
Since the environment now consists of multiple objectives,
conflicts can arise when trying to simultaneously optimize
the objectives. In such cases, trade-offs between these objec-
tives have to be learnt, resulting in a set of policies. A policy
x1 is said to strictly dominate another policy x2, i.e. x2 � x1,
if performance on each objective by x1 is not strictly less
than the corresponding performance of x2 and performance
in at least one objective is strictly greater. If x1 improves on
x2 on some objective and x2 also improves on x1 on one or
more objectives, x1 and x2 are said to be incomparable. The
set of non-dominated policies is referred to as the Pareto
front. In [11], a general framework for MORL algorithms
was proposed that extends the scalar Q̂-values to Q̂-vectors
that store a Q̂-value for each objective, i.e.

Q̂(s, a) =

"
Q̂1(s, a), . . . , Q̂m(s, a)

#
(3)

Current approaches in MORL often use scalarization func-
tions [11], [10] to reduce the dimensionality of the underlying
multi-objective environment to a single scalar. Scalarization
functions often imply that an objective o is associated with
a weighted coefficient, which allows the user some control
over the nature of the policy found by the system, by
placing greater or lesser emphasis on each objective. In a
multi-objective environment, this trade-off is parametrized
by wo 2 [0, 1] for objective o and

Pm
o=1 wo = 1. In most

cases, a linear combination of the objectives is considered,
i.e.

Pm
o=1 wo · Q̂o(s, a). Usually, only a limited set of

scalarizations can be tried and evaluated. Therefore, the goal
is to select these scalarizations so that the resulting policies
are not only (near) optimal but also spread in the objective
space. The spread indicator is important to guarantee that
the set of policies is not clustered into particular areas of the
objective space, but identifies diverse trade-offs that the user
can choose from. In the cooperative multi-agent case, agents
must coordinate their local actions in order to maximize
system-wide performance, i.e. actions take place at the local
agent level, while performance is measured at the global
level.

B. Adaptive weight algorithms

The weights of the linear scalarization function, however,
only provide minimal guidance to the learning algorithm
and only in very limited cases does an even spread of wo

guarantee an even spread on the Pareto front. In general,
specifying particular weights does not guarantee that the
solutions found are in correspondence. Using the example
of Section I, weights 0.6 and 0.4 do not guarantee that the
final solution will have a performance focussed 60% on opti-
mizing the packet latency and 40% on energy consumption.
Das and Dennis argue [1] that it is not possible to know the
specific weights needed to obtain evenly spread solutions
on the Pareto front without actually knowing the shape of
the Pareto front. Therefore, researchers in the multi-objective
optimization field and more precisely local search, have
investigated AWAs that alter the weight parameter based on
several measures. A recent proposal is two-phase local search
(TPLS) [8]. TPLS is a powerful algorithmic framework that
comprises two phases. In a first phase, a single-objective
local search algorithm obtains a high quality1 solution for
one of the objectives, while in the second phase this solution
serves as a starting point for a sequence of scalarizations, i.e.
weights. The goal is to find a set of high quality yet diverse
trade-off solutions, by evaluating a sequence of weights.
Some TPLS variants use a predefined sequence, while others
select the new weight as a function of the solutions already
found, and their coverage of the Pareto front. We summarize
these existing variants below.

TPLS. The standard procedure defines a sequence for w1

ranging from 0 to 1 with steps of 1
Nscalar

, where Nscalar

determines the stepsize. The weight for the other objective,
i.e. w2 is calculated by w2 = 1 � w1 for the bi-objective
case. However, although the method performs a uniform
sampling of the weight space, there is no guarantee that
the resulting solutions will yield a uniform spread in the
objective space [1]. Another crucial aspect of TPLS is the
sequential order of weights. When TPLS is stopped prema-
turely, it will not have sampled the latter part of the weight
space, potentially leaving a part of the Pareto front uncharted.
Hence, TPLS does not produce solutions as good as possible
as fast as possible, i.e. it has poor anytime behaviour.

RA-TPLS. To overcome these problems, the Regular
Anytime TPLS algorithm (RA-TPLS) was proposed [2]. The
algorithm explores the weight space in a divide-and-conquer
manner by progressively exploring finer levels k. RA-TPLS
starts at evaluating w1 = 0 and w1 = 1 at level 0. At
the next level, when k = 1, w1 2 {0.5}. At level k = 2,
w1 2 {0.25, 0.75} and so forth. As the search continues,
the coverage of the weight space is refined; at any time, the
search effort is (almost) evenly distributed across the possible
weight settings.

1In multi-objective problems, the quality of a set of solutions is often
measured in terms of the hypervolume measure which calculates the volume
the Pareto dominating solutions occupy in the objective space for a given
reference point [8], [9]

AN-TPLS. The previous two methods generate weights in
a predefined manner. However, sometimes the shape of the
Pareto front is irregular and the search direction should be
adapted by taking into account the actual shape of the Pareto
front. Adaptive Normal TPLS defines a norm to identify the
largest gap in the coverage of the Pareto front [2]. Between
all the currently obtained trade-offs, the pair with the largest
gap according to the norm specified (Euclidean distance in
this variant) is used to calculate the next weight, aiming to fill
this largest gap. The new weight w1 is perpendicular to the
line between the objective function f of solutions s1 and s2
defining the largest gap in the objective space [2] (assuming
s1 and s2 are normalized by the smallest and largest currently
found objective values):

w1 =
f2(s1)� f2(s2)

f2(s1)� f2(s2) + f1(s2)� f1(s1)
(4)

AN-TPLS-HV. An extension to the standard adaptive
TPLS algorithm of above uses an alternative norm to specify
a distance measure. The hypervolume measure is employed
to measure the size of the gap in the Pareto front [2]. Given
two solutions s1 and s2, the hypervolume measure calculates
the rectangle defined in the objective space:

HV (s1, s2) = |(f1(s1)� f1(s2)) · (f2(s1)� f2(s2))| (5)

Although these methods were developed with local search
algorithms in mind, they can be adapted to interact with other
optimization algorithms, such as reinforcement learning.
Note that there exist methods that can efficiently calculate
Pareto front policies and their corresponding weights from
batch RL data [7]. These algorithms exploit the multi-
objective nature of the problem by learning multiple policies
at the same time, but these algorithms are only applicable
to problems that only involve one agent and where sufficient
off-line data is available. In the case of a multi-agent problem
the stakes are higher because the problem involves a truly on-
line and distributed setting where each agent only executes
a single policy at a time. The system also introduces an
emergent complexity due to agents having only bounded
(local) knowledge. Therefore, the agents would have to
cooperate towards the same goal, i.e. attaining a specific
system wide reward vector as a product of local coordinated
interactions. How these system wide performance should be
accomplished in a cooperative multi-agent setting is however
left unanswered. To tackle this uncharted research question,
we will experimentally validate the previously described
adaptive weight schemes in a simulation environment of
smart camera networks, called CamSim.

III. EXPERIMENTAL VALIDATION

Before we proceed to the results, we depict the properties
of the existing AWAs in our case study simulation environ-
ment and highlight the results. Afterwards, in Section IV,
we will propose a novel extension which overcomes much
of the limitations of the current AWAs.

A. CamSim environment

CamSim [4] simulates a distributed smart camera network.
Smart cameras are fully computationally capable devices
endowed with a visual sensor, and typically run computer
vision algorithms to analyse captured images. Where stan-
dard cameras can only provide plain images and videos,
smart cameras can pre-process these videos and provide users
with aggregated data and logical information, such as the
presence or not of an object of interest. Since smart cameras
are designed to have a low energy footprint, their processing
capabilities are also low. Communication between cameras
allows the network as a whole to track objects in a distributed
fashion, handing over object tracking responsibilities from
camera to camera as objects move through the environment.
In one approach [5], cameras exchange object tracking re-
sponsibilities through auctions, sending auction invitations
to other cameras, who may then bid to buy objects. The
cameras use pheromone-based on-line learning to determine
which other cameras they trade with most often. This neigh-
bourhood relationship graph (the vision graph), enables them
to selectively target their auction invitations and achieve
higher levels of efficiency. In [6], six different behavioural
strategies were available to cameras, which determined the
level of marketing activity they undertook, given the learnt
vision graph. Some strategies incurred higher levels of com-
munication overhead but typically obtained higher levels of
tracking confidence; other strategies obtained the opposite
results. However, the trade-off realised by each strategy was
found to be highly scenario dependent; as camera positions
varied and object movements differed, the relative benefits
of the strategies was greatly influenced.

Although cameras make decisions based on local informa-
tion, we are primarily interested in performance at the global
level. This consists of two network-level objectives:

1) Tracking confidence, the achieved tracking confidence
during a small time window for each object by the
camera tracking that object, summed over all objects.
(Maximize)

2) Number of auction invitations, the number of invi-
tations sent by all cameras as a result of auction
initiations, during a small time window, a proxy for
communication and processing overhead. (Minimize)

The camera agents are single-state independent learners
and can choose between six marketing strategies defining
each agents behaviour. The scalarized reward rtotal is camera
specific reward and is a weighted-sum of the utility reward
rutility and the negative auction invitation reward rauction,
given w0 for the first objective and (1�wo) for the second
objective:

r = w0 ⇥ rutility + (1� w0)⇥�rauction (6)

The utility reward of a camera i is calculated by

rutility =
X

j2Oi

[cj · vj · �i(j)]� p+ r (7)

Here, vj is a visibility parameter which is determined by the
distance and angle of the observed object to the observing
camera. The tracking performance is estimated by a confi-
dence value cj . Both values cj and vj are between 0 and 1
as soon as the observed object is within the field of view of a
camera, 0 otherwise. �i : Oi ! 0, 1 is 1 if camera i attempts
to track object j and 0 otherwise. In addition to utility earned
by tracking objects, a camera b may make a payment to
another camera s in order to “buy” the right to track an object
from that camera. This requires that the “selling” camera s
already itself owns the object. If an exchange is agreed, then
the object is removed from Os and added to Ob. p denotes
the sum of all payments made in trades in that iteration, and
r conversely denotes the sum of all payments received [3].

The rauction reward denotes the number of auction invita-
tions sent by this camera at the current time step. Our aim is
to minimize the number of auction invitations, but tradition-
ally, RL concerns a maximization problem. Therefore, we
want to maximize the negative number of auction invitations
in Equation 6. The agents use a softmax action selection
strategy with ⌧ equal to 0.2. For more information on the
details behind these marketing strategies, we refer to [6].

For the purposes of our evaluation, a scenario comprises
a set of cameras with associated positions and orientations,
along with a set of objects and their movement paths through
the environment. In this paper, we simulate and evaluate con-
figurations within 11 qualitatively different scenarios using
the open source CamSim software. We also acquired video
feed data from a real smart camera network, which gives us
a twelfth scenario. All simulated scenarios are depicted in
Figure 1, where a dot represents a camera and the associated
triangle represents its field of view.

(a) Scen 1 (b) Scen 2 (c) Scen 3 (d) Scen 4

(e) Scen 5 (f) Scen 6 (g) Scen 7 (h) Scen 8

(i) Scen 9 (j) Scen 10 (k) Scen 11

Fig. 1: The scenarios tested with the CamSim simulation tool.
A dot represents a camera, the associated triangle represents
its field of view.

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

Iteration

H
yp

e
rv

o
lu

m
e

Running hypervolume on scenario 1

TPRL

Random

RA−TPRL

AN−TPRL

AN−TPRL−HV

Fig. 2: The hypervolume over time for each of the adaptive
weight algorithms on scenario 1.

B. Results I
We will now present the results of applying the adaptive

two-phase weight schemes in combination with reinforce-
ment learning agents in CamSim. There are two main side
marks. First, note that we do not use local search techniques
as in the original TPLS proposals [2] so therefore we refer to
these implementations as two-phase reinforcement learning
techniques or TPRL. Secondly, in the current setup, the
weight parameter used in each iteration of the simulation
is the same for all agents. In future work, we will analyse
whether it is beneficial to assign different weights to different
(sets of) agents to let a division of labour emerge.

In Fig. 2 we analyse the anytime property of each method,
i.e. how fast does the algorithm explore the non-dominated
parts of the Pareto front in terms of the hypervolume mea-
sure. We focus on scenario 1, but the conclusions generalise
to the other scenarios as well. Note that each iteration
represents the average value over 10 episodes with a spe-
cific scalarization, determined by an AWA. One episode is
itself 1000 simulations runs. The uniform distribution in the
weight space, i.e. TPRL, is the original AWA used in [6]
on this problem. We clearly see that the naive methods
such as TPRL, random and RA-TPRL explore the objective
space quite slowly in terms of the hypervolume measure.
The adaptive methods such as AN-TPRL and AN-TPRL-
HV which adapt their weights by considering the ‘gap’
between solutions in the objective space perform roughly
the same on this scenario, i.e. we note that the hypervolume
increases rapidly in early stages, while it stagnates after 25
scalarizations. In the end, the performance approaches RA-
TPRL and randomly exploring the weight space.

In Fig. 5 (a) to (e), we denote the final Pareto front ob-
tained by each of the methods2. We note that some methods
are better at dividing the computational effort across the
objective space. For example, Fig. 5 (a) is a clear indication
that a uniform distribution on the weight space as with TPRL

2We normalized the values of the solutions for each of the methods
and transformed them in order to create a maximization problem for both
objectives.

does not guarantee a uniform spread in the objective space.
AN-TPRL and AN-TPRL-HV, in Fig. 5 (d) and (e), adapt
the weights in terms of the Euclidean and hypervolume
norm, respectively. However, those algorithms focus their
resources on particular areas, while leaving other, possibly
interesting, trade-off solutions uncharted. In the following
section, we highlight the reasons for the limited coverage of
the objectives space of these methods.

IV. AN IMPROVED AWA
The AWAs of Section II-B are experimentally shown to be

very successful in a specific application domain. However,
we note some properties of the current methods that limit
their applicability in other research domains.

First, those AWAs are tailored for stochastic local search
algorithms that can be seeded using particular solutions
to provide the optimization algorithm with a good initial
position in the search space. The AWAs make extensive use
of this property to bias the search direction to fruitful and
uncharted areas of the Pareto front. However, seeding the
reinforcement learning agent in such a way is not possible
as most problems tend to be episodic and consist of multiple
stages that the agent has to go through.

Secondly, the dichotomic scheme in Eq. 4 uses the segment
between two solutions s1 and s2 to calculate the new weight.
However, the equation does not guarantee that the resulting
solution obtained by the calculated weight will lie between
the interval of the two parent solutions, i.e. s1 and s2. The
only assertion that holds is that when the search is seeded
from one of these two parent solutions, the resulting solutions
will be left of the segment between the two parent solutions
of the interval. In case one starts from a random solution, this
assertion ceases to hold altogether. These limitations were
experimentally highlighted in Section III-B.

The solution that we propose is to combine the proper-
ties of RA-TPLS and AN-TPLS, meaning that we use the
layered-division of the weight space where deeper layers
intensify the search process to particular areas of RA-TPLS
together with an adaptive ordering of the elements of the
different layers, based on the aspects of the Pareto front
currently being explored. Similarly to AN-TPLS we use
different norms, such as the Euclidean distance and the
hypervolume indicator, to qualify the difference between
solutions. By merging both procedures, we combine the
best of both worlds, i.e. the layered approach allows us
to explore the rough outline of the Pareto front in initial
iterations of the algorithm and secondly, we do not rely
on the dichotomic scheme in Eq. 4 which does not scale
well to general application domains. Subsequently, we no
longer require specific seeds that bias the search direction and
eventually also the performance of the obtained solutions.
We call this algorithm RA-TPRL-DIST and RA-TPRL-HV
with the Euclidean and hypervolume norm, respectively. An
outline of the procedure for the bi-objective case is given
in Algorithm 3. The algorithms starts by examining the
bounds of the Pareto front, i.e. we evaluate the optimization
algorithm, in this case RL(), with weights 0 and 1. The

solutions s1 and s2 and their corresponding weights are
added to a tree-like data structure that stores the segments of
the weight space (line 4). Every iteration, the largest segment,
according to a norm (Euclidean distance, hypervolume, . . .),
that was not explored yet is determined (line 6) and the new
weight is calculated to be in the middle of that segment (line
7). Subsequently, the optimization algorithm is run with that
weight and 2 new segments are added to the tree. i.e. the
segment connecting the left solution and the middle solution
and another segment from the middle to the right solution.
(lines 9 and 10). Eventually, the Archive stores the set of
multi-objective solution acquired through the run.

1: s1 RL(0)
2: s2 RL(1)
3: Add s1, s2 to Archive
4: tree new Tree(new Segment(0, s1, 1, s2))
5: while stopping criteria not met do
6: Segment lg tree.getLargestGap()
7: w lg.weights1+lg.weights2

2
8: s0 RL(w)
9: tree.add(new Segment(lg.weights1 , lg.s1 , w, s0))

10: tree.add(new Segment(w, s0, lg.weights2 , lg.s2))
11: Add s0 to Archive
12: end while
13: return Archive

Fig. 3: An Improved AWA

We also see opportunities for trying out an alternative
norm. The hypervolume measure in AN-TPLS-HV is an
interesting indicator that calculates the surface that two
solutions occupy in the two-dimensional objective space.
Although the hypervolume measure in Eq. 5 works well
for calculating the volume of two solutions in the objective
space, it is not the common hypervolume formula. An alter-
native hypervolume calculation takes into account a particu-
lar reference point r⇤ to measure the volume of a given set of
solutions, for any number of elements. It is clear that some
solutions in the set will have less or more contribution to
the final performance because the rectangles (defined by the
reference point to each of the solutions) will have significant
overlaps. Therefore, it might be interesting to consider the
degree of overlap between solutions directly and to minimize
this overlap. We call this norm the overlapping hypervolume
(OHV) measure (Fig. 4). The measure calculates the ratio of
the overlap and the unique hypervolume of the two solutions
(Eq. 8 and 12).The idea is to order the solutions using this
measure in order to intensify the search to segments with the
smallest overlap first.

Note that our test environment only considers two objec-
tives, but we believe this algorithm could be generalized to
more objectives quite easily. For instance, in Algorithm 3 at
line 6, we look for the ‘largest gap’ in the current Pareto front
of already obtained solutions. In the bi-objective environment
we used the Euclidean distance, while with three objectives
we could use e.g. adaptive triangulation.

overlap = |(r⇤1�min(f1(s1), f1(s2))·(r⇤2�min(f2(s1), f2(s2))|
(8)

surfs1 = |(f1(s1)� r⇤1) · (f2(s1)� r⇤2)| (9)

surfs2 = |(f1(s2)� r⇤1) · (f2(s2)� r⇤2)| (10)

total = surfs1 + surfs2 � overlap (11)

OHV (s1, s2) =
overlap

total
(12)

overlap

r*

f(s1)

f(s2)

Fig. 4: The overlapping hypervolume (OHV) measures the
percentage of overlap between two solutions s1 and s2 in the
objective space.

A. Results II

Next, we analyse and compare the former adaptive weight
selection mechanisms of Section II-B and IV on both simu-
lated and real-life scenarios. We focus on the speed at which
these methods approximate the Pareto front as measured
by several quality indicators, such as the (inverted) gener-
ational distance, the generalized spread indicator and the
hypervolume distance. The generational distance (GDistance)
measures how far the elements in the set of non-dominated
vectors, generated by the optimization algorithm, are from
those in the Pareto optimal set. The inverted generational
distance (IGDistance) calculates how far the elements in
the Pareto optimal set are from those in the set of non-
dominated vectors found. The generalized spread indicator
(GSpread) is a measure of diversity that calculates the
extent of spread achieved among the obtained solutions. The
hypervolume indicator calculates the surface area between a
point of reference and the approximate Pareto front. More
information on the quality indicators can be found in [12].

1) Simulated data: First we investigate the anytime prop-
erty of each of the methods. The results in Figures 6 (a)
extend the results of Fig. 2 by including our novel methods.
We note that the combination with the overlapping hypervol-
ume norm (AN-TPRL-OHV) does not manage to improve a
lot after the initial iterations and reaches similar performance
to TPRL on scenario 1. The best combination of speed of
learning and final performance was obtained by our RA-
TPRL-HV and RA-TPRL-OHV, while the distance norm (RA-
TPRL-DIST) learns significantly slower. For scenario 7 in

Fig. 6 (b), similar conclusions can be formed except that AN-
TPRL-OHV is now amongst the best performing algorithms,
leaving TPRL far behind. In general, the naive methods and
RA-TPRL-DIST are the slowest learners of the pack, while
the adaptive methods reach similar performance in the end.
In initial stages, the AN-TPRL and AN-TPRL-HV methods
learn a bit faster, but this difference is negligible.

In Fig. 5 the Pareto front after 50 iterations is depicted
for each of the methods. We see that TPRL, although
providing promising results in previous work on CamSim [6],
clearly lacks at exploring every part of the Pareto front as
it leaves particular areas uncovered. On the third row of
Fig.5, the methods that combine RA-TPRL with the distance,
hypervolume and overlapping hypervolume norms improve
these results in terms of spread in the objective space, while
minimizing the gaps by taking into account the limited
number of iterations. Other results using quality indicators
that quantify these gaps in the Pareto front are presented
in Table I. We note that our RA-TPRL-HV method obtained
the best results in terms of spread in 10 scenarios. The best
method in terms of generational (inverted) distance differ a
lot for each scenario but in general the differences between
the methods are minimal.

2) Real-life data: We continue our evaluation using video
feed data from a real smart camera network. This is referred
to as the ‘real-life’ scenario. Figure 7 shows snapshots from
each camera at five different points in time. Each camera
captured 1780 frames, looped four times to create a total of
7120 frames, each with a resolution of 640⇥ 480.

In Fig. 8 the running hypervolume is depicted on the
real-life data. Similar performance is obtained for the naive
methods but in this example, we clearly see that the AN-
TPRL methods are stuck at a specific performance level
and can not find contributions to their Pareto front. Our
RA-TPRL-HV and RA-TPRL-OHV algorithms are able to
improve these latter methods after 5 iterations. At the bottom
of Table I, we depict the results of the quality indicators
of the different adaptive weight methods. We note that the
results are similar for the simulated data, meaning that best
performance is obtained by the RA-TPRL-DIST, RA-TPRL-
HV and RA-TPRL-OHV methods.

V. CONCLUSIONS

In this paper, we draw conclusions on both the algorithmic
level and the application-based level with smart camera
networks in mind. Firstly, on a conceptual level, we have
elaborated on one of the major difficulties of scalariza-
tion functions, i.e. determining the weights that specify the
emphasis on each of the objectives so as to approximate
the Pareto front. Previous work taught us that a uniform
distribution in the weight space does not guarantee an even
spread in the objective space. Recently, in [2], a series
of algorithms were proposed that alter the weight with a
dichotomic scheme to specify the direction of search. In the
experimental section, we have seen that this method does not
obtain well-spread results. Therefore, we proposed to com-
bine the regular anytime algorithm which divides the weight

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Auctions

C
o
n
fi
d
e
n
c
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Auctions

C
o
n
fi
d
e
n
c
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Auctions

C
o
n
fi
d
e
n
c
e

(a) TPRL (b) Random (c) RA-TPRL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Auctions

C
o
n
fi
d
e
n
c
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Auctions

C
o
n
fi
d
e
n
c
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Auctions

C
o
n
fi
d
e
n
c
e

(d) AN-TPRL (e) AN-TPRL-HV (f) AN-TPRL-OHV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Auctions

C
o
n
fi
d
e
n
c
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Auctions

C
o
n
fi
d
e
n
c
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Auctions

C
o
n
fi
d
e
n
c
e

(g) RA-TPRL-DIST (h) RA-TPRL-HV (i) RA-TPRL-OHV

Fig. 5: The Pareto fronts obtained after 50 iterations for each of the adaptive weight algorithms on Scenario 1.

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

Iteration

H
yp

e
rv

o
lu

m
e

Running hypervolume on scenario 1

TPRL

Random

RA−TPRL

RA−TPRL−DIST

RA−TPRL−HV

RA−TPRL−OHV

AN−TPRL

AN−TPRL−HV

AN−TPRL−OHV

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

Iteration

H
yp

e
rv

o
lu

m
e

Running hypervolume on scenario 7

TPRL

Random

RA−TPRL

RA−TPRL−DIST

RA−TPRL−HV

RA−TPRL−OHV

AN−TPRL

AN−TPRL−HV

AN−TPRL−OHV

(a) Scenario 1 (b) Scenario 7

Fig. 6: The hypervolume over time for each of the adaptive weight algorithms on scenarios 1 and 7.

TPRL Random RA-TPRL RA-TPRL-DIST RA-TPRL-HV RA-TPRL-OHV AN-TPRL AN-TPRL-HV AN-TPRL-OHV
Scenario 1

GSpread 0.97501 0.91959 0.95257 0.80777 0.81487 0.8076 1.00112 1.00059 1.04571
HV 0.60384 0.66785 0.66347 0.6732 0.67332 0.67311 0.65238 0.65446 0.53106

GDistances 2.99143 2.98875 2.96057 2.92172 2.91005 2.92752 2.92267 2.95842 2.94144
IGDistance 14.20181 14.07198 14.07761 14.07234 14.07109 14.07234 14.07971 14.07675 14.14254

Scenario 2
GSpread 0.90053 0.92837 0.92312 0.93271 0.87589 0.92952 0.95014 1.00981 0.91466

HV 0.66331 0.66783 0.67734 0.67008 0.67916 0.67087 0.6792 0.68073 0.65541
GDistances 2.83976 2.82884 2.74931 2.9209 2.87788 2.91765 3.02818 3.1312 2.74639
IGDistance 12.95593 12.95081 12.90369 12.95266 12.97541 12.95451 12.96075 12.98492 12.93109

Scenario 3
GSpread 0.89829 0.92254 0.88001 0.90019 0.85584 0.88654 0.95599 1.05615 0.97401

HV 0.55002 0.54008 0.54899 0.54764 0.5553 0.54865 0.58074 0.53527 0.52907
GDistances 3.03947 3.04809 2.98084 2.99027 2.9913 2.99857 3.10163 3.20551 3.02713
IGDistance 13.99183 14.1615 14.03292 14.2017 14.10126 14.18741 14.08196 14.17774 14.05668

Scenario 4
GSpread 0.90403 0.92403 0.92751 0.88937 0.87291 0.87961 0.9389 1.02157 0.96905

HV 0.46702 0.45717 0.46915 0.47347 0.47403 0.47481 0.46587 0.45524 0.44411
GDistances 3.11392 3.11126 3.06278 3.08443 3.08056 3.07423 3.15675 3.22976 3.15611
IGDistance 14.81707 14.7147 14.8793 14.84748 14.89994 14.81748 14.85078 14.85685 14.88275

Scenario 5
GSpread 0.89728 0.93505 0.93387 0.8638 0.83163 0.85699 0.9592 1.02245 0.98591

HV 0.7239 0.70845 0.73191 0.73584 0.73768 0.73611 0.72231 0.71118 0.61485
GDistances 2.8878 2.8815 2.84129 2.8124 2.81807 2.83094 3.00157 3.06383 2.94756
IGDistance 13.20978 13.28262 13.16021 13.16986 13.16021 13.17839 13.21716 13.26455 13.31449

Scenario 6
GSpread 0.89975 0.90772 0.90297 0.92098 0.8757 0.92804 0.95141 1.04161 0.91413

HV 0.35623 0.31604 0.33999 0.32833 0.34209 0.32689 0.34858 0.33307 0.32476
GDistances 3.23164 3.4249 3.15232 3.27144 3.36656 3.40051 3.49461 3.61006 3.37513
IGDistance 14.84423 14.60966 14.63511 14.63258 14.63511 14.62701 14.63511 14.63511 14.62822

Scenario 7
GSpread 0.88941 0.91815 0.91261 0.87262 0.86677 0.87676 0.92367 1.02515 0.92114

HV 0.6351 0.63149 0.63461 0.64238 0.64151 0.64271 0.64698 0.64234 0.63078
GDistances 2.91725 2.91555 2.85605 2.89079 2.88499 2.8822 2.98927 3.08699 2.94745
IGDistance 13.56464 13.60138 13.62932 13.60277 13.60277 13.62932 13.52138 13.56219 13.50574

Scenario 8
GSpread 0.89045 0.89952 0.92083 0.87468 0.8426 0.85821 0.94294 1.00346 0.90937

HV 0.67929 0.67015 0.70277 0.69972 0.69903 0.70077 0.68043 0.6726 0.64769
GDistances 2.87852 2.86679 2.81096 2.86095 2.87561 2.858 2.99304 3.0593 2.90116
IGDistance 13.32639 13.12466 13.25595 13.29731 13.2644 13.27501 13.23966 13.25307 13.27036

Scenario 9
GSpread 0.98498 0.97623 0.9948 0.85214 0.84111 0.8635 1.01375 1.00589 1.01342

HV 0.77092 0.72027 0.76646 0.77816 0.77854 0.77773 0.75198 0.74881 0.71142
GDistances 2.86232 2.87269 2.8102 2.76207 2.755 2.77794 2.84333 2.90014 2.92109
IGDistance 13.12838 13.17884 13.11477 13.11224 13.11206 13.11371 13.15331 13.17327 13.18997

Scenario 10
GSpread 0.94538 0.97646 0.95739 0.94302 0.91827 0.93815 1.00365 1.06029 1.00073

HV 0.62974 0.63441 0.63944 0.63959 0.63967 0.63957 0.63652 0.64938 0.63766
GDistances 2.80424 2.79834 2.7291 2.73846 2.75131 2.73696 2.95668 3.00213 2.82691
IGDistance 12.79585 12.72557 12.74433 12.74441 12.74441 12.74441 12.74441 12.74229 12.73365

Scenario 11
GSpread 0.94689 0.96702 0.95472 0.92537 0.90926 0.91007 0.98978 1.05081 0.99617

HV 0.56738 0.56372 0.56865 0.57189 0.57219 0.57197 0.5778 0.58042 0.56247
GDistances 2.94136 2.94263 2.88296 2.90703 2.91029 2.90481 2.99781 3.05835 3.00429
IGDistance 13.93518 13.93155 13.93476 13.93734 13.93801 13.93734 13.99275 13.95814 13.95763

Real-life scenario
GSpread 0.8974 0.90369 0.89542 0.86498 0.85507 0.85358 0.94972 1.016 0.95567

HV 0.53053 0.48302 0.52724 0.53287 0.53401 0.5332 0.49554 0.44196 0.46728
GDistances 3.10149 3.12013 3.09672 3.05587 3.05963 3.06153 3.09171 3.17102 3.11861
IGDistance 14.9041 15.24093 14.98453 14.77806 14.77806 14.77806 14.96315 15.17256 15.12926

TABLE I: Quality indicators on 12 different scenarios in CamSim

space into levels with increasing degrees of intensification
with different norms. These norms determine the order in
which the elements on the branches will be evaluated. All the
methods were extensively compared on 11 simulated smart
camera network scenarios and one real-life setting in the
multi-objective multi-agent CamSim framework. We were
able to improve previous work in CamSim and our results
showed us that our methods can (i) explore the Pareto front
faster, (ii) obtain improved solutions in terms of hypervolume
and (iii) better spread in the objective space.

Originally, in smart camera networks, there was no global
feedback signal that comprises aspects of the Pareto front
being explored [6]. In this paper, we have seen that the
agents can significantly benefit from a centralized component
that steers the search process by analysing the policies
obtained so far. Obtaining a wider spread on the system wide
Pareto front, as enabled by this component, gives greater
expressiveness with which a system could be deployed in
scenarios that resemble the ones analysed in simulation. In
future work, we will analyse whether it is beneficial for each
agent (camera) to use the same weight parameter. Perhaps
specifying different weights amongst agents could let groups
of agents focus on different objectives. Hence, we could let
the agents automatically learn different responsibilities and
eventually a division of labour could emerge where agents
become experts at particular tasks.

VI. ACKNOWLEDGEMENTS

Kristof Van Moffaert is supported by the IWT-SBO project
PERPETUAL (grant nr. 110041). Tim Brys is funded by
a Ph.D grant of the Research Foundation Flanders (FWO).
Lukas Esterle, Arjun Chandra and Peter R. Lewis are sup-
ported by the EPiCS project under the European Union Sev-
enth Framework Programme (grant nr. 257906). We would
also like to thank Jérémie Dubois-Lacoste for his interesting
comments and insights on the subject.

Fig. 7: Shots from five participating cameras tracking a single
person.

0 10 20 30 40 50
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Iteration

H
yp

e
rv

o
lu

m
e

Running hypervolume on real−life scenario

TPRL

Random

RA−TPRL

RA−TPRL−DIST

RA−TPRL−HV

RA−TPRL−OHV

AN−TPRL

AN−TPRL−HV

AN−TPRL−OHV

Fig. 8: The hypervolume over time for each of the adaptive
weight algorithms on the real-life data.

REFERENCES

[1] I. Das and J. E. Dennis. A closer look at drawbacks of minimizing
weighted sums of objectives for pareto set generation in multicriteria
optimization problems. Structural and Multidisciplinary Optimization,
14:63–69, 1997.

[2] J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle. Improving the
anytime behavior of two-phase local search. Annals of Mathematics
and Artificial Intelligence, 61(2):125–154, 2011.

[3] L. Esterle, P. Lewis, M. Bogdanski, B. Rinner, and X. Yao. A Socio-
Economic Approach to Online Vision Graph Generation and Handover
in Distributed Smart Camera Networks. In Proceedings of the Fifth
ACM/IEEE International Conference on Distributed Smart Cameras,
pages 1–6. IEEE Press, 2011.

[4] L. Esterle, P. R. Lewis, H. Caine, X. Yao, and B. Rinner. CamSim:
A distributed smart camera network simulator. In Proceedings of the
7th IEEE Conference on Self-Adaptive and Self-Organizing Systems
Workshops (SASOW). IEEE Press, 2013. In press.

[5] L. Esterle, P. R. Lewis, X. Yao, and B. Rinner. Socio-economic vision
graph generation and handover in distributed smart camera networks.
ACM Transactions on Sensor Networks, 10(2), 2014.

[6] P. R. Lewis, L. Esterle, A. Chandra, B. Rinner, and X. Yao. Learning to
be different: Heterogeneity and efficiency in distributed smart camera
networks. In Proceedings of the 7th IEEE Conference on Self-Adaptive
and Self-Organizing Systems (SASO), pages 209–218. IEEE Press,
2013.

[7] D. J. Lizotte, M. Bowling, and S. A. Murphy. Linear fitted-q
iteration with multiple reward functions. Journal of Machine Learning
Research, 13:3253–3295, 2012.

[8] T. Lust and J. Teghem. Two-phase pareto local search for the biobjec-
tive traveling salesman problem. Journal of Heuristics, 16(3):475–510,
2010.

[9] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker. Em-
pirical evaluation methods for multiobjective reinforcement learning
algorithms. Machine Learning, 84(1-2):51–80, 2010.

[10] K. Van Moffaert, M. M. Drugan, and A. Nowé. Hypervolume-based
multi-objective reinforcement learning. Lecture Notes in Computer
Science, Evolutionary Multi-Criterion Optimization (EMO 2013),
2013.

[11] K. Van Moffaert, M. M. Drugan, and A. Nowé. Scalarized Multi-
Objective Reinforcement Learning: Novel Design Techniques. In 2013
IEEE International Symposium on Approximate Dynamic Program-
ming and Reinforcement Learning. IEEE, 2013.

[12] D. A. V. Veldhuizen and G. B. Lamont. Multiobjective evolutionary
algorithm research: A history and analysis, 1998.

