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Thesis Summary

Current atmospheric correction algorithms are based on physical models and pixel wise
retrieval. The goal of this thesis is to build a Bayesian framework using a probabilistic
approach to enable the use of priors for the joint retrieval of ocean and aerosol pa-
rameters on case I waters. Simulated data containing ocean and aerosol parameters
as well as the corresponding top of atmosphere information and its components will
be used to train neural networks able to ouptut the top of atmosphere components
given the ocean and aerosol parameters. A Bayesian framework will be built to enable
the retrieval of the ocean and aerosol parameters from the top of atmosphere infor-
mation using the neural networks previously trained and priors which will be designed
according to biological and physical knowledge. The Bayesian framework will then be
tested on small problems, parts of the global retrieval problem, and then on the global
retrieval problem, on simulated data at first, and secondly on real data.
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Chapter 1

Introduction

1.1 Context

Phytoplankton is a plant which floats at the surface of the oceans. It is the beginning
of the food chain in the ocean. Thus, information on the location of phytoplankton can
be useful for the fishing industry. Moreover, as phytoplankton depend upon specific
conditions for growth, it frequently becomes the first indicator of a change in the
environment.

Satellites provide images of the colour of the ocean from which the presence of
chlorophyll and thus phytoplankton can be inferred. The retrieval of the chlorophyll
concentration is complicated by the presence of the atmosphere which alters the signal
received by the satellite; the atmosphere can be responsible of more than 80% of the
signal received by the satellite. Thus, atmospheric correction must be done to deduce
the chlorophyll concentration.

Current atmospheric correction algorithms use near infrared wavelength to assess
aerosol optical properties together with lookup tables built from physical models to
remove the aerosol contribution and obtain the water contribution. Chlorophyll con-
centration is then deduced from the water-leaving contribution.

Algorithms to improve the calculation of atmospheric properties have been devel-
oped [7] and methods to jointly retrieve ocean and aerosol optical properties have been
proposed [4].

Current methods process each pixel at a time, thus the knowledge of spatial struc-
ture of the ocean and atmosphere is not used.

The purpose of this project is to build a retrieval process using a probabilistic
approach to retrieve the ocean and aerosol properties from SeaWiFS images, exploiting
prior knowledge of the structure of ocean and aerosol data in case I waters.

These probabilistic methods have been successfully used for the calculation of wind-

fields from satellite images.

12



CHAPTER 1. INTRODUCTION

1.2 Overview of the research project

The satellite coverage is regular and covers wide ocean areas; thus knowledge of the
spatial structure of the parameters can improve the retrieval, especially to correct the
noise induced by the use of sensors. This will be done by building a Bayesian frame-
work which will enable the use of spatial and spatio-temporal priors on the different
parameters of the system.

The physical model used in this thesis was designed by Chomko & Gordon [4].

The signal received by the satellite can be divided in two parts: the reflection of
the incoming solar radiance, before being modified by the sea surface, and the radiance
that has been modified by the sea surface and by the atmosphere.

@ o8
Solar Radiance Top of Atmopshere Radiance

Space
Atmospheric Scattering
Atmosphere B )
. X Atmospheric Transmittance
Atmospheric Absorption (1)
Ocean Reflection
®,)
/ Phytoplankton Scattering
Ocean

Phytoplankton Absorption

Figure 1.1: The physical problem: decomposition of top of atmosphere radiance

First of all, we will work on the reflectances p in place of radiance L, as the mea-
surement on the reflectance ought to be more accurate on next generation satellites [6].

Radiance and reflectance are related by:

7w L()) cos(6y)

FoOV) (1.1)

p(A) =

Where Fy(A) is the extraterrestrial irradiance and 6, is the solar zenith angle.

13



CHAPTER 1. INTRODUCTION

The top of atmosphere (TOA) radiance (pyoq ), which is measured by the satellite, is
composed of the pure aerosol-scattering contribution (p, ), the pure Rayleigh-scattering
contribution (p,), the contribution due to the interaction effect between air molecules
and aerosols (p,,), the water-leaving contribution (multiplied by the atmospheric tran-
sitivity) ¢(A).p,(A) and the contribution of whitecaps (py.) and sun glitter (p,).

Proa(A) = pa(A) + pra(A) + pr(A) + E(A).pw(A) + E(A)-puwe(A) + T(A).po(2)  (1.2)

The contribution of whitecaps (p,.) and sun glitter (p,) are removed in SeaWiFS
preprocessing, and the pure Rayleigh-scattering contribution (p,) can be computed
precisely and then be substracted from py,, [4].

Pioa(A) = Pa(A) + pra(A) + H(A).pw(N) (1.3)

Then the atmospheric contributions (p, and p,,) can be considered as an unique
variable (patmo). This simplified interaction is shown in Figure 1.1.

P:aa()‘) = Patmo(A) + E(A).pw(A) (1.4)

The aim is to compute pj,, from atmospheric and oceanic parameters, thus three
models will be built: atmospheric reflectance (light reflected before reaching the sea);
oceanic reflectance (light reflected by the ocean, carrying colour information about
chlorophyll concentration); and atmospheric transmittance (light modified by the at-
mosphere), each model having atmospheric or oceanic parameters as inputs.

The parameters of the models, shown in Table 1.1, are both atmospheric (v, 7, m,,
m;) and oceanic (b°, [chl]), the more important, that is the more interesting, is [chl],
chlorophyll concentration. v and b° represent the size distribution of particles in the
atmosphere and the ocean respectively; that is the aerosols and dust particles for the
atmosphere, and detritus for the ocean. Their properties in the datasets provided by
Cedric Jamet and Cyril Moulin are shown in Tables 1.2 and 1.3.

Only v, 7, m,, m;, b° and [chl] need to be retrieved. The other parameters, 6,
0y, &y, which represent the position of the satellite and the sun, and A, which is the
wavelength at which the radiance is measured, are known.

1.3 Research steps

The research will follow the following steps: first the data provided by Cedric Jamet
and Cyril Moulin, LODYC, will be learned using forward models; those networks will
output the different reflectances given the oceanic or atmospheric parameters. One
model will be built for each of the three components.

14
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INTRODUCTION

pOA

Py

Atmospheric Reflectance

Neural Network

Atmospheric Transmittance

Neural Network

Neural Network

Oceanic Reflectance

|
(9)

Figure 1.2: Diagram of the decomposition of ps,, in

Vv

m m (9) (9) T

(A)

pa.tmo()\)a t(’\)a ,Ow()\)

the three neural networks of

j

() : Known parameters

|

[chl]

Parameter Description Type Unit
v Particle size distribution parameter | Atmospheric NA
T Aerosol optical depth Atmospheric NA
m, Refractive index, real part Atmospheric NA
m; Refractive index, imaginary part | Atmospheric NA
0, Solar zenith angle Geometric | Degrees
0, Sensor zenith angle Geometric | Degrees
Oy Sun to sensor angle Geometric Degrees
A Wavelength Optical nm
b° Particle size distribution parameter Oceanic m
[chl] Chlorophyll concentration Oceanic mg.cm™?2

A Bayesian framework will then be built to retrieve all of the atmospheric and

Table 1.1: Description of model parameters.




CHAPTER 1. INTRODUCTION

v T my | m; 0, 0, Oy A " | [chl]
mean | 3.25 | 0.20 | 1.42 | 0.01 | 34.95 | 29.96 | 179.60 | 513.33 | 0.28 | 0.49
std [ 0.85]0.11 [0.08|0.02| 9.47 | 18.12 | 113.50 | 83.75 | 0.10 | 0.74
max | 4.5 | 035 | 1.5 | 0.04 50 60 360 670 | 0:45 3
min 2 0.05 | 1.33 0 20 0 0 412 0.12 | 0.03

Table 1.2: Characteristics of model parameters.

v | 2-4.5,step 0.5

7 | 0.05 - 0.35, step 0.1

my | 1.33 - 1.5

m; | 0-0.001-0.003 - 0.01 - 0.03 - 0.04

fs | 20 - 50, step 3

6, |0-60,step 3

¢, | 0- 360, step 36

A | 412 - 443 - 490 - 510 - 555 - 670 - 765 - 865

b° | 0.12 - 0.45, step 0.03

[chi] | 0.03 - 0.05 - 0.062 - 0.078 - 0.09 - 0.107 - 0.125 - 0.145 ...
.. 1017-02-0.25-031-041-062-1.15-15-3

Table 1.3: Model parameter values. The A are taken at SeaWiFS wavelengths.

oceanic parameters, the main goal being to retrieve chlorophyll concentrations via the
oceanic model. The individual models will be tested separately on their specialised
retrieval problems before they are combined.

The Bayesian framework uses Bayes’ rule to compute the posterior probability
p(t|p) of a parameter, 7, conditioned on the observations, p, using priors on each

parameter, p(7):

p(plr).p(7) (1.5)
p(p) '

The priors over the parameters will be constructed using physical knowledge of the

p(lp) =

different components.

Once the retrieval on the three models is working, two different things will be
needed, the first is the ability to handle large datasets. As the covariance matrices used
to define the priors are calculated over the whole dataset, the computational limitation
will require the use of sparse Gaussian processes, although in this thesis standard GPs
will be used. Secondly, the three different models need to be combined to perform the
actual retrieval of the chlorophyll concentration given TOA observations.

Finally, tests on simulated data and on real data will be performed to measure the
real efficiency of the framework.
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Chapter 2
Theoretical background

In this thesis, neural networks will be used, thus a basic background is provided here.
More information on neural networks amd optimisation methods can be found in [2],
[1] and [9].

2.1 Neural Networks

2.1.1 Multi-Layer Perceptron

The Multi-layer Perceptron (MLP) [2] is a feed-forward neural network composed of
several hidden layers (two in our case) of adaptive weights (See Figure 2.1). The

Outputs ? y.

Hidden units

Inputs ‘% X,

Figure 2.1: Multi-Layer Perceptron

outputs are computed from the inputs through each layer, according to the weights
of the layer and the activation function used in the network. The value 2" of the
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neuron 7 of layer h + 1 is

Nh,
h-H (Z wh h+1 h—f—bh) 1 (21)

where h is the layer index, N, is the number of neurons in layer h, b is the threshold

of layer h for the i"* neuron, w1

is the weight matrix between layers h and h + 1,
and f is the activation function.

To build a network which from a given set of inputs leads to a corresponding output,
it is necessary to adapt the weigths and biases. This procedure is called learning.

The likelihood of the dataset is defined as
L= []»p(t?,2% =[] p(t*]a?)p(=?) , (2.2)
g=1 q

where n is the number of samples in the training set, and ¢ is the training sample
index. The error function F is defined as the negative log-likelihood

E=-InL. (2.3)

Considering the noise model to be Gaussian, of variance o, it becomes

J 1 (Fi(z) — te)?
p(te|z) = ro?)} exp{ T} ; (2.4)

where Fj,(z) is the underlying generator function to be learnt by the neural network.
Using 2.2, 2.3 and 2.4, it becomes:

n
E =nclno + ?ln (2m) +—ZZU’“($Q —ti)2+21np($"’) : (2.5)
g=1 k=1 g=1
where n is the number of samples, ¢ the dimension of the output, fi(z% w) is the
modelisation by the neural networks of Fi(z) and w are the weights of the network.
In this equation, only the middle part is a function of the networks, and thus the cost
function to be minimised is:

Z Z (vt — (2.6)

where ¢ is the training sample index, k is the output vector index, and t7 is the desired
output vector for the ¢** input.

Given that the network is feed-forward and the activation function is differentiable,
the derivative of this error function with respect to the weights and biases of the
network can be found. This enables the training of the network using optimisation
algorithms in order to adapt the weights and biases so a given set of inputs leads to a
corresponding output [2].
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2.1.2 Radial Basis Function

Radial Basis Function (RBF) networks [9] are related to kernel methods for density
estimation and regression and to normal mixture models. The idea of an RBF model
is to expand a given function f using a set of basis function of the form ®(|| z — z; ||),
where @ is a non-linear function to be chosen. The output is then taken to be a linear

combination of the basis functions:

f(@) =) wi®(ll z -z ||) +wo (2.7)
i

Where w; is the weight given to the j* basis function and wy is the bias. Several
forms of basis function can be used, the most commonly used are the Gaussian and
the thin-plate spline. The Gaussian basis function is:

o(a) = exp (- ;) | (238)

20?2
where o controls the smoothness properties of the interpolating function. The Gaussian

is a localised basis function with the property that lim, ., ®(z) = 0.
The thin-plate spline basis function is

®(z) = 2* In(z) , (2.9)

which is the best solution for curve fitting according to [9].
A radial basis function network uses several RBF's as hidden units (See Figure 2.2).
The number M of basis functions needs to be less than the number N of data points,

Outputs % y,

basis functions

Figure 2.2: RBF network

each basis function has its own width o;. The interpolation formula 2.7 is then:
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M

yk(z) = Y wi;®;(x) + wyo - (2.10)

J=1

The Gaussian basis function can be expressed by:

Iz — m |2
®;(z) = exp (—TfJ (2.11)
and the thin-plate spline basis function by:
®j(z) =[x —p P In(l| z — 5 []) , (2.12)

where z is the input vector and y; is the vector determining the centres of the basis
function ®;. Once the basis function has been chosen, we have a simple model whose
parameters can be found by a least squares procedure, or any other optimisation pro-
cedure.

For a large class of basis functions, RBF networks are universal approximators [9].
Besides, they possess the property of best approximation, which means that the set of
functions corresponding to all possible choices of the adjustable parameters includes
the optimal approximation. The advantage of this network family is that RBF models
are very fast to train in comparison to networks with sigmoidal units such as MLPs.
The main drawback of this type of network is that it becomes impractical with input
vectors of large dimension.

2.1.3 Mixture Density Network

Mixture Density Networks (MDN) [1] combine a standard neural network with a mix-
ture density model to provide a conditional distribution rather than a single output.

Introduction

The probability density of the target is a combination of kernel functions in the form

m

p(t|z) Zj (2)ei(tlz) , (2.13)

where m is the number of components in the mixture, ;(x) are the mixing coefficients
(priors probabilities) and ¢;(¢|z) is the conditional density of the target vector ¢ for the
i kernel. The implementation of such a model is shown in Figure 2.3:
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e The first part of the MDN is a neural network with input vector x and output

vector z. The output corresponds to the parameters for the kernel functions:

priors, centres and variance. If ¢ is dimension of the target, the dimension of z is

(c+42) m: m priors, ¢ m centres or origins of the kernel functions and m variances.

e The second part of the MDN is a mixture model with the parameter vector z as

input and p(t|z) as output.

congitig?al
probability ? (t|x)
density P( l
/\ mixture
J\ model
parameter ? z
vector
neural
network
input X
vector

Figure 2.3: The Mixture Density Network

As this is a mixture model, there is the constraint

Zai(:z:) =3

(2.14)

This can be obtained by considering «;(z) as the softrmaz function of the output of the

neural network
exp(2£)

e e —— i —
L el

The centres/origins are simply the neural network outputs
—
Hik = Z;
The variances are the exponential of neural network outputs

oik = exp () -
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The error function for the MDN is defined as

B=")"F9, (2.18)

where the error from pattern ¢ is the negative logarithm of the likelihood (see equation
2.2) without the terms p(z7) as they are independent of the parameters of the mixture

model:
E'=—In {Z ai(i")éi(f"’lﬂ»‘q)} - (2.19)

To optimise the network, this function is minimised with respect to the outputs of the
neural network and then the modifications are back-propagated to optimise the weights
of the networks.

The posterior probabilities, obtained using Bayes’ rule are defined as

@i P;
(@, l) = = - (2.20)
> i1 05%;
Using 2.20 and 2.19 it becomes
oF1 i
= 221
Ooy; a; ( )
and using 2.15
iz, 8 dixti — Qo (2.22)
63}: = ikigielAg g - .
Using the chain rule:
oF1 BE"’ 3051-
= : 2.23
0zg —~ Oa; Oz &2
So finally using 2.21, 2.22 and 2.23 it follows that
OE1
B Qp — Tk - (2.24)
k

The other gradients are dependent on the distribution used.

Gaussian kernels functions
First of all, the functions used as kernels are Gaussian kernels, as Gaussians are uni-

versal estimators [9]. In this case, the function ¢; is defined by

6i(tlz) = (244

20i(z)2 '’

where c is the dimension of the output, u;(z) and o;(z) are the centre and variance of
the i" kernel respectively.
The variance parameter has to be always positive. It can be viewed as an exponential

o; = exp(zy) . (2.26)
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Using 2.19, 2.20 and 2.25 it follows that

oE" lt— @I ¢
S— i e e 2.27
801- { O'g a; ( )
and as
g; =0, (2.28)
it becomes - I @
i — i\ T
=gl PR o 2.2
e g Sy
And finally, using 2.20 and 2.25 the derivative of the cost-function with respect to the
outputs of the network is:
oOE1 (Hix — tk)
TR e = T 2.
ek ko0

2.2 Gaussian processes

A Gaussian process is a family of random variables y(z), z € D, such that for any finite
collection the joint distribution of y(z1),...,y(z,) is Gaussian. In the case of ocean
colour data, the spatial structure is known through semivariograms of the different
parameters, defined by

1) = 377 > (e~ 26 (231)

where N(v) are the numbers of data pairs Z(z;) and Z(xz;) separated by v, which can
be a vector or a simple distance [5]. A covariance function can be defined from the
semivariogram as

C(v) = C(0) —7(v) , (2.32)

then a Gaussian process can be derived from the covariance function as to say from
the prior physical knowledge embedded in the semivariogram.
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Chapter 3
Observation models

The forward models are based on data generated from the model designed by Gordon
& Chombko [4], provided by Cedric Jamet and Cyril Moulin, LODYC. This data cor-
respond to case I waters [4]. This dataset is built by constructing a basis covering all
the possible combinations of the parameters shown in Table 1.3; the atmospheric re-
flectance, atmospheric transmittance and oceanic reflectance are then computed using
Gordon & Chomko model. Thus the dataset is discrete by construction and covers a
large range of the different parameters as shown in Table 1.3.

As the dataset is made of variables of different types, and different scales, some
variables are likely to be overweighted compared to others. This can be corrected
by normalizing the dataset. For each variable X;, the mean X; and variance o; are
computed to obtain 5(1, the normalized variable:

= X=X

X;= (3.1)

O;

The choices of the networks for the three forward models, atmospheric reflectance,
atmospheric transmittance and oceanic reflectance, have been made using cross com-
parison on several MLPs, changing the number of hidden units, type of inputs (noised
or not), weight decay and the number of iterations. The choice was done according
to the efficiency of each network and the computational cost of the training. As the
available dataset is large and the data to be learnt is complex, the network size required
to overfit the training set is generally greater than what can be handled in terms of
computational cost.

The models were trained and tested using two distinct datasets. The datasets used
for the model selection are not the ones used for the final training and testing of the
chosen models.

The final network for each of the three models has been trained on datasets bigger
than the one used for cross comparison so as to produce precise models to be used in
next steps (See Figures 3.1, 3.2, 3.3 and 3.5).
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The errors of the different models which have been tested and the description of
the final network for each model follow.
The results of the training of RBFs are in Appendix 9.2.

3.1 Oceanic model

3.1.1 Data

The oceanic database contains 1224 samples corresponding to a basis built on the
parameters \, b° and [chl]. X\ is restricted to SeaWiFS visible wavelengths, which are
the first six wavelengths. The measurements are shown in Table 3.1.

3 © | [ | po
mean | 513.3333 | 0.285 | 0.4881 | 0.0122
std | 83.7513 | 0.1036 | 0.7428 | 0.0108

Table 3.1: Oceanic variables, dataset size: 1224.

3.1.2 Model selection

Cross validation has been performed for networks having 5 to 30 hidden units, with
three inputs and one output (Table 3.2).

The inputs and the outputs were normalised before training, the means and stan-
dard deviations used for normalisation were recorded together with the network. As
the chlorophyll concentration is likely to be log distributed [5], it was then chosen to
use the logs of b and [chl] as inputs instead of their true values.

The error globally decreases when using more hidden units (Table 3.2). The varia-
tions observed in the efficiency of each optimisation algorithm are due to random ini-
tialisation. Averaging the measurements on several random initialisation would have
given more accurate results, but it would have been time consuming. The final network
chosen will reach a small level of error, keeping in mind the time needed to train big
networks.

A complete description of the optimisation algorithms used can be found in [2].

3.1.3 Chosen model

The network chosen for the oceanic reflectance model has 30 hidden units, with quasi-
Newton optimisation, the target versus predicted output for this network is shown in
Figure 3.1.

The inputs are the logs of 4° and [chl].
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Hidden units | Algo | Training Error(RMS) | Test Error(RMS) | Relative RMS
(% of target)

5 conjgrad 4.5989 0.0947 9.3045

5 quasinew 7.4352 0.1183 11.6222

5 scg 5.5243 0.1093 10.7394

10 conjgrad 0.6993 0.0344 3.3826

10 quasinew 1.2728 0.0501 4.9208

10 scg 1.1891 0.0536 5.2653

20 conjgrad 0.3303 0.0279 2.7376

20 quasinew 0.1005 0.0162 1.5966

20 scg 0.3894 0.0277 2.7226

30 conjgrad 0.2976 0.0258 2.5352

30 quasinew 0.0147 0.0064 0.6299

30 scg 0.3382 0.0277 2.7171

Table 3.2: Oceanic model errors, using 1000 training samples and 1000 epochs.

The errors calculated on the test set are in Table 3.3, the standard deviation is in
target unit, which is the oceanic reflectance.

Relative RMS (% of target) Bias Std
0.1362 3.6909¢e-07 | 1.3900e-05
Table 3.3: Oceanic final model errors.
Oceanic, NN(3,30,1)logs,rms:0%
0.045
004
00351 o
0.03F
_ 0025+ e
3 2
o] "G
oozt =
0.015F /’.‘ :
001+ f"’
0.005 /
0 / ) L 1 i L 1 1 L L J
0 0.005 [eXa}] 0.015 0.02 0,025 0.03 0.035 0.04 0.045

Target

Figure 3.1: Oceanic reflectance model, inputs are logs of 4° and [chl], A, output is p,
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3.2 Atmospheric models

3.2.1 Atmospheric reflectance

According to Cedric Jamet and Cyril Moulin, the physical model used to generate the
data which has been used to train the network is wrong when v < 3 and m; > 0.01.
These samples were then removed from the training set and test set. It was first tried
to cut the dataset into two parts, for » < 3 and v > 3. Two networks were used, one
for the inputs having v < 3 (See Figure 3.2), another for the inputs having v > 3 (See
Figure 3.3).

Afterwards, a solution using a single network was tested (See Figure 3.4).

Data

The atmospheric database for reflectance contains 120000 samples corresponding to a
basis built on the parameters v, m,, m;, s, ,, ¢,, 7 and A (Table 3.4). ) is restricted to
SeaWiF'S visible wavelengths, which are the first six wavelengths. The measurements
are shown in Table 3.5.

Training set | Test set | Total
v<3 40000 20000 | 60000
v>3 40000 20000 | 60000
Total 80000 40000 | 120000

Table 3.4: Atmospheric reflectance dataset.

Variable mean std mean std mean std
(w<3)| (v=38) | (#>3)| (>3) global global
v 2.5 0.4092 4 0.4071 3.3980 0.8416
my 1.415 0.0850 1.415 0.0850 1.4152 0.0850
m; 0.0035 | 0.0039 0.014 0.0155 0.0098 0.0133
0, 35 9.4490 35 9.4826 | 34.9625 9.4653
0, 30 18.1116 30 18.1504 | 29.9439 | 18.1252
Oy 180 113.4547 180 113.7952 | 179.5898 | 113.4967
T 0.2 0.1118 0.2 0.1115 0.2001 0.1117
A 482 50.3632 482 50.2561 | 482.3115 | 50.2576
reflectance | 0.0278 0.0245 0.0575 | 0.0452 0.0455 0.0422

Table 3.5: Atmospheric reflectance variables (training set).
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Model selection

Cross validation has been perfomed for networks having 10 to 50 hidden units, with 8

inputs and 1 output.

The training was done either without weight decay (Table 3.6) or using different

values for the weight decay rate (Table 3.7).

Hidden units

Relative RMS (% of target)

Model for v < 3

Relative RMS (% of target)

Model for v > 3

10
20
35
50

26.4588
22.5948
18.9186
18.1106

10.7269
9.3610
7.7926
8.7530

Table 3.6: Errors on atmospheric reflectance without weight decay.

Hidden | Weight decay | Relative RMS (% of target) | Relative RMS (% of target)
units variance Model for v < 3 Model for v > 3
20 0.02 23.4833 10.0182
20 2 25.0877 13.2244
20 200 61.6651 46.2164
30 0.02 20.6649 9.0194
30 2 22.9202 13.2258
30 200 61.6642 46.2064

Table 3.7: Errors on atmospheric reflectance with weight decay.

The best models are:
e For v < 3: 50 hidden units, no weight decay.

e For v > 3: 35 hidden units, no weight decay.

Chosen models

The best networks for the atmospheric reflectance model were two networks having
35 and 50 hidden units, but due to the computational cost of such large networks, it
was chosen to use networks having only 30 hidden units, with scg optimisation and
without weight decay (see Figures 3.2 and 3.3). The weight decay is usually used for
regularisation, i.e. to avoid overfitting the data of the training set [2]. The fact that
weight decay is not useful can be explained by the large amount of data provided, the
regularisation is then done by the dataset itself.
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However, having a single neural network to model the atmospheric reflectance was
more convenient, a single network having 30 hidden units was then chosen (See Figure

3.4).
The errors are in Tables 3.8, the standard deviation is in target unit.
v | Relative RMS (%) Bias Std
v<3 14.8578 1.0690e-05 | 0.0038
v>3 5.5822 9.0312e-06 | 0.0025
All v 9.2339 1.6601e-05 | 0.0039

Table 3.8: Atmospheric reflectance, final model errors.

02r

Qutput

Atmospheric reflectance, nu<=3, NN(8,30,1), rms: 15%

Figure 3.2: Atmospheric reflectance model, » < 3, inputs are m,, m;, 7, v, by, 0,, b, \

output is p,

1 1
0.05 01

1 1
0.15 02 0.25
Target
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Atmospherio reflectance, nu>3, NN(8,30,1),rms:6%
04r

Target

Figure 3.3: Atmospheric reflectance model, v > 3, inputs are m,,m;, 7,v, 0y, 0,, o, \,
output is p,

Almospheric reflectance, all nu, NN(8,30,1),rms:9%

04r
- 2 ”.
{"“r’“

; e
2

pe 3

o

0 01 0.2 0.3 0.4 05

Target

Figure 3.4: Atmospheric reflectance model, all v, inputs are m,.,m;, 7, v, 6;,0,, 6, \,
output is p,
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3.2.2 Atmospheric transmittance
Data

The atmospheric database for transmittance contains 100000 samples corresponding to
a basis built on the parameters v, m,, m;, s, 6,, 7 and A (Table 3.9). A is restricted to
SeaWiFS visible wavelengths, which are the first six wavelengths. The measurements
are shown in Table 3.10.

Training set | Test set | Total
70000 30000 | 100000

Table 3.9: Atmospheric transmittance dataset.

v e m; 0 ?, T A transmittance
mean | 3.2507 | 1.4152 | 0.0139 | 34.9463 | 29.9548 | 0.1999 | 482.3415 0.6406
std | 0.8539 | 0.0850 | 0.0155 | 9.4702 | 18.1245 | 0.1117 | 50.2553 0.1381

Table 3.10: Atmospheric transmittance variables (training set).

Model selection

Cross validation has been performed for networks having 10 to 50 hidden units, with
7 inputs and 1 output (Table 3.11).

Hidden units | Relative RMS (% of target)
10 4.2111
20 2.8712
35 2.3701
50 2.3066

Table 3.11: Atmospheric transmittance model errors.

As the transmittance is related to the path of light through the atmosphere, and
more precisely to the depth of the atmosphere, using the cosines of the angles instead of
the angles themselves could be useful. Thus, another comparison was done to determine
if it was beneficial to use the cosines of the angles as inputs (Table 3.12). The results
of this test shows that the network using the cosines of the angles is much worse than
the one which is not using the cosines. The reason of such a difference is not clear,
however as the interest of using cosines is not certain, the network directly using the
angles will be prefered.
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30 hidden units | Relative RMS (%) Bias Std
With cosines 19.0345 2.6715e-05 | 0.0262
Without cosines 1.8308 1.4343e-05 | 0.0025

Table 3.12: Choice of angles inputs for atmospheric transmittance.

Chosen model

The network chosen for the atmospheric transmittance model has 30 hidden units, with
scg optimisation (Figure 3.5).

The errors are in Table 3.13, the standard deviation is in target units.

Relative RMS (%) Bias Std
1.8308 1.4343e-05 | 0.0025

Table 3.13: Atmospheric transmittance final model errors.

Atmospheric transmittance, NN(7,20,1)nocos, rms:2%

D 1 L L L L L Il J
01 02 03 04 0.5 0.6 07 08 09
Target

Figure 3.5: Atmospheric transmittance model, inputs are m,., m;, 7, v, b, 6,, A, output
is t.
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Use of Near Infra-Red bands

According to Chomko & Gordon [4], it is possible to retrieve v (size distribution) and
7 (optical thickness) from the reflectances in Near Infra-Red (NIR) SeaWiF$S bands.

Thus an inverse model and a forward model learning those atmospheric parameters
(v: size distribution and 7: optical thickness) from the reflectances in NIR SeaWiFS
bands have been setup and tested.

As the targets are discrete (by construction), the first attempt was using an MLP
as classifier; this method was quite effective (Figure 3.6), but relies on an ‘artificial’
property of the data, thus a continuous model was set up.

The atmospheric database for transmittance contains 100000 samples; the measure-

ments are in Table 3.14.

v T 93 91; ¢’v ps/:oi
mean | 3.2489 0.2 35 30 180 1.1316
std | 0.8539 | 0.1118 | 9.4851 | 18.1628 | 113.8450 | 0.1086
Table 3.14: NIR bands model variables.
Network Confusion Matrix, nu (60%)
2 746 64 12 2 0 4 L
25p 289 369 142 23 7 28 o
3 102 80 483 130 31 33
g
35p 25 5 130 477 143 53
4 p 5 1 15 203 399 199
45p 3 5 1 52 210 530
2- 2?5 3. 375 4- 4?5
Predicted

Figure 3.6: MLP Classifier for v

A continuous model was built. According to Chomko & Gordon [4], a linear function
would be able to retrieve v from € = p(s)/p(l): the ratio of the short and long NIR
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band reflectances for a given instrument geometry. Therefore a forward model giving
the ratio € given v, 7 and the three observation angles has been trained.

As the data used for the training are discrete, the error of the network is difficult
to calculate for the values where no training or test data is given, but the results of
the forward model seem good. This will be confirmed in the tests of the Bayesian
framework (Chapter 5).

The output of the network for different values of v at a fixed given observation point
are shown in Figure 3.7. As the observation point is fixed, this figure can be considered
as a restriction of the global result which covers a basis of all the observation points.

This figure shows that for a known € there is several possible values of v in the
training set, then it is impossible to retrieve v from e. However, the neural network
is able to build a function to interpolate the data provided in the dataset, this neural
network will then be inverted using the Bayesian framework so as to try to retrieve v
from e in chapter 5.

The errors on € = p(s)/p(l) are shown in Table 3.15.

Relative RMS (%) | Bias Std
57.4606 -0.0019 | 0.5758

Table 3.15: Table of errors on ¢, NIR final model.

Nir-div-nocos(5,5,1)200,e distrib,is=20 tv=45, rms:57%
T

+  Trainingset-belore noise
+ _After train

1

| Lttt

-12 L 1 i | 1 i I
-2 -1.5 -1 -0.5 0 0.5 1 16 2

Figure 3.7: MLP Regression for ¢, inputs are geometry(3 angles), » and 7 (normalised),
output is € = p(s)/p(l) (unnormalised).
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Building the Bayesian framework

Once the individual models were built, the next step was to build spatial priors and
thus a spatial Bayesian framework on each one of the three parts of the model.

4.1 Principle of the Bayesian framework

The principle of the Bayesian framework is to use Bayes’ rule to compute the probability
of (a field of) parameter values given the observations. For example, the probability of
a parameter 7 given the observations p is:

p(rlp) = p;?g).p(r) . (4.1)

p(p) is constant as the observations don’t change, so

p(7|p) < p(p|T).p(T) . (4.2)

Then, assuming that the noise on the components 7; of 7 is iid,

p(t|p) x [Hp pziﬁ] p(T) . (4.3)

Then the error on the parameter, which is the negative log likelihood of the parameter

is

E = —log(p(T|p))

= —log (H p(pilTi).p ) + constant (4.4)

= 3 el a ) - ortatait

As Gaussian noise is assumed on the data, the expressions of p(p;|7;) and p(T) are

as follows:

i) — ( ”*‘2) (45)
P\ |Ti) = =HEXD == s g S 4
PAF ,/2*:1'0332 I 203 ¥
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where o, represents the confidence we have when doing the comparison. If no noise
is added on the observation (or if the observations are assumed to be noise-free), o,
is the sum of the error due to the neural network and the uncertainty due to the
physical model used to simulate the data in first place. If some noise is added to the
observations, or if the observations are not assumed to be noise-free, 0, is the sum
of the noise due to the neural network errors, the noise in the observations and the
physical model uncertainty.

0 is the difference between the real observations and the values predicted by the
model:

0; = f(m:) — pi - (4.6)
The prior p(7) is given by

1 1 rsr—1
plr) =z exp (3 = )5 = 7)) (4.7

where p is the prior mean of 7. The covariance matrix ¥ encapsulates our prior
knowledge about the parameter 7. Each parameter has its own prior hyperparameters
which define the Gaussian process; the covariance matrix is computed using the hyper-
parameters of this Gaussian process. The parameters used for each prior are discussed
below.

To apply the Bayesian framework it was necessary to build priors for the different
parameters. The priors on the different parameters have been chosen according to
physical and biological knowledge.

4.2 Atmospheric priors

For the NIR bands model, Gaussian processes priors were defined (see Table 4.1).
The basis function and length scale were chosen according to prior knowledge. The
basis function used is the polyexponential function:

Clr) = v.(1 + %)exp (T’") +n, (4.8)

where v is the variance of the Gaussian process, [ is the length scale and n is the nugget.
The nugget variance is the variance of the semivariogram, i.e. of the Gaussian process,
for a zero distance.

The prior function and the scale length were arbitrarily chosen as no physical value
was available; however it can easily be modified according to real measurements. The
mean and variance were calculated from the training data.

At first, no prior was defined for m, and m;, then, priors were built according to
the characteristics of the training data.
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Parameter Prior Type Function | Variance | Scale length | Nugget | Mean
T Gaussian process | polyexp 0.1 100km 0.01 0.2
v Gaussian process | polyexp 0.6 100km 0.01 3.2

Table 4.1: Priors for the NIR bands parameters

4.3 Oceanic priors

For the oceanic model, log Gaussian processes priors were built (see Table 4.2).

The basis function, length scale, variance and nugget were chosen according to the
semivariograms build by [5] from real observations.

The basis function used is the exponential function:

C(r) = v.exp (TT) +n, (4.9)

Where v is the variance of the Gaussian process, [ is the length scale and n is the
nugget.
The mean was calculated from the training data.

Parameter Prior Type Function | Variance | Scale length | Nugget | Mean
b’ Gaussian process exp 0.1 20km 0.01 | log(0.3)
[chl] Gaussian process exp 0.42 21km 0.03 | log(0.5)

Table 4.2: Priors for the oceanic parameters

4.4 Implementation of the Bayesian framework

The goal is to retrieve the parameters using the MAP (Maximum A Posteriori) method,
for example the 7 which gives the maximum p(7|p). The Bayesian process starts from
an uniform field at the expected mean, to facilitate the convergence. However, it can
also start from a random point, or from a point previously computed as a first guess.
The parameter field is optimised using a scalar gradient based optimisation [2], using
the error function described in equation 4.4 and its gradient. The implementation of
the final framework has been done together with the testing and is described in the

next chapter.

37



Chapter 5
Testing of Bayesian frameworks

A test of the Bayesian frameworks was done using simulated data. A field of parameters
was created using the Gaussian process (a realisation from the prior), then the forward
model was used to simulate the observations. Noise was added to the simulated obser-
vation and then the retrieval of the original parameter from the noisy observations was
performed. The error between the retrieved parameter and the original parameter was
then computed. Results on [chl] were compared with SeaWiF$S specifications, which

require to have an error less than 35% of the signal.

Generate a field of parameters
Simulate observations

Add noise

Retrieve parameters from noisy simulated observations

Compare retrieved parameters and generated parameters

Figure 5.1: Diagram of the Bayesian framework test.

5.1 Test on NIR bands

The Bayesian framework was first built for the NIR bands model, the goal was to

retrieve either v or 7 given the observations (e = p(s)/p(l)) at a given satellite position,
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CHAPTER 5. TESTING OF BAYESIAN FRAMEWORKS

characterised by three geometry angles.

5.1.1 Retrieval of a single variable

At first the framework was built to retrieve 7, assuming v to be known.

This retrieval has been done without and with noise added on the NIR observations
(Figures 5.2 and 5.3). The noise added was Gaussian noise with zero mean and standard
deviation of 1% of the standard deviation of the data (o.). Adding more noise on
€ = p(s)/p(l) was leading to much worse results. The optimisation, as well as all the
other optimisations in this chapter, was done with a limit of 1000 epochs. The relative
weight of the prior is related to the amount of noise through equations 4.5 and 4.4.

slarting lau

1

05

0

=08
5 10 16 20

rmor on lau, global rms is & 24e-05%

-
5,

L L ke s w

Figure 5.2: Retrieval of a 7 field given the NIR bands observations using a Bayesian
framework and an MLP, without noise.
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Figure 5.3: Retrieval of a 7 field given the NIR bands observations using a Bayesian
framework, a noise of 1% of mean(e = p(s)/p(l)) has been applied to the observations.
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5.1.2 Joint retrieval of two variables

The second step was to retrieve jointly v and 7. Different methods were explored,

based on different networks.

e The first method used a network having v, 7 and the viewing angles as inputs
and € as output. This method generally found a local minimum, which gave a
perfect € for a good v but a wrong 7 as shown in Figure 5.4.

e Next a network having v, 7, the viewing angles and A as inputs and p()\) as
output was setup, this method was able to retrieve 7 but not v (see Figure 5.5).

These tests tended to show that 7 can be retrieved from NIR bands reflectances whereas
v can be retrieved from e. A network should theoretically be able to retrieve v and 7
from the NIR bands reflectances, but it might be better to also include the information

about e explicitly. The two different solutions were then tested.

e The first one was done using a network having v, 7 and the viewing angles as
inputs and the reflectances in NIR bands and € as outputs. See Figure 5.6 and

Table 5.1.

e The second one was done using the two first networks and iterating, guessing 7

with a fixed v, then v with a fixed 7. See Figure 5.7 and Table 5.2.

These two methods gave different results, both were correct. The retrieval using
NIR bands and € was more direct, more elegant and slightly better, thus it was used

in the global framework.

Relative RMS (% of target) | Bias | RMS

200) 0.0042 ~0.0000 | 0.0000
p(Na) 0.0036 -0.0000 | 0.0000
p(2s) 0.0050 -0.0000 | 0.0000
p(\3)/p(0s) 0.0355 -0.0000 | 0.0000
v 0.0443 -0.0000 | 0.0003

T 0.0163 0.0000 | 0.0000

Table 5.1: Table of errors, v and 7 retrieval from NIR bands and e, plotted on Figure
5.6. A1, A2 and A3 are SeaWiF'S three last wavelengths (Near Infra Red bands).
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Figure 5.4: Joint retrieval of v and 7 fields given ¢ = p(s)/p(l) using a Bayesian
framework.

Relative Error (percentage of target) | Bias RMS

p(Ar) 0.7859 -0.0000 | 0.0003
p(A2) 0.8697 0.0000 | 0.0004
p(A3) 0.1638 0.0000 | 0.0001
p(A3)/p(A2) 0.2296 0.0000 | 0.0001
v 2.4794 0.0028 | 0.0151

T 9.7368 0.0042 | 0.0254

Table 5.2: Table of errors, v and 7 retrieval iterating on two networks, plotted on
Figure 5.7.
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Figure 5.5: Joint retrieval of v and 7 fields given NIR bands observations (instead of
e = p(s)/p(l)) using a Bayesian framework.

Figure 5.6: Joint retrieval of v and 7 fields given NIR bands observations and ¢ =
p(s)/p(l) using a Bayesian framework.
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Figure 5.7: Retrieval of v and 7 fields iterating on two networks.
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5.2 Test on oceanic model

5.2.1 Retrieval of a single variable

The Bayesian framework was then adapted to the oceanic model to retrieve the chloro-
phyll concentration given b° and the observations at the different SeaWiF$S visible
wavelengths, at a given satellite position (see Figures 5.8, 5.9 and 5.10).

The first tests were done using simulated data with added noise, the relative weight
of the prior is related to the amount of noise on the observations through equations
4.5 and 4.4.

A comparison of consistent and inconsistent priors has been made (see Figure 5.11).
The prior is said to be consistent with the noise when its weight is adapted according
to the amount of noise added. The prior is deemed inconsistent with the noise when
its weight is not adapted.

The noise added on the observations is Gaussian and has a standard deviation of

std = noise factor * mean(observations) . (5.1)

ariginal chi

arror on chi, global rms is 1% x10°

-04
06

5 10 15 20

Figure 5.8: Retrieval of a log([chl]) field given the observations using a Bayesian frame-
work, without noise.
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error on chl, global rms is 64%

5 10 15 20 5 10 15 20

Figure 5.9: Retrieval of a log([chl]) field given the observations using a Bayesian frame-
work. A noise of 20% of mean(p) has been applied on the observations, the noise
assumption is not consistent with the noise added.

error on chi, global rms is 46%

Figure 5.10: Retrieval of a log([chl]) field given the observations using a Bayesian
framework. A noise of 20% of mean(p) has been applied on the observations, the noise
assumption is consistent with the noise added.
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Figure 5.11: Comparison between priors with noise assumption consistent or inconsis-
tent with the added noise. Average on 100 experiments.
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5.2.2 Joint retrieval of two variables

Then the Bayesian framework was tested to retrieve jointly two variables, b° and [chl].
(See Figures 5.12 and 5.13)

original chi
" '"l:

06

error on chl, rms 12,
-02 05

-0.45 0.4
-0.60 03
-0.85
-120
-1.2

0.2
0.1
0

Figure 5.12: Retrieval of log(b°) and log([chl]) fields given the observations using a
Bayesian framework, without noise.

=4 original chi

= -02
g ¥

Figure 5.13: Retrieval of log(b°) and log([chl]) fields given the observations using a
Bayesian framework. A noise of 5% of mean(p) has been applied on the observations,
the noise assumption is consistent with the noise added.
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5.3 Conclusion of the test of the Bayesian frame-

work

The tests of the Bayesian framework on small problems, using only one neural network
at once, were successfull. The error on the retrieval of [chl] was less than 13%, whereas
SeaWiF'S requirement is only to have an error under 35% of the signal. However this
was done on a sub-problem of the real global problem. The use of priors was verified
and the behaviour of the retrieval process when adding noise was tested. These tests
have shown that the Bayesian framework was reliable and useful on the sub-problems,
then the framework was tested on the global problem.
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Chapter 6
Tests on simulated data

Once the Bayesian retrieval process had been tested on the sub-problems described
previously, the global Bayesian framework was built for the whole problem.

The tests on the global model were first done using simulated data. The test was
done by generating fields of atmospheric and oceanic parameters, simulating the obser-
vations using the neural networks, noising these observations, retrieving the parameters
from the noisy observation and comparing the retrieved parameters and the original

simulated parameters (see Figure 6.1).

Generate a field of parameters

Simulate observations

Add noise

Retrieve parameters from noisy simulated observations

Compare retrieved parameters and generated parameters

Figure 6.1: Testing process.

6.1 First retrieval framework

The retrieval was first attempted in two steps. The first step was to retrieve v and 7
from the NIR bands. This was done by inverting the NIR model presented before, as
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only one neural network is involved this part was fairly accurate. This first optimisation
was done with a limit of 500 epochs.

The second step was to retrieve m,, m;, b” and [chl] from the visible bands. This
second optimisation was done with a limit of 5000 epochs. This method gave poor
results, the model staying in local minima, p;,, being close to the real observations but

my, m;, b’ and [chl] being wrong (Table 6.1).

Relative Error (percentage of target) Bias RMS
Ptoa 7.654508e+00 4.663121e-05 | 2.785888¢-03
v 2.209596e-05 -9.396992e-10 | 2.447876e-08
3 3.574356e-06 4.758629¢-10 | 2.682411e-09
my 3.606464e+02 -1.315479¢-01 | 3.816374e-01
m; 1.765500e+-03 -6.874906e-02 | 2.344982e-01
bo 1.438938e+-03 -2.546753e-01 | 1.185927e+00
[chl] 2.461670e+-03 4.343113e-01 | 1.881375e+00

Table 6.1: Table of errors, global retrieval in two steps.

6.2 Second retrieval framework

To correct the problem that the algorithm found local minima, another method was
tried. The second method was done in three steps.

e The first step was to retrieve v and 7 from the near infra red bands.

e The second step was to perform a first guess to retrieve m, and m; from p,, in
visible wavelenths. It was first attempted to use a direct inverse model learning
both m, and m; from the TOA reflectance and the geometry, but as the training
data is discrete (see Table 1.3) this method was inappropriate. Thus two classi-
fiers were built, one classifying m, from the TOA reflectance and the geometry
and the other classifying m,; (see Figures 9.1 and 9.2 in appendix). As m; can
take 6 different values in the dataset used, a single classifier wasn't effective, a
pyramidal structure of three classifiers was then built, the first classifier choos-
ing between low and high values (see Figures 6.2 and Figures 9.3, 9.4, 9.5 in
Appendix).

e The third step was to retrieve m,, m;, b” and [chl], using the previous results as
starting points for m, and m; (see Figure 6.3).
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Figure 6.2: Pyramidal classifiers to retrieve m; from p;,,.
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Figure 6.3: Second global retrieval framework, using the NIR bands to retrieve v and
7, and the classifiers to first guess m, and m;.
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6.3 Physically wrong results

The first tests on simulated data gave good results for v and 7, but very poor results
for m,, m;, b° and [chl], giving results outside the physical range of the parameters,
with the corresponding observations near the real ones, (see Figures 6.4 and 6.5).
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Figure 6.4: Global retrieval using MLPs - retrieved parameters.
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Figure 6.5: Global retrieval using MLPs - observations at the SeaWiF$S visible wave-
lengths.

Four solutions were then considered.
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6.3.1 MLP vs RBF

The first tests were showing that wrong parameters were found, leading to observa-
tions corresponding to the real ones. This behaviour can be attributed to the use of
MLPs, which are trained to give results corresponding to the training set in the data
range of the inputs given in the training set, but are not constrained outside this data
range. Thus MLPs can lead to a minimum outside the physical range of the different
parameters which gives observations close to the real ones.

The use of RBF was then considered, as the RBF are using Gaussian basis functions,
the output given for an input outside the training set range tends to zero. The figures
and errors of the trained RBFs are in the appendix (Table 9.1, Figures 9.6, 9.7 and
9.8). The RBF for atmospheric transmittance was not as efficient as the corresponding
MLP, but increasing the size of the network (the number of basis functions) would have
increased too much the computational cost of the training. Therefore, the maximum
size of the RBF was kept at 64 basis functions.

6.3.2 Gaussian mixture model priors over the data space

The second solution was to fit Gaussian mixtures to each variable in the training set so
as to set simple priors on each of them (See equation 4.3). These priors would constrain
the parameters in the physically real data range (see Figure 6.6). As the data samples
are not uniformly distributed in the data range, the Gaussian mixtures can fit artefacts
due to the conception of the basis of parameters, as shown for the parameter m, in
Figure 6.6. These priors cannot be used where other priors are already in use, thus
they will be used where no other prior is available.

6.3.3 Log parameter space

The third solution was to work in log parameter space. This solution would prevent the
parameters becoming negative when they can’t physically be. Moreover, the oceanic
parameters, b° and [chl], and the atmospheric optical parameters, v and 7 are more
likely to be Gaussian distributed in log space [3]. The figures and errors of the trained
MLPs and RBFs are in the appendix (Table 9.2, Figures 9.12, 9.13, 9.14 and 9.9, 9.10,
9.11). The basic framework was then tested in logspace, (Figures 6.7 and 6.8 and Table
9.8 in appendix), the results were not better than not using the logspace. Moreover,
the transformation from logspace to real space induced more error: If z is the retrieved
parameter in logspace, the real value of the parameter is

y = exp(z) , (6.1)
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Figure 6.6: Gaussian mixture priors on v, 7, m,, m;,b° and [chl]. Vertical blue lines are
the limits of the data range in the training set, red curve is the Gaussian mixture prior.

and then the error on the real parameter is

=%
Ay = 8—$.Am (6.2)

= exp(z).Az .
As the retrieval using logspace was not as good as the normal retrieval, this solution
was not kept.

6.3.4 Improved first guess

The fourth solution was to try to improve the first guess of the different parameters. In
the previous framework, » and 7 were retrieved first, then m, and m; were first guessed
and at last m,, m; b° and [chl] were retrieved. Several improvements were examined:

e In the first framework, no first guess was done for ° and [chl]. However having
a first estimation of these two parameters would be useful. Then a direct inverse
model giving 8° and [chl] from v, 7,0y, 0,, ¢, A was built, as this problem is multi-
modal, an MDN was used. Unfortunately this problem seemed to be too difficult
to be directly learnt by an MDN (Figures 6.9, 6.10, 6.11). This solution was then
abandoned.

e The first guess of m, and m; was done using classifiers, but was not very efficient,
a better first guess for m, and m; would improve the global efficiency. A more
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Figure 6.7: Second framework - Retrieval using the complex forward model in logspace
(MLPs): parameters.
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Figure 6.8: Second framework - Retrieval using the complex forward model in logspace
(MLPs): observations.

efficient first guess was tried by inverting a network which was able to compute
Proa from v, 7, m, and m;. As v and 7 are retrieved first, inverting this network
gave m, and m; (See Figure 9.15 in appendix). This network will be referred to
as first guess model for m, and m;.

e A solution to first guess 4° and [chl] as well was examined and implemented using
a single neural network able to compute pyo, from v, 7,0° and [chl] (Figure 9.16
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Figure 6.9: Network for first guess of ° and [chl], inputs are 7,v,6,,6,, ¢, A, outputs
are b’ and [chl]. Plot of target versus output for [chl].

Figure 6.10: Network for first guess of b° and [chl], inputs are T, v, 6,,0,, ®, A, outputs
are b and [chl]. Plot of target versus output for b°.
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Figure 6.11: Network for first guess of [chl], inputs are 7, v, 6,,0,, ®, A, output is [chl].
Plot of target versus output for [chl].

in appendix). This solution, as well as the previous one, is based on a restriction
of the problem, as the networks are predicting p,, without all the parameters.
This network was not as good as the previous one, however, it was tested in the
global framework. This network will be referred to as first guess model for b° and

[chl].

e Finally, a network computing ps, from v, 7, m,,m;,b° and [chl] was built as a

simpler and less accurate modelisation to the global problem, to perform a first

|

en
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retrieval for m,., m;,b° and [chl] (see Figure 9.17 in appendix). This network will
be referred to as simple forward model.

Those three solutions can be applied successively before the last retrieval to start closer
to the true parameters and avoid local minima.
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6.4 Third retrieval framework

The third framework (Figure 6.12) used the first guess model for m, and m;, for which
two different solutions, the classifiers and the inversion of a neural network were tested.

The first guess model for ° and [chl] was also implemented as well as the simple
forward model for the first retrieval of m,, m;,b° and [chl].

The previously described Gaussian mixture models were used where no prior knowl-
edge was available.

The tests were first done using MLPs.
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m, m, b [chl

(Sl;k

First Retrieval

(Starting point) l e
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Figure 6.12: Third Global retrieval framework.

This new framework was more complicated; the additional networks were designed
to give good starting points for the more complicated networks. The first test was
done using only the first networks, performing the first guess on m,,m;, 5" and [chl],
to check that this first guess was efficient (see Table 6.2 and Figures 6.13 and 6.14).
This first guess was not better than the one achieved using classifiers, as the retrieved
parameters were still outside of the data range. Moreover, as m, and m; were retrieved
separately from b and [chl], the corresponding TOA observations were far from the

real ones.
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Relative RMS (% of target) Bias Std
Ptoa 4.327416e+02 -1.188342e-01 | 1.574980e-01
v 2.209596e-05 -9.396992e-10 | 2.447876e-08
T 3.074356e-06 4.758629¢-10 | 2.682411e-09
my 6.782622¢+03 -1.304376e+00 | 7.177396e+00
m; 4.488820e+05 1.088222e+01 | 5.962163e+01
b° 2.722770e+03 2.738618e-01 | 2.244020e+-00
[chl] 3.282592e+03 3.001337e+00 | 2.508779e+00
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Figure 6.13: Third framework - First guess (MLPs): parameters.
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Figure 6.14: Third framework - First guess (MLPs): observations.
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Then the network doing the first retrieval of all the four parameters m,, m;, ° and
[chl] was tested, alone at first (Figures 6.15 and 6.16, and Table 9.3 in appendix), and
then with the other two first guess networks (Figures 6.17 and 6.18 and Table 9.4 in
appendix). As shown in Figures 6.15 and 6.16, the algorithm not using the first guess
found a minimum which had wrong parameters even if the corresponding observations
were close to the real ones. The algorithm using the first guess didn’t even find a local
minimum. This test showed that the first guess was wrong. (Figures 6.17 and 6.18)
This test has shown that the simple forward model was useful only for the parameter
m; when it was used without the other first guess.
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Figure 6.15: Third framework - Simple forward model (MLPs): parameters.
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Figure 6.16: Third framework - Simple forward model (MLPs): observations.
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Figure 6.18: Third framework - First guess and simple forward model (MLPs): obser-
vations.
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It was hypothetised that using this simple forward model for a first retrieval to fix
the starting point of the complex model would be useful for m; only. This was tested by
using the simple forward model together with the complex model (see Figure 6.20 and
Table 9.6 in appendix). This retrieval was compared with the results using the complex
model alone (Figure 6.19 and Table 9.5 in appendix). This comparison showed that
the parameter m; was retrieved with better accuracy when the simple forward model
was used. However, the oceanic parameters, b° and [chl] were still poorly retrieved.
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Figure 6.20: Third framework - Simple forward model and complex model (MLPs):
parameters.
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This framework, using the simple forward model for a first guess and the complex
model to refine the retrieval was the best one using MLPs. It was then tested using
RBFs instead of MLPs. Using RBFs, the retrieval of m, and m; was better, even if
the retrieval of b° and [chl] were still poor (See Figures 6.21 and 6.22).

0.04

0.03final b(log) [| °4final chifiog

0 0.
4
= OII olﬂ
010 o‘|

246810002 24681

pE O
2468100,, 24681

L -0.01
0.05 0.156

-0.02 0.1

Figure 6.21: Third framework - Simple forward model and complex model (RBFs):
parameters.
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Figure 6.22: Third framework - Simple forward model and complex model (RBFs):
observations.
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6.5 Fourth retrieval framework

At this point the retrieval of v, 7, m,.m; was done, but ° and [chl] were still to be
retrieved. As all the atmospheric parameters were then known pum0(A) and £(\) could

be computed, and as
p;oa()\) = patmo()\) G i t()\)pw()\) (63)

pw(A) could be deduced
p;oa(/\) i - patmo(/\)
t(\)

Then ° and [chl] were retrieved from p,()) as in section 5.2.

Pu(A) = (6.4)

The fourth retrieval framework was then performed using (Figure 6.23)

e The NIR bands model to retrieve v and 7,

e The classifier for a first guess of m, and m;,

e The simple forward model to do a first retrieval of m,, m;,b° and [chl],

e The complex forward model to refine the retrieval of m,, m;, ° and [chl],
e The oceanic model to refine the retrieval of 4° and [chl].

This framework relied on pume(A) and t(A), which means that errors on v, 7, m,., m;
were transmited to p,(\) and then to 8° and [chl]. Moreover, as in 6.4, the error on

pw(A) was

pu (9,0w apw
A w A At A aitmao
P Ia ;Oa[ Ptoa | | + |6ﬂa3mo| Pat
STE PV i Ploa = Poime) At 1| — 2| Ao (6.5)

1 f
= |?| (A»Otoa + Apatmo + Pw-At)

The A are not written as each variable is dependent of .

The error on p, was then too big to enable any retrieval (See Figures 6.24, 6.25
and 6.26 and Table 9.10 in appendix). As shown in Table 6.3, the p,, computed by the
algorithm was then completely different from the p,, in the dataset used to train the
neural networks. The neural network was then unable to find any parameter which
would lead to this p,. This framework was then useless.
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Figure 6.23: Fourth Global retrieval framework.

Dataset Max | Mean Min
pw derived from the retrieved parameters | 0.2859 | 0.0100 | -1.2795
pw in training data 0.0485 | 0.0122 | 0.0003

Table 6.3: Characteristics of p,, derived from the retrieved parameters and p,, in the
training set of the neural network.
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6.6 Conclusion of the tests on simulated data

The tests on simulated data have shown that the atmospheric parameters, v, 7, m,, m;
could be retrieved with acceptable precision, even if only the retrieval of ¥ and 7 were
accurate to the level required by SeaWiFS specifications, that is with an error less than
5% of the signal. The reason why ° and [chl] were not retrieved with acceptable confi-
dence is that the architecture of the model enables a solution giving good observations
(ptoa) but wrong components (p,,t, p,,) and thus wrong parameters. Any small error
on the atmospheric parameters leads to an error on the atmospheric transmittance (),
and thus on the water-leaving reflectance (p, ). This compromises the retrieval of the
oceanic parameters. To enable a better retrieval of b° and [chl], a much more accurate
model would be needed for the atmospheric transmittance (¢) as the error on p,, comes
mainly from the error on t.

The final and most reliable framework according to the tests done on simulated
data was achieved using (See Figure 6.27):

e The NIR band model to retrieve v and T,
e The classifiers to perform a first guess of m, and m;,

e The simple forward model to perform a first retrieval of m,, m;, b° and [chl], using
the previous m, and m; as starting points,

e The complex forward model to refine the retrieval of m,,m;,b° and [chl], using
the previous m,.,m;,b° and [chl] as starting points.
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Figure 6.27: Final Global retrieval framework.
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Chapter 7
Tests on real data

The tests on the global model were first done using simulated data, and then using

real data instead.

7.1 Standard SeaWiFS atmospheric correction

The real data was provided by Anton Lyaskovskiy, NCRG. The raw top of atmosphere
information from SeaWiF'S was provided together with basic correction information for
Rayleigh scattering, sun glitter, whitecaps and oxygen and ozone absorption.

SeaWiF'S provides the radiances; the conversion from radiances to reflectances is:

S= WL(/;‘)COS(SO)
0(A)

Then, several corrections were performed in order to compute the corrected reflectances
which can be handled by the trained neural network.

First, the sun glitter is removed

Pei(A) = proa(A) = T(A).pg(A) -

Secondly, the Rayleigh-corrected reflectance is defined by

Pes(A) = e (A) = pr(A) = (A)-puc(A) -
Thirdly, it is assumed [8] that the effects of ozone and oxygen can be removed

Pes(A) = f—(/\) :
0, Loz
These corrections are adding a certain amount of noise to the data, this noise must
be taken in account in the assumption made in the retrieval. However, as this noise
is negligible compared to the errors of the neural networks, the assumptions will not
be modified. As the standard SeaWiFS atmospheric correction were performed, the

corrected TOA reflectances could be used in the Bayesian retrieval framework.
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7.2 Bayesian retrieval

The main problem when testing on real data was that only the TOA reflectance and
its three components, the atmospheric reflectance, the atmospheric transmittance and
the water-leaving radiance were known. Thus it was difficult to estimate the errors on
the retrieved parameters as the real values for most of them were unknown. However,
the results found were compared with SeaWiFS results.

The first test was done using the framework designed during the tests on simulated
data, using MLPs (Figures 7.1 and 7.2). The MLPs were chosen because they were
more reliable than the RBFs according to the training and test errors, even if the RBF's
were slightly better in the tests on simulated data.

The retrieved parameters were wrong, as well as the corresponding observations
(Figures 7.2 and 7.1). This behaviour came from the use of a first guess model. These
were efficient using simulated data because the data was simulated with the same
neural networks as the ones used for the retrieval. But when using real data, the first
guess models were more likely to find local minima as they are more simple than the
complex model.
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Figure 7.1: Retrieval using the simple forward model and complex model (MLPs):
observations.

Then the retrieval was tested with a framework using only the NIR bands model and
the complex forward model (Figure 7.4). The results were better as the observations
corresponding to the retrieved parameters were closer to the real values (Figure 7.3).
However, the components of p.: p. (Figure 7.6) and p, (Figure 7.5) were still far
from the real ones, even if the parameters were closer to the physical range than in the
previous test.
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Figure 7.3: Retrieval using the complex model (MLP): observations.

7.3 Conclusion of the tests on real data

The tests on real data have shown that the framework built to be efficient on simulated
data gave poor results on real data. This is mainly because the neural networks used

in the retrieval have been trained on the same datasets as the ones used to simulate

the data. Thus, their first guess was more accurate on simulated data than on real

data, and so consequently was the global retrieval.

The reason why the algorithm is doing worse on real data than on simulated data
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Figure 7.4: Retrieval using the complex model (MLP): parameters.
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Figure 7.5: Retrieval using the complex model (MLP): p,

is that the errors induced by the physical model used to simulate the data, and thus

to train the networks, is added to the error directly coming from the networks and

the noise on the observations. The error at each level is then greater than when using

simulated data, thus the retrieval of » and 7 is worse, then this error is transmitted

through to the retrieval of the other parameters.

The use of priors enables us to direct the parameters to the physically correct values,

but as no prior is given for the values of p,,t and p,, parameters giving a nearly true
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Figure 7.6: Retrieval using the complex model (MLP): p,.

Proa but wrong components p,,t and p,, are found.
Some propositions to improve the retrieval on simulated as well as on real data are
explained in the next chapter.
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Chapter 8
Conclusion

First of all, the forward neural networks to learn the data simulated from the Chomko
& Gordon model have been designed and trained. Additional networks have been built
to perform the first guess of the different parameters.

Secondly, the Bayesian framework has been set up, implemented and tested on
small problems corresponding to the retrieval of some of the parameters (v and 7 in
section 5.1), and the retrieval of the parameters of a single model (oceanic model, in
section 5.2). Other tests were done to demonstrate the use of priors (in section 5.2).
These tests have shown that the Bayesian framework was effective on the inversion of
a single neural network, and that the use of priors enabled a more accurate retrieval
when using noisy observations.

Thirdly, tests on simulated and real data have been performed. The framework has
been modified according to the results of the tests on simulated data, and according
to the results of the tests on real data so as to improve the accuracy of the retrieval in
both cases. These tests have shown that four out of the six parameters were retrieved
in the case of simulated data, whereas none of the parameters was retrieved in the case
of real data. The main problem observed during the tests on real data was that small
errors on the atmospheric parameters led to an important distortion on the oceanic
information, and thus on the oceanic parameters. Thus more accurate models would
be needed to improve these results, as well as a first guess for #° and [chl]; however
none of the attempts to build a first guess for the oceanic parameters was successful,
the problem being too complex to be solved by a single neutal network, and thus all the
attempts to build a model to perform a first guess were leading to wrong local minima.
The tests on real data have shown that the retrieval led to parameters giving TOA
observations close to the real ones, but with wrong components (p,, t, p,,). The results
of the tests on simulated and real data have shown that the use of Bayesian methods is
useful. However the global retrieval framework performance is still far below SeaWiF$S
requirements. Hence, several improvements can be suggested.

The first possible improvement comes from current retrieval algorithms which are
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using lookup tables to infer aerosols properties, m, and m;, from v and 7. As the goal
of this thesis was to build a Bayesian approach to the problem of aerosol correction
this solution wasn’t used. However, this issue can be useful to give a first estimation
of the parameters m, and m; which are still difficult to retrieve with enough precision
in the presented framework. Secondly, the tests on real data have shown that the
retrieved parameters were corresponding to wrong p,, p,, and t, thus it could be useful
to embed prior knowledge on these components in the Bayesian framework. Thirdly,
the efficiency of priors is better when the processing is done over large datasets, however
the mathematical tools used in the framework makes the use of large datasets difficult.
Therefore sparse Gaussian processes might prove useful as they would enable us to
process larger datasets. Finally, the model used to simulate the data which is used to
train the neural networks is a simple and convenient model, however a more precise
model would enable to build a framework more efficient on real data. The problem
of retrieving wrong parameters leading to the good p;,, shows that the model is not
directly invertible; either because the problem itself is not invertible, or because the
model is too far from the real problem.
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Appendix

9.1 Classifiers for m, and m;

Network Confusion Matrix, m, (57%)
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Figure 9.1: Results of the classifier MLP to retrieve m, from py,.

9.1.1 Pyramidal Classifiers for m;
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MNetwork Confusion Matrix, m (24%)
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Figure 9.2: Results of the classifier MLP to retrieve m; from ps,,.
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Figure 9.3: Pyramidal classifiers to retrieve m; from py,, - First classifier.
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Network Confusion Matrix, m, Inf Net (49%)
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Figure 9.4: Pyramidal classifiers to retrieve m; from py,, - Classifier for low values.
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Network Confusion Matrix, m, Sup Net (76%)
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Figure 9.5: Pyramidal classifiers to retrieve m; from py,, - Classifier for high values.
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9.2 RBFs

The three components of the global model were learnt using RBFs as an alternative to
MLPs

Model Relative RMS (% of target) Bias Std
Atmospheric reflectance 9.2649 1.1823e-05 0.0039
Atmospheric transmittance 29.6081 0.0025 0.0407
Oceanic reflectance 1.6533 1.3768e-05 | 1.8114e-04

Table 9.1: RBFs errors.

Atmospheric reflectance, all nu, RBF(8.64,1), rms:9%
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Figure 9.6: RBF for atmospheric reflectance.
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Figure 9.7: RBF for atmospheric transmittance.
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Figure 9.8: RBF for water-leaving reflectance.
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9.3 Log parameter space

Model Relative RMS (% of target) Bias Std
MLPs
Atmospheric reflectance 9.3470 7.4263e-05 0.0039
Atmospheric transmittance 1.8016 -2.0401e-05 0.0025
Oceanic reflectance 0.1469 8.1074e-07 | 1.4997e-05
RBFs
Atmospheric reflectance 9.6287 2.5543e-05 0.0040
Atmospheric transmittance 2.1135 -1.1196e-05 0.0029
Oceanic reflectance 1.6533 1.3768e-05 | 1.8114e-04

Table 9.2: Log MLPs and RBFs errors.

9.3.1 MLPs
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Figure 9.9: MLP for atmospheric reflectance in logspace.
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Atmaspheric transmittance, NN(7,20,1)nocos-log, rms:2%
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Figure 9.10: MLP for atmospheric transmittance in logspace.

Oceanic, NN{3,30,1)logs,ms:0%
0.045

0.04
0.035
0.03F

0.025

Qutput

0.02f -

0.015 2

0.005 /

L4

U , I} s L L L 1 1 1 J
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 004 0.045
Target

Figure 9.11: MLP for oceanic reflectance in logspace.
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9.3.2 RBFs

Atmospheric reflectance, all nu, RBF(B,64,1), rms:8%
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Figure 9.12: RBF for atmospheric reflectance in logspace.
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Figure 9.13: RBF for atmospheric transmittance in logspace.
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Oceanic reflectance, ABF(3,64,1)logs, ms:0%
0.045r

004 . a
0.035F .
003 e

0.025

Output
"

0.02F 0

0.015F i

0.01 »

0.005 /

, 1 1 1 L L 1 1 L d
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Target

0

Figure 9.14: RBF for water-leaving reflectance.
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9.4 First guess models

Full forward, NN(8,40,1},rms: 175

04r
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Cutput

0.3 04 05
Target

Figure 9.15: Network for first guess of m, and m;, inputs are m,, m;,7,v,0,,0,,®, \,
output is pyea(A).
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Figure 9.16: Network for first guess of b° and [chl], inputs are 7, v, 0,,6,, ¢, %, [chi], ),
output is pyea(A).
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Full forward, NN(10,40,1),rms:10%
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Figure 9.17: Network for first retrieval of m,,m;,° and [chl], inputs are
My, My, T, U, Os, 0y, @, 0%, [chl], A, output is psoq ().
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9.5 Test on simulated data

Relative RMS (% of target)

Bias

Std

4.218870e+-01
2.209596e-05
3.574356e-06
9.884582e+-01
8.959418e+01
9.997610e+01
1.000221e+02

-2.053998e-03
-9.396992e-10
4.758629¢-10
4.994772e-01
1.722522¢-02
1.466172e+-00
1.098480e+-00

1.535474e-02
2.447876e-08
2.682411e-09
1.045990e-01
1.190012e-02
8.239712e-02
7.644363e-02

Table 9.3: Errors on retrieval using only the simple forward model (MLPs).

Relative RMS (% of target) Bias Std
Ptoa 1.080382e+-02 -2.404762e-02 | 3.932093e-02
% 2.209596e-05 -9.396992e-10 | 2.447876e-08
T 3.574356e-06 4.758629e-10 | 2.682411e-09
My 9.761647e+-01 2.961668e+-00 | 1.032981e-01
m; 1.074468e+02 4.526660e+-00 | 1.427135e-02
bP 9.987612e+01 1.464737e+00 | 8.231472¢-02
[chi] 9.969616e+01 1.102580e+-00 | 7.619455e-02

Table 9.4: Errors on retrieval using first guess networks and simple forward model

(MLPs).

Relative RMS (% of target)

Bias

Std

7.616414e+-00
2.209596e-05
3.574356e-06
3.740673e+02
1.847542e+03
1.450901e+-03
2.467827e+03

4.639166e-05
-9.396992¢-10
4.758629e-10
-1.405530e-01
-7.385514e-02
-2.607126e-01
4.484771e-01

2.772023e-03
2.447876e-08
2.682411e-09
3.958395e-01
2.453952e-01
1.195786e+00
1.886080e+00

Table 9.5: Errors on retrieval using the complex forward model (MLPs).
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Relative RMS (% of target)

Bias

Std

8.974800e+00
2.209596e-05
3.574356e-06
6.934279e+-02
2.289981e+03
4.404384e+-03
1.918609e+-03

2.169341e-04
-9.396992e-10
4.758629¢-10
2.376368e-01
-3.887063e-02
5.435456e-01
-2.406318e-01

3.266413e-03
2.447876e-08
2.682411e-09
7.337880e-01
3.041611e-01
3.629953e+-00
1.466331e+4-00

Table 9.6: Errors on retrieval using the simple forward model and complex forward

model (MLPs).

Relative RMS (% of target)

Bias

Std

4.090293e+4-00
2.209596e-05
3.574356e-06
3.802717e+02
1.399237e+02
1.834568e+03
2.905553e+-03

3.752404e-05
-9.396992¢-10
4.758629e-10
3.727865e-02
-1.621316e-03
9.411496e-01
7.499058e-01

1.012735e-03
2.447876e-08
2.682411e-09
4.024050e-01
1.858502e-02
1.511992e+-00
2.220620e+00

Table 9.7: Errors on retrieval using the simple forward model and complex forward

model (RBFs).

Relative RMS (% of target)

Bias

Std

Ptoa
v

T
my
m;

bo

[chl]

8.083655e+-00
2.199892e-05
3.378364e-06
2.668438e+-02
9.414218e+02
9.359567e+4-03
5.974722e+4-03

-2.167141e-04
-3.695148e-10
3.440438e-10
-3.936850e-02
-1.922374e-02
1.296091e+00
1.253112e+-00

5.404841e-03

5.791470e-09

2.110911e-09

2.823751e-01

1.250420e-01

7.713857e+-00
4.566287e+00

Table 9.8: Errors on retrieval using the complex forward model in logpsace (MLPs).
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Relative RMS (% of target) Bias Std
Ptoa 4.883307e+01 -2.460933e-02 | 3.265045e-02
v 2.199892¢-05 -3.695148¢-10 | 5.791470e-09
T 3.378364e-06 3.440438e-10 | 2.110911e-09
my, 1.280907e+03 -2.203115e-01 | 1.355461e+00
mj 1.670517e+-04 -1.015184e+00 | 2.218823e+00
bo 9.327908e+-03 4.517126e+00 | 7.687765e+00
[chl] 4.289991e+03 -1.086711e+-00 | 3.278702e+00

Table 9.9: Errors on retrieval using the simple forward model and complex forward

model in logpsace (MLPs).

Relative RMS (% of target)

Bias

Std

Pa
t

Pw

1.264569e+01
4.017066e+01

9.147767e-04
-7.661576e-04

1.189311e+-03

-1.487785e-03

3.127103e-03
3.939003e-02
5.258583e-03

Table 9.10: Errors on the observation derived from the retrieved parameters in the

fourth framework.
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