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Thesis Summary 

Current atmospheric correction algorithms are based on physical models and pixel wise 

retrieval. The goal of this thesis is to build a Bayesian framework using a probabilistic 

approach to enable the use of priors for the joint retrieval of ocean and aerosol pa- 

rameters on case I waters. Simulated data containing ocean and aerosol parameters 

as well as the corresponding top of atmosphere information and its components will 

be used to train neural networks able to ouptut the top of atmosphere components 

given the ocean and aerosol parameters. A Bayesian framework will be built to enable 

the retrieval of the ocean and aerosol parameters from the top of atmosphere infor- 

mation using the neural networks previously trained and priors which will be designed 

according to biological and physical knowledge. The Bayesian framework will then be 

tested on small problems, parts of the global retrieval problem, and then on the global 

retrieval problem, on simulated data at first, and secondly on real data. 
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Chapter 1 

Introduction 

1.1 Context 

Phytoplankton is a plant which floats at the surface of the oceans. It is the beginning 

of the food chain in the ocean. Thus, information on the location of phytoplankton can 

be useful for the fishing industry. Moreover, as phytoplankton depend upon specific 

conditions for growth, it frequently becomes the first indicator of a change in the 

environment. 

Satellites provide images of the colour of the ocean from which the presence of 

chlorophyll and thus phytoplankton can be inferred. The retrieval of the chlorophyll 

concentration is complicated by the presence of the atmosphere which alters the signal 

received by the satellite; the atmosphere can be responsible of more than 80% of the 

signal received by the satellite. Thus, atmospheric correction must be done to deduce 

the chlorophyll concentration. 

Current atmospheric correction algorithms use near infrared wavelength to assess 

aerosol optical properties together with lookup tables built from physical models to 

remove the aerosol contribution and obtain the water contribution. Chlorophyll con- 

centration is then deduced from the water-leaving contribution. 

Algorithms to improve the calculation of atmospheric properties have been devel- 

oped [7] and methods to jointly retrieve ocean and aerosol optical properties have been 

proposed [4]. 

Current methods process each pixel at a time, thus the knowledge of spatial struc- 

ture of the ocean and atmosphere is not used. 

The purpose of this project is to build a retrieval process using a probabilistic 

approach to retrieve the ocean and aerosol properties from SeaWiFS images, exploiting 

prior knowledge of the structure of ocean and aerosol data in case I waters. 

These probabilistic methods have been successfully used for the calculation of wind- 

fields from satellite images. 

12



CHAPTER 1. INTRODUCTION 

1.2 Overview of the research project 

The satellite coverage is regular and covers wide ocean areas; thus knowledge of the 

spatial structure of the parameters can improve the retrieval, especially to correct the 

noise induced by the use of sensors. This will be done by building a Bayesian frame- 

work which will enable the use of spatial and spatio-temporal priors on the different 

parameters of the system. 

The physical model used in this thesis was designed by Chomko & Gordon [4]. 

The signal received by the satellite can be divided in two parts: the reflection of 

the incoming solar radiance, before being modified by the sea surface, and the radiance 

that has been modified by the sea surface and by the atmosphere. 

e Oe Solar Radiance Top of Atmopshere Radiance 

   

  

   

  

      

      

  

  

Space 

Atmospheric Scattering 

Atmosphere (| 

Atmospheric Transmittance 
Atmospheric Absorption BP (1) : 

Ocean Reflection 

(p,,) 

Ih Phytoplankton Scattering 

Ocean 
Phytoplankton Absorption 

Figure 1.1: The physical problem: decomposition of top of atmosphere radiance 

First of all, we will work on the reflectances p in place of radiance L, as the mea- 

surement on the reflectance ought to be more accurate on next generation satellites [6]. 

Radiance and reflectance are related by: 

mL (A) cos(Oo) 

FQ) ae pA) = 

Where F(A) is the extraterrestrial irradiance and 6p is the solar zenith angle. 
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CHAPTER 1. INTRODUCTION 

The top of atmosphere (TOA) radiance (pjo,), which is measured by the satellite, is 

composed of the pure aerosol-scattering contribution (p,), the pure Rayleigh-scattering 

contribution (p,), the contribution due to the interaction effect between air molecules 

and aerosols (p,q), the water-leaving contribution (multiplied by the atmospheric tran- 

sitivity) t(\).pw(A) and the contribution of whitecaps (p,,-) and sun glitter (p,). 

Ptoa(A) = Pa(A) + Pra(A) + pr(A) + t(A)-Pw(A) + #(A)-Pwe(A) + T(A)-29(A) (1.2) 

The contribution of whitecaps (,-) and sun glitter (p,) are removed in SeaWiFS 

preprocessing, and the pure Rayleigh-scattering contribution (p,) can be computed 

precisely and then be substracted from joa [4]. 

Phoa(A) = Pa(A) + Pra(X) + t(A)-Pw(A) (1.3) 

Then the atmospheric contributions (pg and p,q) can be considered as an unique 

variable (atmo). This simplified interaction is shown in Figure 1.1. 

Ptoa(A) = Patmo(A) + t(A)-Pu(A) (1.4) 

The aim is to compute p;,, from atmospheric and oceanic parameters, thus three 

models will be built: atmospheric reflectance (light reflected before reaching the sea); 

oceanic reflectance (light reflected by the ocean, carrying colour information about 

chlorophyll concentration); and atmospheric transmittance (light modified by the at- 

mosphere), each model having atmospheric or oceanic parameters as inputs. 

The parameters of the models, shown in Table 1.1, are both atmospheric (v, T, m,, 

m,) and oceanic (6°, [chl]), the more important, that is the more interesting, is [chl], 

chlorophyll concentration. v and b° represent the size distribution of particles in the 

atmosphere and the ocean respectively; that is the aerosols and dust particles for the 

atmosphere, and detritus for the ocean. Their properties in the datasets provided by 

Cedric Jamet and Cyril Moulin are shown in Tables 1.2 and 1.3. 

Only v, rT, m;, mi, 6° and [chl] need to be retrieved. The other parameters, 0,, 

9,, ¢y, which represent the position of the satellite and the sun, and \, which is the 

wavelength at which the radiance is measured, are known. 

1.3 Research steps 

The research will follow the following steps: first the data provided by Cedric Jamet 

and Cyril Moulin, LODYC, will be learned using forward models; those networks will 

output the different reflectances given the oceanic or atmospheric parameters. One 

model will be built for each of the three components. 

14
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Der 

P, t P. 

    
  

Atmospheric Reflectance Atmospheric Transmittance (Oceanic Reflectance 

jeural Network ieural Network eural Network 

| 
(0) 

            
  

B ten 

  

    
  

(A) (): Known parameters 

Figure 1.2: Diagram of the decomposition of pjoq in the three neural networks of 

Patmo(A), #(A); Pw(A)- 

  

  

    

Parameter Description Type Unit 

v Particle size distribution parameter | Atmospheric NA 

T Aerosol optical depth Atmospheric NA 

Mr Refractive index, real part Atmospheric NA 

m Refractive index, imaginary part | Atmospheric NA 

6, Solar zenith angle Geometric | Degrees 
0, Sensor zenith angle Geometric | Degrees 
oy Sun to sensor angle Geometric | Degrees 
my Wavelength Optical nm 

0° Particle size distribution parameter Oceanic m7} 
[chl] Chlorophyll concentration Oceanic | mg.cm~?       
  

Table 1.1: Description of model parameters. 

A Bayesian framework will then be built to retrieve all of the atmospheric and
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v 7 | m, | m 0, 6, oy Xi b° | [chi] 
mean | 3.25 | 0.20 | 1.42 | 0.01 | 34.95 | 29.96 | 179.60 | 513.33 | 0.28 | 0.49 

std | 0.85 | 0.11 | 0.08 | 0.02 | 9.47 | 18.12 | 113.50] 83.75 | 0.10 | 0.74 

max | 4.5 | 0.35] 1.5 | 0.04] 50 60 360 670 | 0.45] 3 

min 2 | 0.05 | 1.33 0 20 0 0 412 | 0.12 | 0.03 

  

                        
  

Table 1.2: Characteristics of model parameters. 

  

yp |2-4.5, step 0.5 

T | 0.05 - 0.35, step 0.1 

m, | 1.33 - 1.5 
m,; | 0 - 0.001 - 0.003 - 0.01 - 0.03 - 0.04 

0, | 20 - 50, step 3 

9, | 0- 60, step 3 

dy | 0 - 360, step 36 

A | 412 - 443 - 490 - 510 - 555 - 670 - 765 - 865 

0° | 0.12 - 0.45, step 0.03 
[chi] | 0.03 - 0.05 - 0.062 - 0.078 - 0.09 - 0.107 - 0.125 - 0.145 ... 

«. | 0.17 - 0.2 - 0.25 - 0.31 - 0.41 - 0.62 - 1.15-1.5-3       
  

Table 1.3: Model parameter values. The A are taken at SeaWiFS wavelengths. 

oceanic parameters, the main goal being to retrieve chlorophyll concentrations via the 

oceanic model. The individual models will be tested separately on their specialised 

retrieval problems before they are combined. 

The Bayesian framework uses Bayes’ rule to compute the posterior probability 

p(t|p) of a parameter, 7, conditioned on the observations, p, using priors on each 

parameter, p(T): 

Poel) (7) 
—.. (1.5 

P(p) 
The priors over the parameters will be constructed using physical knowledge of the 

p(t|p) = 

different components. 

Once the retrieval on the three models is working, two different things will be 

needed, the first is the ability to handle large datasets. As the covariance matrices used 

to define the priors are calculated over the whole dataset, the computational limitation 

will require the use of sparse Gaussian processes, although in this thesis standard GPs 

will be used. Secondly, the three different models need to be combined to perform the 

actual retrieval of the chlorophyll concentration given TOA observations. 

Finally, tests on simulated data and on real data will be performed to measure the 

real efficiency of the framework. 
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Chapter 2 

Theoretical background 

In this thesis, neural networks will be used, thus a basic background is provided here. 

More information on neural networks amd optimisation methods can be found in [2], 

{1] and [9]. 

2.1 Neural Networks 

2.1.1 Multi-Layer Perceptron 

The Multi-layer Perceptron (MLP) [2] is a feed-forward neural network composed of 

several hidden layers (two in our case) of adaptive weights (See Figure 2.1). The 

Outputs t y, 
  

Hidden units 

  

  

Figure 2.1: Multi-Layer Perceptron 

outputs are computed from the inputs through each layer, according to the weights 

of the layer and the activation function used in the network. The value z/*! of the 
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neuron ? of layer h + 1 is 

Nn 

hth (3 wh A+] zh set) , (2.1) 

where h is the layer index, N), is the number of neurons in layer h, b! is the threshold 

of layer h for the i” neuron, w+! is the weight matrix between layers h and h + 1, 

and f is the activation function. 

To build a network which from a given set of inputs leads to a corresponding output, 

it is necessary to adapt the weigths and biases. This procedure is called learning. 

The likelihood of the dataset is defined as 

n 

L=[[o( (47,27) = IIa t4 |x") p(x) (2.2) 
q=l 

where n is the number of samples in the training set, and q is the training sample 

index. The error function E is defined as the negative log-likelihood 

E=-InL. (2.3) 

Considering the noise model to be Gaussian, of variance a, it becomes 

ae ; ah (2.4) 
20? 

  
1 

P(t, |x) = (tla) (On0%)! 

where F;,(z) is the underlying generator function to be learnt by the neural network. 

Using 2.2, 2.3 and 2.4, it becomes: 

n 
B=ncino + In Qn) + toe oss Ge w ) = tf)? + 5 Inp(2?) ‘ (2.5) 

q=1 k=1 q=l 

where n is the number of samples, c the dimension of the output, f,(c7;w) is the 

modelisation by the neural networks of F),(a) and w are the weights of the network. 

In this equation, only the middle part is a function of the networks, and thus the cost 

function to be minimised is: 

=5 pede (ogi? = (2.6) 

where q is the training sample index, k is the output vector index, and ¢? is the desired 

output vector for the gq” input. 

Given that the network is feed-forward and the activation function is differentiable, 

the derivative of this error function with respect to the weights and biases of the 

network can be found. This enables the training of the network using optimisation 

algorithms in order to adapt the weights and biases so a given set of inputs leads to a 

corresponding output [2]. 
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2.1.2 Radial Basis Function 

Radial Basis Function (RBF) networks [9] are related to kernel methods for density 

estimation and regression and to normal mixture models. The idea of an RBF model 

is to expand a given function f using a set of basis function of the form (|| « — <2; ||), 

where © is a non-linear function to be chosen. The output is then taken to be a linear 

combination of the basis functions: 

F(e) = DF wj;(\| e — 2; ||) + wo (2.7) 
ij 

Where w; is the weight given to the j“" basis function and wy is the bias. Several 

forms of basis function can be used, the most commonly used are the Gaussian and 

the thin-plate spline. The Gaussian basis function is: 

Bj ap (-3) ’ (2.8) 

where o controls the smoothness properties of the interpolating function. The Gaussian 

is a localised basis function with the property that lim,_,.. ®(x) = 0. 

The thin-plate spline basis function is 

@(x) = 2? In(z) , (2.9) 

which is the best solution for curve fitting according to [9]. 

A radial basis function network uses several RBFs as hidden units (See Figure 2.2). 

The number M of basis functions needs to be less than the number N of data points, 

Outputs { y, 
  

basis functions 

  

  

Inputs t Xx, 

Figure 2.2: RBF network 

each basis function has its own width o;. The interpolation formula 2.7 is then: 
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M 

Yn (@) = SS Wei; (x) + Wyo - (2.10) 
jal 

The Gaussian basis function can be expressed by: 

4; (x) = exp (2) (2.11) 
J 

and the thin-plate spline basis function by: 

®; (x) =|| © — pj |)? In(|| « — 4 |I) , (2.12) 

where x is the input vector and j1; is the vector determining the centres of the basis 

function ®;. Once the basis function has been chosen, we have a simple model whose 

parameters can be found by a least squares procedure, or any other optimisation pro- 

cedure. 

For a large class of basis functions, RBF networks are universal approximators [9]. 

Besides, they possess the property of best approximation, which means that the set of 

functions corresponding to all possible choices of the adjustable parameters includes 

the optimal approximation. The advantage of this network family is that RBF models 

are very fast to train in comparison to networks with sigmoidal units such as MLPs. 

The main drawback of this type of network is that it becomes impractical with input 

vectors of large dimension. 

2.1.3. Mixture Density Network 

Mixture Density Networks (MDN) [1] combine a standard neural network with a mix- 

ture density model to provide a conditional distribution rather than a single output. 

Introduction 

The probability density of the target is a combination of kernel functions in the form 

m 

p(tje) = >> a4(2)¢,(tle) , (2.13) 
i=l 

where m is the number of components in the mixture, a;(a) are the mixing coefficients 

(priors probabilities) and ¢;(t|x) is the conditional density of the target vector t for the 

i kernel. The implementation of such a model is shown in Figure 2.3: 
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e The first part of the MDN is a neural network with input vector x and output 

vector z. The output corresponds to the parameters for the kernel functions: 

priors, centres and variance. If c is dimension of the target, the dimension of z is 

(c+2) m: m priors, cm centres or origins of the kernel functions and m variances. 

e The second part of the MDN is a mixture model with the parameter vector z as 

input and p(t|x) as output. 

conditional 
probability f p(t|x) 

density 

aN mixture 
‘ model 

parameter Z 
vector 

neural 
% network 

input { x 
vector 

Figure 2.3: The Mixture Density Network 

As this is a mixture model, there is the constraint 

m 

i=1 

This can be obtained by considering a;(x) as the softmaz function of the output of the 

2) =1. (2.14) 

  

neural network 
exp(z? 

a; = ea : (2.15) 

The centres/origins are simply the neural network outputs 

pix = 2h, . (2.16) 

The variances are the exponential of neural network outputs 

ox = exp (2h) (2.17) 
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The error function for the MDN is defined as 

By Et, (2.18) 

where the error from pattern q is the negative logarithm of the likelihood (see equation 

2.2) without the terms p(x?) as they are independent of the parameters of the mixture 

model: 
m 

E’=-—In {= cienae} : (2.19) 
i=1 

To optimise the network, this function is minimised with respect to the outputs of the 

neural network and then the modifications are back-propagated to optimise the weights 

of the networks. 

The posterior probabilities, obtained using Bayes’ rule are defined as 

  

  

  

(2.20) 

Using 2.20 and 2.19 it becomes 
OB! Tj 
=, 2.21 

00% ay ( ) 

and using 2.15 
da; 
ee = din — AQ, - (2.22) 

Using the chain rule: 5 
OE OE! 0a; 
a= ir 2.23 
Oz 7 Oa O28 G25) 

So finally using 2.21, 2.22 and 2.23 it follows that 

OE 
ae = Oy — Tr. (2.24) 

k 

The other gradients are dependent on the distribution used. 

Gaussian kernels functions 

First of all, the functions used as kernels are Gaussian kernels, as Gaussians are uni- 

versal estimators [9]. In this case, the function ¢; is defined by 

[lt = ma(a)|? oi(t\x) = 6? sauaos (a a? (2.25) (Qn) Poi(a) 
where c is the dimension of the output, j;(x) and o;(x) are the centre and variance of 

the i'” kernel respectively. 

The variance parameter has to be always positive. It can be viewed as an exponential 

o; = exp(zz) . (2.26) 
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Using 2.19, 2.20 and 2.25 it follows that 

  

OE lt pi(z)IP _ ¢ am { eeu eh (2.27) 
and as 5 

gseaer 
igo (2.28) 

it becomes a i (a)|? 
lt — pai(z 

a aa 2.2 ieee a ae 
And finally, using 2.20 and 2.25 the derivative of the cost-function with respect to the 

outputs of the network is: 

OE! (Hix = te) 
ae ee a ee 2. a a ve 

2.2 Gaussian processes 

A Gaussian process is a family of random variables y(x), « € D, such that for any finite 

collection the joint distribution of y(2;),...,y(zn) is Gaussian. In the case of ocean 

colour data, the spatial structure is known through semivariograms of the different 

parameters, defined by 

1 2 on) = Z(xi) — Z(2x;)) , 2: 1) = ayqy Do Ales) ~ Ze) (2.31) 
N(v) 

where N(v) are the numbers of data pairs Z(x;) and Z(x;) separated by v, which can 

be a vector or a simple distance [5]. A covariance function can be defined from the 

semivariogram as 

C(v) = C(0) — y(v) , (2.32) 

then a Gaussian process can be derived from the covariance function as to say from 

the prior physical knowledge embedded in the semivariogram. 

23



Chapter 3 

Observation models 

The forward models are based on data generated from the model designed by Gordon 

& Chomko [4], provided by Cedric Jamet and Cyril Moulin, LODYC. This data cor- 

respond to case I waters [4]. This dataset is built by constructing a basis covering all 

the possible combinations of the parameters shown in Table 1.3; the atmospheric re- 

flectance, atmospheric transmittance and oceanic reflectance are then computed using 

Gordon & Chomko model. Thus the dataset is discrete by construction and covers a 

large range of the different parameters as shown in Table 1.3. 

As the dataset is made of variables of different types, and different scales, some 

variables are likely to be overweighted compared to others. This can be corrected 

by normalizing the dataset. For each variable X;, the mean Xj and variance o; are 

computed to obtain Xe, the normalized variable: 

aX, = Xt 
Xi (3.1) 

o% 

The choices of the networks for the three forward models, atmospheric reflectance, 

atmospheric transmittance and oceanic reflectance, have been made using cross com- 

parison on several MLPs, changing the number of hidden units, type of inputs (noised 

or not), weight decay and the number of iterations. The choice was done according 

to the efficiency of each network and the computational cost of the training. As the 

available dataset is large and the data to be learnt is complex, the network size required 

to overfit the training set is generally greater than what can be handled in terms of 

computational cost. 

The models were trained and tested using two distinct datasets. The datasets used 

for the model selection are not the ones used for the final training and testing of the 

chosen models. 

The final network for each of the three models has been trained on datasets bigger 

than the one used for cross comparison so as to produce precise models to be used in 

next steps (See Figures 3.1, 3.2, 3.3 and 3.5). 
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The errors of the different models which have been tested and the description of 

the final network for each model follow. 

The results of the training of RBFs are in Appendix 9.2. 

3.1 Oceanic model 

3.1.1 Data 

The oceanic database contains 1224 samples corresponding to a basis built on the 

parameters , 6° and [chl]. \ is restricted to SeaWiFS visible wavelengths, which are 

the first six wavelengths. The measurements are shown in Table 3.1. 

  

X ov [chl] Bo 
mean | 513.3333 | 0.285 | 0.4881 | 0.0122 

std 83.7513 | 0.1036 | 0.7428 | 0.0108 

  

            
  

Table 3.1: Oceanic variables, dataset size: 1224. 

3.1.2 Model selection 

Cross validation has been performed for networks having 5 to 30 hidden units, with 

three inputs and one output (Table 3.2). 

The inputs and the outputs were normalised before training, the means and stan- 

dard deviations used for normalisation were recorded together with the network. As 

the chlorophyll concentration is likely to be log distributed [5], it was then chosen to 

use the logs of b° and [chl] as inputs instead of their true values. 

The error globally decreases when using more hidden units (Table 3.2). The varia- 

tions observed in the efficiency of each optimisation algorithm are due to random ini- 

tialisation. Averaging the measurements on several random initialisation would have 

given more accurate results, but it would have been time consuming. The final network 

chosen will reach a small level of error, keeping in mind the time needed to train big 

networks. 

A complete description of the optimisation algorithms used can be found in [2]. 

3.1.3 Chosen model 

The network chosen for the oceanic reflectance model has 30 hidden units, with quasi- 

Newton optimisation, the target versus predicted output for this network is shown in 

Figure 3.1. 

The inputs are the logs of b° and {chl]. 
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Hidden units | Algo | Training Error(RMS) | Test Error(RMS) | Relative RMS 

(% of target) 
5 conjgrad 4.5989 0.0947 9.3045 

5 quasinew 7.4352 0.1183 11.6222 

5 seg 5.5243 0.1093 10.7394 
10 conjgrad 0.6993 0.0344 3.3826 

10 quasinew 1.2728 0.0501 4.9208 

10 scg 1.1891 0.0536 5.2653 
20 conjgrad 0.3303 0.0279 2.7376 

20 quasinew 0.1005 0.0162 1.5966 

20 seg 0.3894 0.0277 2.7226 
30 conjgrad 0.2976 0.0258 2.5352 
30 quasinew 0.0147 0.0064 0.6299 

30 seg 0.3382 0.0277 2.7171             

Table 3.2: Oceanic model errors, using 1000 training samples and 1000 epochs. 

The errors calculated on the test set are in Table 3.3, the standard deviation is in 

target unit, which is the oceanic reflectance. 

  

Relative RMS (% of target) Bias Std 
  

  0.1362     3.6909e-07 | 1.3900e-05     

Table 3.3: Oceanic final model errors. 

0.045; 

0.04] 

0.035] 

0.03} 

0.025 

Out
put

 

0.02} 

0.015 

‘Oceanic, NN(3,301)logs,ems:0% 

Oor 0015 002 0025 ~—«0.03 00854085 
Target 

Figure 3.1: Oceanic reflectance model, inputs are logs of 6° and [chl], A, output is p,, 
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3.2. Atmospheric models 

3.2.1 Atmospheric reflectance 

According to Cedric Jamet and Cyril Moulin, the physical model used to generate the 

data which has been used to train the network is wrong when v < 3 and m; > 0.01. 

These samples were then removed from the training set and test set. It was first tried 

to cut the dataset into two parts, for v < 3 and v > 3. Two networks were used, one 

for the inputs having v < 3 (See Figure 3.2), another for the inputs having v > 3 (See 

Figure 3.3). 

Afterwards, a solution using a single network was tested (See Figure 3.4). 

Data 

The atmospheric database for reflectance contains 120000 samples corresponding to a 

basis built on the parameters v, m,, mj, 4s, 9), dy, T and A (Table 3.4). is restricted to 

SeaWiFS visible wavelengths, which are the first six wavelengths. The measurements 

are shown in Table 3.5. 

  

Training set | Test set | Total 

v<3 40000 20000 | 60000 
uy>3 40000 20000 60000 

Total 80000 40000 | 120000 

  

              

Table 3.4: Atmospheric reflectance dataset. 

  

  

Variable mean std mean std mean std 

(vs 3) v8) | (eS 3))| w S83) global global 
Vv 2.5 0.4092 4 0.4071 3.3980 0.8416 

M, 1.415 0.0850 1.415 0.0850 1.4152 0.0850 

Mm 0.0035 0.0039 0.014 0.0155 0.0098 0.0133 

Os 35 9.4490. 35 9.4826 34.9625 9.4653 

Oy 30 18.1116 30 18.1504 | 29.9439 | 18.1252 

by 180 113.4547 180 113.7952 | 179.5898 | 113.4967 

e 0.2 0.1118 0.2 0.1115 0.2001 0.1117 

482 50.3632 482 50.2561 | 482.3115 | 50.2576 

reflectance | 0.0278 | 0.0245 | 0.0575 | 0.0452 0.0455 0.0422                   

Table 3.5: Atmospheric reflectance variables (training set). 
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Model selection 

Cross validation has been perfomed for networks having 10 to 50 hidden units, with 8 

inputs and 1 output. 

The training was done either without weight decay (Table 3.6) or using different 

values for the weight decay rate (Table 3.7). 

  

  

Hidden units | Relative RMS (% of target) | Relative RMS (% of target) 
Model for v < 3 Model for v > 3 

10 26.4588 10.7269 

20 22.5948 9.3610 
35 18.9186 7.7926 
50 18.1106 8.7530         
  

Table 3.6: Errors on atmospheric reflectance without weight decay. 

  

  

Hidden | Weight decay | Relative RMS (% of target) | Relative RMS (% of target) 
units variance Model for v < 3 Model for v > 3 

20 0.02 23.4833 10.0182 

20 2 25.0877 13.2244 

20 200 61.6651 46.2164 

30 0.02 20.6649 9.0194 

30 2 22.9202 13.2258 
30 200 61.6642 46.2064           
  

Table 3.7: Errors on atmospheric reflectance with weight decay. 

The best models are: 

e For v < 3: 50 hidden units, no weight decay. 

e For vy > 3: 35 hidden units, no weight decay. 

Chosen models 

The best networks for the atmospheric reflectance model were two networks having 

35 and 50 hidden units, but due to the computational cost of such large networks, it 

was chosen to use networks having only 30 hidden units, with scg optimisation and 

without weight decay (see Figures 3.2 and 3.3). The weight decay is usually used for 

regularisation, i.e. to avoid overfitting the data of the training set [2]. The fact that 

weight decay is not useful can be explained by the large amount of data provided, the 

regularisation is then done by the dataset itself. 
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However, having a single neural network to model the atmospheric reflectance was 

more convenient, a single network having 30 hidden units was then chosen (See Figure 

3.4). 

The errors are in Tables 3.8, the standard deviation is in target unit. 

  

  

v__| Relative RMS (%) Bias Std 
yv<s3 14.8578 1.0690e-05 | 0.0038 
v>3 5.5822 9.0312e-06 | 0.0025 

Ally 9.2339 1.6601e-05 | 0.0039           
  

Table 3.8: Atmospheric reflectance, final model errors. 

‘Atmospheric reflectance, nu<=3, NN(8,30,1), rms:15% 

Out
put

 

  

Target 

Figure 3.2: Atmospheric reflectance model, v < 3, inputs are m,,mj,T,V,95, 9), 0, A, 

output is pa 
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‘Atmospheric reflectance, nua, NN(B,30,1).ms:6% 

  

Target 

Figure 3.3: Atmospheric reflectance model, v > 3, inputs are m,,mi,T,V, 0s, 4,0, , 
output is py 

Atmospheric reflectance, all nu, NN(B,30,1),rms:9% 

Out
put

 

  

  

Target 

Figure 3.4: Atmospheric reflectance model, all v, inputs are m,,mj,T,V,9s, 9), , A, 
output is po 
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3.2.2 Atmospheric transmittance 

Data 

The atmospheric database for transmittance contains 100000 samples corresponding to 

a basis built on the parameters v, m,, mj, 9s, 0), T and \ (Table 3.9). A is restricted to 

SeaWiFS visible wavelengths, which are the first six wavelengths. The measurements 

are shown in Table 3.10. 

  

Training set | Test set | Total 

70000 30000 | 100000 
  

        
  

Table 3.9: Atmospheric transmittance dataset. 

  

y My mM; Os Oy Zl BN transmittance 
  

mean | 3.2507 | 1.4152 | 0.0139 | 34.9463 | 29.9548 | 0.1999 | 482.3415 

std | 0.8539 | 0.0850 | 0.0155 | 9.4702 | 18.1245 | 0.1117 | 50.2553                   
0.6406 
0.1381 

  

Table 3.10: Atmospheric transmittance variables (training set). 

Model selection 

Cross validation has been performed for networks having 10 to 50 hidden 

7 inputs and 1 output (Table 3.11). 

  

  

Hidden units | Relative RMS (% of target) 
10 4.2111 

20 2.8712 

35 2.3701 

50 2.3066       
  

Table 3.11: Atmospheric transmittance model errors. 

units, with 

As the transmittance is related to the path of light through the atmosphere, and 

more precisely to the depth of the atmosphere, using the cosines of the angles instead of 

the angles themselves could be useful. Thus, another comparison was done to determine 

if it was beneficial to use the cosines of the angles as inputs (Table 3.12). 

of this test shows that the network using the cosines of the angles is much 

The results 

worse than 

the one which is not using the cosines. The reason of such a difference is not clear, 

however as the interest of using cosines is not certain, the network directly using the 

angles will be prefered. 
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30 hidden units | Relative RMS (%) Bias Std 
With cosines 19.0345 2.6715e-05 | 0.0262 

Without cosines 1.8308 1.4343e-05 | 0.0025           
  

Table 3.12: Choice of angles inputs for atmospheric transmittance. 

Chosen model 

The network chosen for the atmospheric transmittance model has 30 hidden units, with 

scg optimisation (Figure 3.5). 

The errors are in Table 3.13, the standard deviation is in target units. 

  

Relative RMS (%) Bias Std 

1.8308 1.4343e-05 | 0.0025 
  

          

Table 3.13: Atmospheric transmittance final model errors. 

‘Atmospheric transmittance, NN(7,20,1)nocos, rms:2% 

  

Of 02 03 04 05 06 O7 08 09 

Figure 3.5: Atmospheric transmittance model, inputs are m,,mj,T, V,0;,0y,A, output 

is t. 
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Use of Near Infra-Red bands 

According to Chomko & Gordon [4], it is possible to retrieve v (size distribution) and 

T (optical thickness) from the reflectances in Near Infra-Red (NIR) SeaWiFS bands. 

Thus an inverse model and a forward model learning those atmospheric parameters 

(v: size distribution and 7: optical thickness) from the reflectances in NIR SeaWiFS 

bands have been setup and tested. 

As the targets are discrete (by construction), the first attempt was using an MLP 

as classifier; this method was quite effective (Figure 3.6), but relies on an ‘artificial’ 

property of the data, thus a continuous model was set up. 

The atmospheric database for transmittance contains 100000 samples; the measure- 

ments are in Table 3.14. 
  

v 7 Os 4, dv ps/p 
mean | 3.2489 | 0.2 35 30 180 1.1316 

std | 0.8539 | 0.1118 | 9.4851 | 18.1628 | 113.8450 | 0.1086 

  

                
  

Table 3.14: NIR bands model variables. 

Network Confusion Matrix, nu (60%) 
  

      

2 746 64 12 2 0 4 

25% 289 369 142 23 Z 28 

3 102 80 483 130 31 33 

2 
& 

3.5F 25 5 130 477 143 53 

4 5 a 15 203 399 199 

4.5] 3 5 1 52 210 530 

2 25 Se 3.5 4 45 
Predicted 

Figure 3.6: MLP Classifier for v 

A continuous model was built. According to Chomko & Gordon [4], a linear function 

would be able to retrieve v from € = p(s)/p(l): the ratio of the short and long NIR 
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band reflectances for a given instrument geometry. Therefore a forward model giving 

the ratio € given v, 7 and the three observation angles has been trained. 

As the data used for the training are discrete, the error of the network is difficult 

to calculate for the values where no training or test data is given, but the results of 

the forward model seem good. This will be confirmed in the tests of the Bayesian 

framework (Chapter 5). 

The output of the network for different values of v at a fixed given observation point 

are shown in Figure 3.7. As the observation point is fixed, this figure can be considered 

as a restriction of the global result which covers a basis of all the observation points. 

This figure shows that for a known e€ there is several possible values of v in the 

training set, then it is impossible to retrieve v from e. However, the neural network 

is able to build a function to interpolate the data provided in the dataset, this neural 

network will then be inverted using the Bayesian framework so as to try to retrieve v 

from € in chapter 5. 

The errors on € = p(s)/p(l) are shown in Table 3.15. 

  

Relative RMS (%) | Bias Std 
57.4606 -0.0019 | 0.5758 
  

        
  

Table 3.15: Table of errors on €, NIR final model. 

Nir-div-nocos(6,5,1}200,e distrib,ts=20 tv=45, rms:57% 

~~ Trainingset-before noise 
+ After train 

  

efecto | 

    
  

wae 5 1 05 0 05 1 18 2 

Figure 3.7: MLP Regression for ¢, inputs are geometry(3 angles), v and r (normalised), 
output is € = p(s)/p(l) (unnormalised). 
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Building the Bayesian framework 

Once the individual models were built, the next step was to build spatial priors and 

thus a spatial Bayesian framework on each one of the three parts of the model. 

4.1 Principle of the Bayesian framework 

The principle of the Bayesian framework is to use Bayes’ rule to compute the probability 

of (a field of) parameter values given the observations. For example, the probability of 

a parameter T given the observations p is: 

P(elr) 
p(T) . (4.1) 

P(p) 
p(p) is constant as the observations don’t change, so 

  p(t|p) = 

P(r\|p) x p(p|r).p(r) - (4.2) 

Then, assuming that the noise on the components 7; of 7 is iid, 

P(T|p) x [Homi] p(T) - (4.3) 
i=l 

Then the error on the parameter, which is the negative log likelihood of the parameter 

is 

E = —log(p(t|p)) 

— log = -oe (TI P(pil7i)-P' i) + constant (4.4) 

=— Svat (p:|7;)) — log(p(r)) + constant . 

As Gaussian noise is assumed on the data, the expressions of p(p;|7;) and p(r) are 

as follows: 

  (alls seen |e (45) Osta) = =exp(—-—. |; ee 
EM 2002 : 202 3 
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where o, represents the confidence we have when doing the comparison. If no noise 

is added on the observation (or if the observations are assumed to be noise-free), op 

is the sum of the error due to the neural network and the uncertainty due to the 

physical model used to simulate the data in first place. If some noise is added to the 

observations, or if the observations are not assumed to be noise-free, 7, is the sum 

of the noise due to the neural network errors, the noise in the observations and the 

physical model uncertainty. 

6 is the difference between the real observations and the values predicted by the 

model: 

5: = f(t) — pi - (4.6) 

The prior p(T) is given by 

ofr) = ex (FH rYEMu-7)) (47) 
where yw is the prior mean of t. The covariance matrix © encapsulates our prior 

knowledge about the parameter 7. Each parameter has its own prior hyperparameters 

which define the Gaussian process; the covariance matrix is computed using the hyper- 

parameters of this Gaussian process. The parameters used for each prior are discussed 

below. 

To apply the Bayesian framework it was necessary to build priors for the different 

parameters. The priors on the different parameters have been chosen according to 

physical and biological knowledge. 

4.2 Atmospheric priors 

For the NIR. bands model, Gaussian processes priors were defined (see Table 4.1). 

The basis function and length scale were chosen according to prior knowledge. The 

basis function used is the polyexponential function: 

—r C(r) =v.(lt p)exp (=) +n, (4.8) 

where v is the variance of the Gaussian process, / is the length scale and n is the nugget. 

The nugget variance is the variance of the semivariogram, i.e. of the Gaussian process, 

for a zero distance. 

The prior function and the scale length were arbitrarily chosen as no physical value 

was available; however it can easily be modified according to real measurements. The 

mean and variance were calculated from the training data. 

At first, no prior was defined for m, and m;, then, priors were built according to 

the characteristics of the training data. 
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Parameter Prior Type Function | Variance | Scale length | Nugget | Mean 

T Gaussian process | polyexp 0.1 100km 0.01 0.2 

y Gaussian process | polyexp 0.6 100km 0.01 3.2                   

4.3 Oceanic priors 

Table 4.1: Priors for the NIR bands parameters 

For the oceanic model, log Gaussian processes priors were built (see Table 4.2). 

The basis function, length scale, variance and nugget were chosen according to the 

semivariograms build by [5] from real observations. 

The basis function used is the exponential function: 

C(r) =v. exp (+) +n, (4.9) 

Where v is the variance of the Gaussian process, | is the length scale and n is the 

nugget. 

The mean was calculated from the training data. 

  

  

              

Parameter Prior Type Function | Variance | Scale length | Nugget | Mean 

ve Gaussian process exp 0.1 20km 0.01 | log(0.3) 

[chl] Gaussian process exp 0.42 21km 0.03 | log(0.5) 
  

Table 4.2: Priors for the oceanic parameters 

4.4 Implementation of the Bayesian framework 

The goal is to retrieve the parameters using the MAP (Maximum A Posteriori) method, 

for example the 7 which gives the maximum p(T|p). The Bayesian process starts from 

an uniform field at the expected mean, to facilitate the convergence. However, it can 

also start from a random point, or from a point previously computed as a first. guess. 

The parameter field is optimised using a scalar gradient based optimisation [2], using 

the error function described in equation 4.4 and its gradient. The implementation of 

the final framework has been done together with the testing and is described in the 

next chapter. 
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Chapter 5 

Testing of Bayesian frameworks 

A test of the Bayesian frameworks was done using simulated data. A field of parameters 

was created using the Gaussian process (a realisation from the prior), then the forward 

model was used to simulate the observations. Noise was added to the simulated obser- 

vation and then the retrieval of the original parameter from the noisy observations was 

performed. The error between the retrieved parameter and the original parameter was 

then computed. Results on [chl] were compared with SeaWiFS specifications, which 

require to have an error less than 35% of the signal. 

Generate a field of parameters 

Simulate observations 

Add noise 

Retrieve parameters from noisy simulated observations 

Compare retrieved parameters and generated parameters 

Figure 5.1: Diagram of the Bayesian framework test. 

5.1 Test on NIR bands 

The Bayesian framework was first built for the NIR bands model, the goal was to 

retrieve either v or T given the observations (€ = p(s)/p(l)) at a given satellite position, 
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CHAPTER 5. TESTING OF BAYESIAN FRAMEWORKS 

characterised by three geometry angles. 

5.1.1 Retrieval of a single variable 

At first the framework was built to retrieve 7, assuming v to be known. 

This retrieval has been done without and with noise added on the NIR observations 

(Figures 5.2 and 5.3). The noise added was Gaussian noise with zero mean and standard 

deviation of 1% of the standard deviation of the data (o,). Adding more noise on 

€ = p(s)/p(l) was leading to much worse results. The optimisation, as well as all the 

other optimisations in this chapter, was done with a limit of 1000 epochs. The relative 

weight of the prior is related to the amount of noise through equations 4.5 and 4.4. 

original tau starting tau 

       caleunted tau 

Ce eer) 

Figure 5.2: Retrieval of a 7 field given the NIR bands observations using a Bayesian 
framework and an MLP, without noise. 
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Figure 5.3: Retrieval of a 7 field given the NIR bands observations using a Bayesian 
framework, a noise of 1% of mean(e = p(s)/p(l)) has been applied to the observations. 
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5.1.2 Joint retrieval of two variables 

The second step was to retrieve jointly vy and r. Different methods were explored, 

based on different networks. 

e The first method used a network having v, 7 and the viewing angles as inputs 

and € as output. This method generally found a local minimum, which gave a 

perfect € for a good v but a wrong 7 as shown in Figure 5.4. 

e Next a network having v, 7, the viewing angles and \ as inputs and p(A) as 

output was setup, this method was able to retrieve 7 but not v (see Figure 5.5). 

These tests tended to show that 7 can be retrieved from NIR bands reflectances whereas 

vy can be retrieved from ¢«. A network should theoretically be able to retrieve v and Tr 

from the NIR bands reflectances, but it might be better to also include the information 

about € explicitly. The two different solutions were then tested. 

e The first one was done using a network having v, 7 and the viewing angles as 

inputs and the reflectances in NIR bands and € as outputs. See Figure 5.6 and 

Table 5.1. 

e The second one was done using the two first networks and iterating, guessing T 

with a fixed v, then v with a fixed r. See Figure 5.7 and Table 5.2. 

These two methods gave different results, both were correct. The retrieval using 

NIR bands and ¢€ was more direct, more elegant and slightly better, thus it was used 

in the global framework. 

  

  

Relative RMS (% of target) | Bias | RMS 
Ou) 0.0042 -0.0000 | 0.0000 
(22) 0.0036 -0.0000 | 0.0000 
p(s) 0.0050 -0.0000 | 0.0000 

p(Aa)/p(2) 0.0355 -0.0000 | 0.0000 
Vv 0.0443 -0.0000 | 0.0003 

T 0.0163 0.0000 | 0.0000             

Table 5.1: Table of errors, v and 7 retrieval from NIR bands and e, plotted on Figure 

5.6. Ai, Az and A3 are SeaWiFS three last wavelengths (Near Infra Red bands). 
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Figure 5.4: Joint retrieval of v and r fields given € = p(s)/p(l) using a Bayesian 
framework. 
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Relative Error (percentage of target) | Bias RMS 
p(A1) 0.7859 -0.0000 | 0.0003 
p(A2) 0.8697 0.0000 | 0.0004 
p(As) 0.1638 0.0000 | 0.0001 

p(A3)/p(Az) 0.2296 0.0000 | 0.0001 
y 2.4794 0.0028 | 0.0151 
F 9.7368 0.0042 | 0.0254             

Table 5.2: Table of errors, vy and 7 retrieval iterating on two networks, plotted on 

Figure 5.7. 
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Figure 5.5: Joint retrieval of v and 7 fields given NIR bands observations (instead of 
€ = p(s)/p(l)) using a Bayesian framework. 

original nu original tau 

4 0.8 

& los 35 
oa 

10} 3 a2 

25 10 
15} 

i -02 
20 -0.4 

5 10 15 20 5 10 16 20 

calculated tau, rms 0% caleulated nu, ms O%6 

4 os 
5 los 36 

04 
1 
: e lo2 

25 o 15| 
-02 

ms on -04 
Sie teat 16 ao a 

Figure 5.6: Joint retrieval of v and 7 fields given NIR bands observations and « = 
p(s)/p(l) using a Bayesian framework. 
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Figure 5.7: Retrieval of v and 7 fields iterating on two networks. 
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5.2 Test on oceanic model 

5.2.1 Retrieval of a single variable 

The Bayesian framework was then adapted to the oceanic model to retrieve the chloro- 

phyll concentration given b° and the observations at the different SeaWiFS visible 

wavelengths, at a given satellite position (see Figures 5.8, 5.9 and 5.10). 

The first tests were done using simulated data with added noise, the relative weight 

of the prior is related to the amount of noise on the observations through equations 

4.5 and 4.4. 

A comparison of consistent and inconsistent priors has been made (see Figure 5.11). 

The prior is said to be consistent with the noise when its weight is adapted according 

to the amount of noise added. The prior is deemed inconsistent with the noise when 

its weight is not adapted. 

The noise added on the observations is Gaussian and has a standard deviation of 

std = noise factor * mean(observations) . (5.1) 

original chi 
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Figure 5.8: Retrieval of a log({chi]) field given the observations using a Bayesian frame- 
work, without noise. 
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Figure 5.9: Retrieval of a log({chl]) field given the observations using a Bayesian frame- 
work. A noise of 20% of mean(p) has been applied on the observations, the noise 
assumption is not consistent with the noise added. 
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Figure 5.10: Retrieval of a log([chi]) field given the observations using a Bayesian 
framework. A noise of 20% of mean(p) has been applied on the observations, the noise 

assumption is consistent with the noise added. 
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Figure 5.11: Comparison between priors with noise assumption consistent or inconsis- 

tent with the added noise. Average on 100 experiments. 
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5.2.2 Joint retrieval of two variables 

Then the Bayesian framework was tested to retrieve jointly two variables, b° and [chi]. 

(See Figures 5.12 and 5.13) 
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Figure 5.12: Retrieval of log(b°) and log({chl]) fields given the observations using a 
Bayesian framework, without noise. 
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Figure 5.13: Retrieval of log(b°) and log({chi]) fields given the observations using a 
Bayesian framework. A noise of 5% of mean(p) has been applied on the observations, 

the noise assumption is consistent with the noise added. 
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5.3 Conclusion of the test of the Bayesian frame- 

work 

The tests of the Bayesian framework on small problems, using only one neural network 

at once, were successfull. The error on the retrieval of [chl] was less than 13%, whereas 

SeaWiFS requirement is only to have an error under 35% of the signal. However this 

was done on a sub-problem of the real global problem. The use of priors was verified 

and the behaviour of the retrieval process when adding noise was tested. These tests 

have shown that the Bayesian framework was reliable and useful on the sub-problems, 

then the framework was tested on the global problem. 
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Chapter 6 

Tests on simulated data 

Once the Bayesian retrieval process had been tested on the sub-problems described 

previously, the global Bayesian framework was built for the whole problem. 

The tests on the global model were first done using simulated data. The test was 

done by generating fields of atmospheric and oceanic parameters, simulating the obser- 

vations using the neural networks, noising these observations, retrieving the parameters 

from the noisy observation and comparing the retrieved parameters and the original 

simulated parameters (see Figure 6.1). 

Generate a field of parameters 

Simulate observations 

Add noise 

Retrieve parameters from noisy simulated observations 

Compare retrieved parameters and generated parameters 

Figure 6.1: Testing process. 

6.1 First retrieval framework 

The retrieval was first attempted in two steps. The first step was to retrieve v and Tr 

from the NIR bands. This was done by inverting the NIR model presented before, as
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only one neural network is involved this part was fairly accurate. This first optimisation 

was done with a limit of 500 epochs. 

The second step was to retrieve m,, m;, b° and {chl] from the visible bands. This 

second optimisation was done with a limit of 5000 epochs. This method gave poor 

results, the model staying in local minima, pjoa being close to the real observations but 

m,, mj, b° and [chl] being wrong (Table 6.1). 

  

  

Relative Error (percentage of target) Bias RMS 

Ptoa 7.654508e+00 4.663121e-05 | 2.785888e-03 
v 2.209596e-05 -9.396992e-10 | 2.447876e-08 

i. 3.574356e-06 4.758629e-10 | 2.682411e-09 

My 3.606464e+02 -1.315479e-01 | 3.816374e-01 
m 1.765500e+03 -6.874906e-02 | 2.344982e-01 

v° 1.438938e+03 -2.546753e-01 | 1.185927e+00 

[chl] 2.461670e+03 4.343113e-01 | 1.881375e+00             

Table 6.1: Table of errors, global retrieval in two steps. 

6.2 Second retrieval framework 

To correct the problem that the algorithm found local minima, another method was 

tried. The second method was done in three steps. 

e The first step was to retrieve v and 7 from the near infra red bands. 

e The second step was to perform a first guess to retrieve m, and m; from pioa in 

visible wavelenths. It was first attempted to use a direct inverse model learning 

both m, and m, from the TOA reflectance and the geometry, but as the training 

data is discrete (see Table 1.3) this method was inappropriate. Thus two classi- 

fiers were built, one classifying m, from the TOA reflectance and the geometry 

and the other classifying m; (see Figures 9.1 and 9.2 in appendix). As m; can 

take 6 different values in the dataset used, a single classifier wasn’t effective, a 

pyramidal structure of three classifiers was then built, the first classifier choos- 

ing between low and high values (see Figures 6.2 and Figures 9.3, 9.4, 9.5 in 

Appendix). 

e The third step was to retrieve m,, mj, b° and [chl], using the previous results as 

starting points for m, and m;, (see Figure 6.3).
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Figure 6.2: Pyramidal classifiers to retrieve m; from Poa. 
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Figure 6.3: Second global retrieval framework, using the NIR bands to retrieve v and 

T, and the classifiers to first guess m, and m;. 
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6.3 Physically wrong results 

The first tests on simulated data gave good results for v and 7, but very poor results 

for m,, mj, b° and [chl], giving results outside the physical range of the parameters, 

with the corresponding observations near the real ones, (see Figures 6.4 and 6.5). 
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Figure 6.4: Global retrieval using MLPs - retrieved parameters. 
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Figure 6.5: Global retrieval using MLPs - observations at the SeaWiFS visible wave- 
lengths. 

          

Four solutions were then considered. 

53



CHAPTER 6. TESTS ON SIMULATED DATA 

6.3.1 MLP vs RBF 

The first tests were showing that wrong parameters were found, leading to observa- 

tions corresponding to the real ones. This behaviour can be attributed to the use of 

MLPs, which are trained to give results corresponding to the training set in the data 

range of the inputs given in the training set, but are not constrained outside this data 

range. Thus MLPs can lead to a minimum outside the physical range of the different 

parameters which gives observations close to the real ones. 

The use of RBF was then considered, as the RBF are using Gaussian basis functions, 

the output given for an input outside the training set range tends to zero. The figures 

and errors of the trained RBFs are in the appendix (Table 9.1, Figures 9.6, 9.7 and 

9.8). The RBF for atmospheric transmittance was not as efficient as the corresponding 

MLP, but increasing the size of the network (the number of basis functions) would have 

increased too much the computational cost of the training. Therefore, the maximum 

size of the RBF was kept at 64 basis functions. 

6.3.2 Gaussian mixture model priors over the data space 

The second solution was to fit Gaussian mixtures to each variable in the training set so 

as to set simple priors on each of them (See equation 4.3). These priors would constrain 

the parameters in the physically real data range (see Figure 6.6). As the data samples 

are not uniformly distributed in the data range, the Gaussian mixtures can fit artefacts 

due to the conception of the basis of parameters, as shown for the parameter m, in 

Figure 6.6. These priors cannot be used where other priors are already in use, thus 

they will be used where no other prior is available. 

6.3.3 Log parameter space 

The third solution was to work in log parameter space. This solution would prevent the 

parameters becoming negative when they can’t physically be. Moreover, the oceanic 

parameters, 0° and {chl], and the atmospheric optical parameters, v and 7 are more 

likely to be Gaussian distributed in log space [3]. The figures and errors of the trained 

MLPs and RBFs are in the appendix (Table 9.2, Figures 9.12, 9.13, 9.14 and 9.9, 9.10, 

9.11). The basic framework was then tested in logspace, (Figures 6.7 and 6.8 and Table 

9.8 in appendix), the results were not better than not using the logspace. Moreover, 

the transformation from logspace to real space induced more error: If x is the retrieved 

parameter in logspace, the real value of the parameter is 

y = exp(z) , (6.1) 
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: 

  

    

        
Figure 6.6: Gaussian mixture priors on v,7,m,,™j,b° and [chl]. Vertical blue lines are 

the limits of the data range in the training set, red curve is the Gaussian mixture prior. 

and then the error on the real parameter is 

oy Ay=—.A a (6.2) 
=exp(z).Az . 

As the retrieval using logspace was not as good as the normal retrieval, this solution 

was not kept. 

6.3.4 Improved first guess 

The fourth solution was to try to improve the first guess of the different parameters. In 

the previous framework, v and 7 were retrieved first, then m, and m, were first guessed 

and at last m,, mj; b° and [chl] were retrieved. Several improvements were examined: 

e In the first framework, no first guess was done for 6° and [chl]. However having 

a first estimation of these two parameters would be useful. Then a direct inverse 

model giving b° and [chl] from v,7, 4s, 4», @, A was built, as this problem is multi- 

modal, an MDN was used. Unfortunately this problem seemed to be too difficult 

to be directly learnt by an MDN (Figures 6.9, 6.10, 6.11). This solution was then 

abandoned. 

e The first guess of m, and m; was done using classifiers, but was not very efficient, 

a better first guess for m, and m; would improve the global efficiency. A more 
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Figure 6.7: Second framework - Retrieval using the complex forward model in logspace 
(MLPs): parameters. 

0.35 0.35 

© ginal tho, 1° original ho, 
0.28 0.2 

2] 
0.8 08 

& 0. 
a cP ease 

(0.05. 

  

     
0.35 

8 final thon 
oz 

2 
0.4 

‘ oP eae 
00s 
jo 

Figure 6.8: Second framework - Retrieval using the complex forward model in logspace 

(MLPs): observations. 

efficient first guess was tried by inverting a network which was able to compute 

Ptoa from v,T, m, and m;. As v and 7 are retrieved first, inverting this network 

gave m, and m; (See Figure 9.15 in appendix). This network will be referred to 

as first guess model for m, and m;. 

e A solution to first guess 0° and [chl] as well was examined and implemented using 

a single neural network able to compute pjoa from v,7,b° and [chl] (Figure 9.16 
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Figure 6.9: Network for first guess of b° and [chl], inputs are T,v,0.,0,,¢, A, outputs 
are b° and [chi]. Plot of target versus output for [chl]. 

  

Figure 6.10: Network for first guess of 6° and [chl], inputs are T,v,0,,0,,@,A, outputs 
are b° and [chl]. Plot of target versus output for b°. 
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Figure 6.11: Network for first guess of {chl], inputs are 7, v,0,,0,,, A, output is [chl]. 
Plot of target versus output for [chl]. 

in appendix). This solution, as well as the previous one, is based on a restriction 

of the problem, as the networks are predicting pjo2 without all the parameters. 

This network was not as good as the previous one, however, it was tested in the 

global framework. This network will be referred to as first guess model for b° and 

[chl). 

e Finally, a network computing pjoq from v,r,m,,m;,b° and [chl] was built as a 

simpler and less accurate modelisation to the global problem, to perform a first 

= a
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retrieval for m,,™m;, 6° and [chl] (see Figure 9.17 in appendix). This network will 

be referred to as simple forward model. 

Those three solutions can be applied successively before the last retrieval to start closer 

to the true parameters and avoid local minima. 
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6.4. Third retrieval framework 

The third framework (Figure 6.12) used the first guess model for m, and m,, for which 

two different solutions, the classifiers and the inversion of a neural network were tested. 

The first guess model for b° and [chl] was also implemented as well as the simple 

forward model for the first retrieval of m,,m;, 6° and [chl]. 

The previously described Gaussian mixture models were used where no prior knowl- 

edge was available. 

The tests were first done using MLPs. 
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Figure 6.12: Third Global retrieval framework. 

    
  

This new framework was more complicated; the additional networks were designed 

to give good starting points for the more complicated networks. The first test was 

done using only the first networks, performing the first guess on m,,mj,,b° and [chl], 

to check that this first guess was efficient (see Table 6.2 and Figures 6.13 and 6.14). 

This first guess was not better than the one achieved using classifiers, as the retrieved 

parameters were still outside of the data range. Moreover, as m, and m; were retrieved 

separately from b° and [chl], the corresponding TOA observations were far from the 

real ones.
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Relative RMS (% of target) Bias Std 
Ptoa 4.327416e+02 -1.188342e-01 | 1.574980e-01 

v 2.209596e-05 -9.396992e-10 | 2.447876e-08 

T 3.574356e-06 4.758629e-10 | 2.682411e-09 

Mr 6.782622e+03 -1.304376e+00 | 7.177396e+00 

mM 4,488820e+05 1.088222e+01 | 5.962163e+01 

ve 2.722770e+03 2.738618e-01 | 2.244020e+00 

[chl] 3.282592e+03 3.001337e+00 | 2.508779e+00   
  

Table 6.2: Errors on retrieval using only first guess networks (MLPs). 
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Figure 6.13: Third framework - First guess (MLPs): parameters. 
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Then the network doing the first retrieval of all the four parameters m,, mj, b° and 

{chl] was tested, alone at first (Figures 6.15 and 6.16, and Table 9.3 in appendix), and 

then with the other two first guess networks (Figures 6.17 and 6.18 and Table 9.4 in 

appendix). As shown in Figures 6.15 and 6.16, the algorithm not using the first guess 

found a minimum which had wrong parameters even if the corresponding observations 

were close to the real ones. The algorithm using the first guess didn’t even find a local 

minimum. This test showed that the first guess was wrong. (Figures 6.17 and 6.18) 

This test has shown that the simple forward model was useful only for the parameter 

m, when it was used without the other first guess. 
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Figure 6.15: Third framework - Simple forward model (MLPs): parameters. 
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Figure 6.16: Third framework - Simple forward model (MLPs): observations. 
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Figure 6.17: Third framework - First guess and simple forward model (MLPs): param- 
eters. 
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It was hypothetised that using this simple forward model for a first retrieval to fix 

the starting point of the complex model would be useful for m; only. This was tested by 

using the simple forward model together with the complex model (see Figure 6.20 and 

Table 9.6 in appendix). This retrieval was compared with the results using the complex 

model alone (Figure 6.19 and Table 9.5 in appendix). This comparison showed that 

the parameter m; was retrieved with better accuracy when the simple forward model 

was used. However, the oceanic parameters, b° and {chl] were still poorly retrieved. 

   

35 o.04 as os 0.36 te 
original nu |} 24 original tau jo. ofainal m, |} orginal m, H 0.Ceinat brah] “Sriginal chiogh °° 

2 39 o. 3 0. E ee ‘pera Eee > a 
18 tH 9 18 30 bi Be 

24681 24681, 246814 24681 24681M02 24681bo% 
° 10.05 ie aes 0.15 03 
29 1 ~002 01 

36 G6 0.04 0.45 0.6 

finalru f]°4 tinalteu fos S=!m, final m, }0.0%4nai bog) |] tinal chicooiff 85 
2 39 0. 8 0, e jad eer; ie a: 
8 29 a0 4 

-0.01 

  

Figure 6.19: Third framework - Complex model (MLPs): parameters. 
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This framework, using the simple forward model for a first guess and the complex 

model to refine the retrieval was the bes' 

RBFs instead of MLPs. Using RBFs, th 

t one using MLPs. It was then tested using 

e retrieval of m, and m; was better, even if 

the retrieval of b° and [chl] were still poor (See Figures 6.21 and 6.22). 
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Figure 6.21: Third framework - Simple 

parameters. 
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forward model and complex model (RBFs): 
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6.5 Fourth retrieval framework 

At this point the retrieval of v,7,m,,m; was done, but b° and [chl] were still to be 

retrieved. As all the atmospheric parameters were then known Patmo(A) and t(\) could 

be computed, and as 

Ptoa(A) = Patmo(A) + t(A)-Pw(A) (6.3) 

Pw(A) could be deduced es 

— Ptoa(A) = Patmo(A 
Pw(A) = i eVect (6.4) 

Then 6° and [chl] were retrieved from p,(A) as in section 5.2. 

The fourth retrieval framework was then performed using (Figure 6.23) 

e The NIR bands model to retrieve v and T, 

e The classifier for a first guess of m, and m;, 

e The simple forward model to do a first retrieval of m,,mj;,b° and [chl], 

¢ The complex forward model to refine the retrieval of m,,m;, 6° and [{chl], 

e The oceanic model to refine the retrieval of b° and [chl]. 

This framework relied on Potmo(A) and t(A), which means that errors on v,7,™m,,Mj; 

were transmited to p,() and then to b° and {chl]. Moreover, as in 6.4, the error on 

Pw(A) was 

    
a, 0, a, Apa = baa lA blag + Bel At + |= |.Apatme 
Ptoa Patmo 

i rk = [FIA blag + |— Bae Pato nt + |— b.Npaene (655) 
1 

= | Fl (Aetoa + APatmo + Pw-At) 

The A are not written as each variable is dependent of A. 

The error on p, was then too big to enable any retrieval (See Figures 6.24, 6.25 

and 6.26 and Table 9.10 in appendix). As shown in Table 6.3, the p,, computed by the 

algorithm was then completely different from the p,, in the dataset used to train the 

neural networks. The neural network was then unable to find any parameter which 

would lead to this p,. This framework was then useless. 
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Figure 6.23: Fourth Global retrieval framework. 

  

  

        

Dataset Max | Mean Min 

Pw derived from the retrieved parameters | 0.2859 | 0.0100 | -1.2795 

Pw in training data 0.0485 | 0.0122 | 0.0003 
  

Table 6.3: Characteristics of p,, derived from the retrieved parameters and p,, in the 

training set of the neural network. 
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6.6 Conclusion of the tests on simulated data 

The tests on simulated data have shown that the atmospheric parameters, v,7,m,,™mj; 

could be retrieved with acceptable precision, even if only the retrieval of v and 7 were 

accurate to the level required by SeaWiFS specifications, that is with an error less than 

5% of the signal. The reason why b° and {chl] were not retrieved with acceptable confi- 

dence is that the architecture of the model enables a solution giving good observations 

(Ptoa) but wrong components (pq, ¢, P,) and thus wrong parameters. Any small error 

on the atmospheric parameters leads to an error on the atmospheric transmittance (t), 

and thus on the water-leaving reflectance (p,). This compromises the retrieval of the 

oceanic parameters. To enable a better retrieval of 6° and [chl], a much more accurate 

model would be needed for the atmospheric transmittance (t) as the error on p,, comes 

mainly from the error on t. 

The final and most reliable framework according to the tests done on simulated 

data was achieved using (See Figure 6.27): 

e The NIR band model to retrieve v and 7, 

e The classifiers to perform a first guess of m, and mj, 

e The simple forward model to perform a first retrieval of m,, mj, b° and [chl], using 

the previous m, and m; as starting points, 

e The complex forward model to refine the retrieval of m,,m;,b° and [chl], using 

the previous m,,mj, 6° and [chl] as starting points. 
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Chapter 7 

Tests on real data 

The tests on the global model were first done using simulated data, and then using 

real data instead. 

7.1 Standard SeaWiFS atmospheric correction 

The real data was provided by Anton Lyaskovskiy, NCRG. The raw top of atmosphere 

information from SeaWiFS was provided together with basic correction information for 

Rayleigh scattering, sun glitter, whitecaps and oxygen and ozone absorption. 

SeaWiFS provides the radiances; the conversion from radiances to reflectances is: 

Bie ae 

0(A) 
Then, several corrections were performed in order to compute the corrected reflectances 

which can be handled by the trained neural network. 

First, the sun glitter is removed 

Per(A) = Ptoa(A) — T(A)-A4(A) - 

Secondly, the Rayleigh-corrected reflectance is defined by 

Pea(A) = Pe, (A) = pr(A) — t(A)-Pwe(A) - 

Thirdly, it is assumed [8] that the effects of ozone and oxygen can be removed 

a(x) = 222), 
LOn-toz 

These corrections are adding a certain amount of noise to the data, this noise must 

be taken in account in the assumption made in the retrieval. However, as this noise 

is negligible compared to the errors of the neural networks, the assumptions will not 

be modified. As the standard SeaWiFS atmospheric correction were performed, the 

corrected TOA reflectances could be used in the Bayesian retrieval framework. 
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7.2 Bayesian retrieval 

The main problem when testing on real data was that only the TOA reflectance and 

its three components, the atmospheric reflectance, the atmospheric transmittance and 

the water-leaving radiance were known. Thus it was difficult to estimate the errors on 

the retrieved parameters as the real values for most of them were unknown. However, 

the results found were compared with SeaWiFS results. 

The first test was done using the framework designed during the tests on simulated 

data, using MLPs (Figures 7.1 and 7.2). The MLPs were chosen because they were 

more reliable than the RBFs according to the training and test errors, even if the RBFs 

were slightly better in the tests on simulated data. 

The retrieved parameters were wrong, as well as the corresponding observations 

(Figures 7.2 and 7.1). This behaviour came from the use of a first guess model. These 

were efficient using simulated data because the data was simulated with the same 

neural networks as the ones used for the retrieval. But when using real data, the first 

guess models were more likely to find local minima as they are more simple than the 

complex model. 

(0.0275 

0.015 

0.0145 

0.014 

0.0135 

0.013 

  

Figure 7.1: Retrieval using the simple forward model and complex model (MLPs): 
observations. 

Then the retrieval was tested with a framework using only the NIR bands model and 

the complex forward model (Figure 7.4). The results were better as the observations 

corresponding to the retrieved parameters were closer to the real values (Figure 7.3). 

However, the components of pica: Pa (Figure 7.6) and py (Figure 7.5) were still far 

from the real ones, even if the parameters were closer to the physical range than in the 

previous test. 
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Figure 7.3: Retrieval using the complex model (MLP): observations. 

7.3 Conclusion of the tests on real data 

The tests on real data have shown that the framework built to be efficient on simulated 

data gave poor results on real data. This is mainly because the neural networks used 

in the retrieval have been trained on the same datasets as the ones used to simulate 

the data. Thus, their first guess was more accurate on simulated data than on real 

data, and so consequently was the global retrieval. 

The reason why the algorithm is doing worse on real data than on simulated data 
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Figure 7.4: Retrieval using the complex model (MLP): parameters. 
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Figure 7.5: Retrieval using the complex model (MLP): py. 

is that the errors induced by the physical model used to simulate the data, and thus 

to train the networks, is added to the error directly coming from the networks and 

the noise on the observations. The error at each level is then greater than when using 

simulated data, thus the retrieval of v and 7 is worse, then this error is transmitted 

through to the retrieval of the other parameters. 

The use of priors enables us to direct the parameters to the physically correct values, 

but as no prior is given for the values of pg,¢ and py, parameters giving a nearly true 
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Ptoa but wrong components p,g,t and py are found. 

Some propositions to improve the retrieval on simulated as well as on real data are 

explained in the next chapter. 
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Chapter 8 

Conclusion 

First of all, the forward neural networks to learn the data simulated from the Chomko 

& Gordon model have been designed and trained. Additional networks have been built 

to perform the first guess of the different parameters. 

Secondly, the Bayesian framework has been set up, implemented and tested on 

small problems corresponding to the retrieval of some of the parameters (v and 7 in 

section 5.1), and the retrieval of the parameters of a single model (oceanic model, in 

section 5.2). Other tests were done to demonstrate the use of priors (in section 5.2). 

These tests have shown that the Bayesian framework was effective on the inversion of 

a single neural network, and that the use of priors enabled a more accurate retrieval 

when using noisy observations. 

Thirdly, tests on simulated and real data have been performed. The framework has 

been modified according to the results of the tests on simulated data, and according 

to the results of the tests on real data so as to improve the accuracy of the retrieval in 

both cases. These tests have shown that four out of the six parameters were retrieved 

in the case of simulated data, whereas none of the parameters was retrieved in the case 

of real data. The main problem observed during the tests on real data was that small 

errors on the atmospheric parameters led to an important distortion on the oceanic 

information, and thus on the oceanic parameters. Thus more accurate models would 

be needed to improve these results, as well as a first guess for b° and [chl]; however 

none of the attempts to build a first guess for the oceanic parameters was successful, 

the problem being too complex to be solved by a single neutal network, and thus all the 

attempts to build a model to perform a first guess were leading to wrong local minima. 

The tests on real data have shown that the retrieval led to parameters giving TOA 

observations close to the real ones, but with wrong components (fa, t, Pw). The results 

of the tests on simulated and real data have shown that the use of Bayesian methods is 

useful. However the global retrieval framework performance is still far below SeaWiFS 

requirements. Hence, several improvements can be suggested. 

The first possible improvement comes from current retrieval algorithms which are 
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using lookup tables to infer aerosols properties, m, and mj, from v and r. As the goal 

of this thesis was to build a Bayesian approach to the problem of aerosol correction 

this solution wasn’t used. However, this issue can be useful to give a first estimation 

of the parameters m, and m, which are still difficult to retrieve with enough precision 

in the presented framework. Secondly, the tests on real data have shown that the 

retrieved parameters were corresponding to wrong pa, Pw and t, thus it could be useful 

to embed prior knowledge on these components in the Bayesian framework. Thirdly, 

the efficiency of priors is better when the processing is done over large datasets, however 

the mathematical tools used in the framework makes the use of large datasets difficult. 

Therefore sparse Gaussian processes might prove useful as they would enable us to 

process larger datasets. Finally, the model used to simulate the data which is used to 

train the neural networks is a simple and convenient model, however a more precise 

model would enable to build a framework more efficient on real data. The problem 

of retrieving wrong parameters leading to the good pio, shows that the model is not 

directly invertible; either because the problem itself is not invertible, or because the 

model is too far from the real problem. 
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Appendix 

9.1 Classifiers for m, and m; 

Network Confusion Matrix, m, (57%) 
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Figure 9.1: Results of the classifier MLP to retrieve m, from ptoa- 

9.1.1 Pyramidal Classifiers for m;
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Network Confusion Matrix, m, (24%) 
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Figure 9.2: Results of the classifier MLP to retrieve m; from pjoa- 
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Figure 9.3: Pyramidal classifiers to retrieve m; from pioa - First classifier.
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Network Confusion Matrix, m,, Inf Net (49%) 
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Figure 9.4: Pyramidal classifiers to retrieve m; from pio - Classifier for low values. 
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Network Confusion Matix, m,, Sup Net (76%) 
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Figure 9.5: Pyramidal classifiers to retrieve m; from pioq - Classifier for high values. 
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9.2 RBFs 

The three components of the global model were learnt using RBFs as an alternative to 

MLPs 

Model Relative RMS (% of target) Bias Std 
Atmospheric reflectance 9.2649 1.1823e-05 0.0039 

Atmospheric transmittance 29.6081 0.0025 0.0407 

Oceanic reflectance 1.6533 1.3768e-05 | 1.8114e-04 

Table 9.1: RBFs errors. 

Aimosphericrellectance, all nu, RBF(@,64,1), ms:9%6 

: 

04 05 
Target 

Figure 9.6: RBF for atmospheric reflectance. 
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‘Atmospheric transmitance, RBF(7,64,1), mms:30% 

  

  9 4 02 03 04 05 06 O7 08 9 
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Figure 9.7: RBF for atmospheric transmittance. 
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Figure 9.8: RBF for water-leaving reflectance. 
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9.3 Log parameter space 

  

  

  

      

Model Relative RMS (% of target) Bias Std 
MLPs 

Atmospheric reflectance 9.3470 7.4263e-05 0.0039 

Atmospheric transmittance 1.8016 -2.0401e-05 0.0025 

Oceanic reflectance 0.1469 8.1074e-07 | 1.4997e-05 

RBFs 

Atmospheric reflectance 9.6287 2.5543e-05 0.0040 

Atmospheric transmittance 2.1135 -1.1196e-05 0.0029 

Oceanic reflectance 1.6533 1.3768e-05 | 1.8114e-04   
  

Table 9.2: Log MLPs and RBFs errors. 

9.3.1 MLPs 

‘Atmosphere rtlectance, all nu, NN(8,30,1)Io9, ms:9% 

  

Target 

Figure 9.9: MLP for atmospheric reflectance in logspace. 
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‘Atmospheric transmittance, NN(7,20,1)nocos~log, rms:2% 
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Figure 9.10: MLP for atmospheric transmittance in logspace. 
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Figure 9.11: MLP for oceanic reflectance in logspace. 
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9.3.2 RBFs 

‘Atmospheric reflectance, all nu, RBF(8,64,1), rms:9% 

Out
put

 

  

  

04 05 
Target 

Figure 9.12: RBF for atmospheric refle   tance in logspace. 

‘Atmospheric transmitance, REF(7,64,1)log, rms:2% 
09 
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Figure 9.13: RBF for atmospheric transmittance in logspace. 
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Oceanic reflectance, RBF(3,64,1)logs, ms:0% 
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Figure 9.14: RBF for water-leaving reflectance. 
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9.4 First guess models 

Full forward, NN(8,40,1),rms:17% 
os, 

  

  

03 04 05 
Target 

Figure 9.15: Network for first guess of m, and mj, inputs are m,,mj,T,V, 95,9», 0, A, 

output is Ptoa(A). 

Full forward, NN(@,40, 1) rms:522% 
04 

0.98) 
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0.25) 

02 

Out
put
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Figure 9.16: Network for first guess of b° and [chl], inputs are 7, v, 0,0), 0, 0°, [chi], A, 

output is Ptoa(A). 
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Full forward, NN(10,40,1),ms:10% 

  

0 005 or 015 02 025 03 0.35) O4 
Target 

Figure 9.17: Network for first retrieval of m,,m;,b° and [chl], inputs are 
M,,Mj,T, V, Os, Oy, , b°, [chi], A, output is pProa(A). 
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9.5 Test on simulated data 

  

  

          

Relative RMS (% of target) Bias Std 

Ptoa 4.218870e+01 -2.053998e-03 | 1.535474e-02 
v 2.209596e-05 -9.396992e-10 | 2.447876e-08 

fre 3.574356¢-06 4.758629e-10 | 2.682411e-09 

Mr 9.884582e+01 4.994772e-01 | 1.045990e-01 

mi 8.959418e+01 1.722522e-02 | 1.190012e-02 

vo 9.997610e+01 1.466172e+00 | 8.239712e-02 

[chi] 1.000221e+02 1.098480e+00 | 7.644363e-02 
  

Table 9.3: Errors on retrieval using only the simple forward model (MLPs). 

  

  

    

Relative RMS (% of target) Bias Std 

Ptoa 1.080382e+02 -2.404762e-02 | 3.932093e-02 
vy 2.209596e-05 -9.396992e-10 | 2.447876e-08 
ih 3.574356e-06 4,758629e-10 | 2.682411e-09 

M, 9.761647e+01 2.961668e+00 | 1.032981e-01 
mM 1.074468e+02 4.526660e+00 | 1.427135e-02 

vo 9.987612e+01 1.464737e+00 | 8.231472e-02 

[chl] 9.969616e+01 1,102580e+00 | 7.619455e-02 
        

Table 9.4: Errors on retrieval using first guess networks and simple forward model 

(MLPs). 

  

  

          

Relative RMS (% of target) Bias Std 

Ptoa 7.616414e+00 4.639166e-05 | 2.772023e-03 
y 2.209596e-05 -9.396992e-10 | 2.447876e-08 

T 3.574356¢e-06 4.758629e-10 | 2.682411e-09 

My, 3.740673e+02 -1.405530e-01 | 3.958395e-01 

mM; 1.847542e+03 -7.385514e-02 | 2.453952e-01 

v° 1,450901e+03 -2.607126e-01 | 1.195786e+00 

[chl] 2.467827e+03 4.484771e-01 | 1.886080e+00 
  

Table 9.5: Errors on retrieval using the complex forward model (MLPs). 
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Relative RMS (% of target) Bias Std 
Ptoa 8.974800e+-00 2.169341e-04 | 3.266413e-03 

v 2.209596e-05 -9.396992e-10 | 2.447876e-08 

T 3.574356e-06 4,758629e-10 | 2.682411e-09 

My 6.934279e+02 2.376368e-01 | 7.337880e-01 

m 2.289981e+03 -3.887063e-02 | 3.041611e-01 

v° 4.404384e+03 5.435456e-01 | 3.629953e+00 

[chl] 1.918609e+03 -2.406318e-01 | 1.466331e+00             

Table 9.6: Errors on retrieval using the simple forward model and complex forward 
model (MLPs). 

  

  

          

Relative RMS (% of target) Bias Std 

Ptoa 4.090293e+00 3.752404e-05 | 1.012735e-03 

Vv 2.209596e-05 -9.396992e-10 | 2.447876e-08 

Th 3.574356e-06 4.758629e-10 | 2.682411e-09 

My 3.802717e+02 3.727865e-02 | 4.024050e-01 

Mi 1.399237e+02 -1.621316e-03 | 1.858502¢e-02 

v° 1.834568e+03 9.411496e-01 | 1.511992e+00 

[chl] 2.905553e+03 7.499058e-01 | 2.220620e+00 
  

Table 9.7: Errors on retrieval using the simple forward model and complex forward 

model (RBFs). 

  

  

          

Relative RMS (% of target) Bias Std 

Ptoa 8.083655e+-00 -2.167141e-04 | 5.404841e-03 
v 2.199892e-05 -3.695148e-10 | 5.791470e-09 

t 3.378364e-06 3.440438e-10 | 2.110911e-09 
My 2.668438e+02 -3.936850e-02 | 2.823751e-01 

m 9.414218e+-02 -1.922374e-02 | 1.250420e-01 

vo 9.359567e+03 1.296091e+00 | 7.713857e-+00 
[chl] 5.974722e+03 1.253112e+00 | 4.566287e+00 
  

Table 9.8: Errors on retrieval using the complex forward model in logpsace (MLPs). 
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Relative RMS (% of target) Bias Std 

Ptoa 4.883307e+01 -2.460933e-02 | 3.265045e-02 
y 2.199892e-05 -3.695148e-10 | 5.791470e-09 

Ty 3.378364e-06 3.440438e-10 | 2.110911e-09 

My, 1.280907e+03 -2.203115e-01 | 1.355461e+00 

m 1.670517e+04 -1.015184e+00 | 2.218823e+00 

oe 9.327908e+03 4.517126e+00 | 7.687765e+00 

{chl] 4.289991e+03 -1.086711e+00 | 3.278702e+00   
  

Table 9.9: Errors on retrieval using the simple forward model and complex forward 

model in logpsace (MLPs). 

  

  

        

Relative RMS (% of target) Bias Std 
Pa 1.264569e+01 9.147767e-04 | 3.127103e-03 

t 4.017066e+01 -7.661576e-04 | 3.939003e-02 

Pw 1.18931 1e+03 -1.487785e-03 | 5.258583e-03   
  

Table 9.10: Errors on the observation derived from the retrieved parameters in the 

fourth framework. 
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