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Abstract 

In this thesis, we consider a discrete choice model with a single homogeneous prod- 

uct and a single seller (the monopoly case) in which a population of individuals with 

idiosyncratic willingness to pay must choose repeatedly to buy or not a unit of this single 

homogeneous good at a price determined by the monopolist. 

Utilities of buyers have positive externalities due to social interactions among cus- 

tomers. If the latter are strong enough, the system has multiple Nash equilibria revealing 

coordination problems. 

We assume that individuals learn to make their decisions repeatedly, and study the 

performances, along the learning path as well as at the reached equilibria, for different 

learning schemes based on past earned and/or forgone payoffs. We also calculate the 

monopolist’s profit cumulated during the customers learning process. 

We discuss analogies between simulated market mechanisms and classical phenomena, 

in the physics of disordered systems such as phase transition, avalanches, mean-field 

approximation, quenched and annealed disorder.
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Chapter 1 

Introduction 

Sellers have always faced the problem of setting the right prices for goods and services that 

would generate the maximum revenue for them. Determining the right prices to charge 

a customer for a product or a service is a complex task. It requires that a company 

knows not only its own operating costs and availability of supply, but also how much the 

customer values the product and what the future demand would be. 

In the simplest market, the buyer has discrete choice (to buy or to not buy) model 

with a single homogeneous product and a single seller (monopolist). 

On the demand side, the customers are assumed to be influenced only by social pres- 

sure. On the supply side, the monopolist is a cognitive agent able to set the price to 

optimize his profits. 

Recently [19], analogies between simulated market mechanisms and phenomena oc- 

curring in classical statistical physics have been used to study the basic model developed 

above. 

In particular, two different scenarios have been investigated: 

(i) individual agent’s willingness to pay is assumed to be heterogeneous but fixed. 

(ii) the agent’s willingness to pay is composed of 2 parts: an homogeneous part (the 

same for all agents) and an individual additive stochastic part. 

These models fall into different classes as far as a physicist is concerned. Whereas the 

first case corresponds to that of quenched disorder, the second one can be viewed as a 

problem involving annealed disorder. 

These different cases lead to very different consequences for the market behaviour. 

After introducing the model (Chapter 2) and recalling some results for the determin- 

istic case (chapter 3 & 4), we are going to develop the improvements we have made to 

the software MODULECO and the investigate in more details this theory on an empirical 

study: the Marseille Wholesale Fishmarket.



Chapter 2 

The Simplest Model 

2.1 Simple Market Model with a.Single Good 

and Externalities 

We consider a single good at a price P fixed by a monopolist and a population of N 

agents (i = 1, 2,. . .,N), with the following characteristics: 

Strategies: each individual i has to make a binary choice, that we denote w; = 1 

(to buy one unit, to adopt a fashion, etc., depending on the situations addressed by the 

model) or w; = 0 (not to buy, not to adopt, etc.). 

Each individual has a reservation price, i.e. the maximum price he is ready to pay for the 

good. 

Each customer’s willingness to pay is the sum of two terms: 

Idiosyucrasy: each individual has his own (idiosyncratic) willingness to pay (called 

hereafter IWP), Hj; the larger Hj, the higher the willingness to choose the state w; = 1. 

We assume that H; is distributed among the agents according to a probability distribution 

function (pdf) of average H and variance 6;. A uniform distribution was considered by 

Gordon, but in this paper we consider a logistic pdf. 

H,=H +6; (2.1) 

with 0, the deviation with respect to the mean, of pdf f(4;). 

A Probability Density Function (pdf) is a function that represents a probability 

distribution in terms of integrals. Formally, a probability distribution has density f, if 

f is a nor-negative Lebesgue-integrable function R — R such as the probability of the



interval [a,b] is given by if f(«)da for any two numbers a and b. This implies that the 

total integral of f must be 1. Intuitively, if a probability distribution has density f(z), 

then the infinitesimal interval [x, 2 + dz] has probability f(x)dx. 

Externalities: the willingness to pay of each individual i increases beyond his [WP 

(H;) if a subset v; of other agents, called hereafter his neighbours, decide to buy. Given 

the choices w,, k € 1,...,N, the actual surplus of i is: 

Vi(we) = nL Jitu — (2.2) 
ts key 

where P is the posted price and N; is the number of "neighbours" of i (N; = |\v||). If 

V;(ws) is positive (negative), the optimal choice is w; = 1 (w; = 0). The corresponding 

utilities are U;* = w;V;(w,). In this chapter, the neighbourhoods 1; are assumed to be 

global and homogeneous, that is, every agent is a neighbour of every other agent (com- 

plete connectivity: N; = N —1 for all i) and all the weights of the social component are 

equal and positive (Ji, = J > 0 for alli # k). 

Learning: we assume that the individuals do not know the values of the surplus 

expected upon choosing a strategy w, but estimate their attraction of playing it, A¥, 

based on their past experiences. The actual utility corresponding to a decision w at time 

tis: 

UP (t) = wV,(t), (2.3) 

where the surplus 

Vi(t) = A; + Ini(t) — P, (2.4) 

depends on the actual fraction of neighbours that buy at time t: 

nO = yz Lo onlt (25) 
1 ee 

Notice that buying, because the corresponding Accraetion is large, runs the risk of having 

a negative utility. But, if the choice is w; = 0, the individual has a very small utility but 

may miss a positive one. There are many possible ways of determining the attractions. 

In this chapter, we make the assumption that the individuals do not know precisely the 

values of the parameters H; and J, and that they may even not know the structure of 

their utilities. Their estimations rely on the values of U}*(t) grasped at each period after 

making decisions.



Simplifying hypothesis 

Jix > 9 + making the same choice as the others is advantageous 

The social influence is supposed to be homogeneous (Jj, = J) 

1 
ToD Fimwe(t) = Ji (2.6) 
llesll <x 

with J = weight of neighbour’s choices and 7; the fraction of 7’s neighbours that 

adopt. 

Global neighbourhood and large N: 

N N 
1 ~ 1 my rat > = yD We=Nn (2.7) 

kalk#i k=l 

so, in’ this configuration, 7, the fraction of buyers, is insensitive to fluctuations: 

single agents cannot influence individually the collective term J7.



2.2 Demand and Supply Sides 

2.2.1 The Demand Side 

A rational agent chooses w; in order to maximize his surplus function V;: 

oy = a aH + Da P) ea 
where P is the price of one unit and H; represents the idiosyncratic preference component. 

To simplify we consider the case of homogeneous influences, that is, identical positive 

weights Jj, = J/n > 0. 

2.2.1.1 Psychological versus economic point of view 

Depending on the nature of the idiosyncratic term H,, the discrete choice model (2.8) 

may represent two different situations. 

We can separate a "psychological" and an "economic" approach to individual choice. 

Within the psychological point of view of Thurstone [25], the utility has a stochastic 

aspect, referred to as the TP-case (acronym for Thurstone-Psychological). The IWPs 

present independent temporal fluctuations around a fixed (homogeneous) value. 

On the contrary, within the economic perspective of McFadden [14], each agent has a 

willingness to pay that doesn’t vary in time, at least during the period of consideration, but 

may differ from one agent to an other. Even if the seller knows the statistical distribution 

of the IWP over the population, he cannot observe each specific individual IWP. In the 

language of interactive decision theory, the seller is in a "risky" situation, this is the 

McF-case (acronym for McFaden). 

"Risky" in decision theory and statistics means that because the seller cannot know 

each specific individual IWP, he has to assess risks and benefits when selling the product. 

There is a distinction to make between a situation of risk and one of uncertainty. There 

is an uncontrollable random event inherent in both these situations, but the distinction is 

that in a risky situation, the uncontrollable random event comes from a known probability 

distribution, whereas in an uncertain situation the probability distribution is unknown. 

The domain of decision analysis models falls between two extreme cases. This depends 

upon the degree of knowledge we have about the outcome of our actions, as shown below: 

Ignorance || Risky Situation || Complete Knowledge 

Pure Uncertainty Model l Probabilistic Model q Deterministic Model 
  

The two perspectives (TP and McF) only differ in the nature of the individual will- 

5



ingness to pay, but correspond to very different theoretical models. 

In the TP model [25], the idiosyncratic preference has two components: a constant 

deterministic term H (the same for all agents), and a time- and agent-dependent additive 

term 6;(t). The 0;(t) are random variables of zero mean and, during the simulations, 

they are refreshed at each time step. Agent i decides to buy according to the conditional 

probability: 

P(w; = 1|z,(P, H)) = P(; > a(P,H)) =1— F(z(P,#)), (2.9) 

with 

2(P,H)=P-H-—-J, You, (2.10) 
kev 

where F'(z;) = P(6; < z) is the cumulative distribution of the random variables 6;. 

In this model, the agents make repeated choices, and the time varying components are 

drawn at each time ¢ from a logistic distribution with zero mean and variance o? = 

7? /(38?) (the use of this formula for the variance and of a logistic distribution is going to 

be explained later in this thesis). 

1 

EG)— 1+ exp(—8z)’ 
(2.11) 

In the McF model [14], the private idiosyncratic terms H; are randomly distributed 

over the agents, but remain fixed during the period under consideration. There are no 

temporal variations (that means Vi, 6; = 0). It is useful to introduce, like in the TP 

model, the notation H; = H +, and to assume that the ¢; are distributed with zero 

mean and variance 0? = m?/(3(") over the population. It implies: 

eit atl i 
ey ee and Ay ee (2.12) 

An agent buys if: 

Bee ye (2.13) G> Wii 2" - 
kev 

In the full connectivity case (model with global externality), it is convenient to identify a 

marginal customer, indifferent between buying and not buying. Let H», = H + Gn be his 

idiosyncratic willingness to pay (IWP). He has zero surplus (Vj, = 0), so: 

(n= P-H-5 un, (2.14) 
kev



so in this case, an agent buys if ¢; > Gn, which corresponds to Vm > 0 and does not buy 

otherwise. 

There is a strong relation between these models and Ising type models in Statistical 

Mechanics (cf. 3.2.1), which is made explicit if we change the variables w; € {0,1} into 

spin variables s; € {+1} through: 
ye ia Sip 

2 

In physics, the TP model [25] corresponds to a case of annealed, thermal disorder. 

In the particular case where F(z) in (2.9), the distribution of the temporal fluctuations, 

is the logistic distribution, we obtain an Ising model in a uniform external field H — P, at 

temperature T = 1/. In the McF model [14], the IWP are randomly chosen and remain 

fixed, or they present independent temporal fluctuations around a fixed (homogeneous) 

value: it is analogous to a Random Field Ising Model (RFIM) at zero temperature. The 

RFIM belongs to the class of quenched disorder models: the values H; are equivalent 

to random time-independent local fields. 

Thus, from the physicist’s point of view, the TP and the McF models are quite differ- 

ent: uniform field and finite temperature in the former, random field and zero temperature 

in the latte. Studies show that annealed and quenched disorder can lead to very different, 

behaviours. 

  (2.15) 

The TP model [25] is well understood, even if an analytical solution of the optimiza- 

tion problem for an arbitrary neighbourhood does not exist, the Mean Field analysis (cf. 

2.4) gives approximate results that become exact in the limiting situation where every 

agent is a neighbour of the N — 1 other agents (full connectivity). 

However, the properties of the McF model [14] are not yet fully understood, but 

several variants of the RFIM have already been used in the context of socio-economic 

modeling. 

2.2.1.2 Demand for a given price 

With a "global" externality case, homogeneous interactions and full connectivity, 

which is equivalent to the Mean Field Approximation in physics (cf. 2.4), we consider 

the penetration rate 7, defined as the fraction of agents that choose to buy at the given 

price. In the large N limit, we have }),.<, #47 ¥ 7, So that 0m ~ P— H — Jn =z. This 

approximation allows us to define 7 as a fixed point: 

n=1-F(z), (2.16)



where z depends on P, H, and 7. 

Using the logistic distribution for 6;, we have: 

1 

Sia exp(+Gz)’ 
(2.17) 

This equation is formally equivalent to the individual expectation that w; = 1 in the TP. 

case. 

Thanks to the equation (2.16), we can define the penetration rate as an implicit function 

of the price: 

(n, P) =n(P) + F(P —H —Jn(P))-1=0 (2.18) 

For a given P, equation (2.16) defines the penetration rate 7 as a fixed point, so the 

inversion of this equation gives us an inverse demand function: 

Pa(n) = H + Jn + G(n) (2.19) 

where G(n) is the inverse of the complementary distribution function; it satisfies: 

” f(a) de =n, (2.20) 
G(n) 

2.2.2 The Supply Side 

The mutual interactions between customers introduce multiple solutions in the de- 

mand function and are responsible for the existence of a transition in the optimal strategy 

of the monopolist. 

On the supply side, we assume that the monopolist does not know the idiosyncratic will- 

ingness to pay of each customer, but he is aware of its distribution among the population. 

He has to determine the best price to optimize his profit. Since the demand may be a 

multiple valued function of the price, the monopolist’s situation is risky. 

However, he cannot observe any individual reservation price. He only observes the ag- 

gregate result of the individual choices (to buy or not to buy), the fraction of customers 

n. 

2.2.2.1 Profit Maximisation 

The system exhibits a (sudden) first order phase transition with respect to the price 

in the profit optimisation by the monopolist: if the social influence is strong enough, 

there is a regime where, if the mean willingness to pay increases, or if the production



costs decrease, the optimal solution for the monopolist jumps from a solution with a high 

price and a small number of buyers, to a solution with a low price and a large number of 

buyers. 

Depending on the path of prices adjustments by the monopolist, simulations show hys- 

teresis effects on the fraction of buyers (cf. 3.3.2). 

Let c = C/o be the monopolist’s cost in units of oy (the variance of the distribution 

of the IWP) for each unit sold and p the monopolist’s price of one unit, and let p—c be 

his normalized profit per unit. 

Since each customer buys a single unit of the good, the monopolist’s total expected 

profit is (p — c) * N *n. Thus he has to solve the following maximisation problem: 

PMax = arg max II(p), (2.21) 
Pp 

where N II(p) is the expected profit, with: 

II(p) = (p—c) n(p), (2.22) 

and 7(p) is the penetration rate defined as the fraction of customers that choose to buy at 

a given price. If there is no discontinuity in the demand curve 7(p) (i.e. for J < jg), PMax 

satisfies dII(p)/dp = 0, which gives dn/dp = —n/p at p = pmaz, and using the equation 

(2.16) to calculate the derivative, we obtain at p = paaz: 

f(z) n eee (2.23) 
1-Jf(z) Pp 

where z has to be taken at p = pmaz- 

Because the monopolist observes the demand level 7, we can use equation (2.16) to 

replace 1 — F(z) by 7. We obtain the monopolist’s price as a function of the demand, the 

effective inverse supply function: 

ps(n) =¢—nlG'(n) + J], (2.24) 

We obtain pyar and Maz, the corresponding fraction of buyers, as the intersection be- 

tween supply (2.24) and demand (2.19): 

PMax = Ps(NMax) = Pa(NMaz)- (2.25) 

The monopolist’s supply price is the solution of this equation which maximizes his profit.



If f(x) is differentiable, the maximum satisfies: 

=e) (2.26) 

In the case of multiple extrema, the one which maximises IT has to be selected. 

For J > jg, the monopolist has to find p = pyar which realises the program: 

Paz : max (I_(Pyyox)s Ws (Pizax)) (2.27) 

Phas = arg maxll,.(p) = p1+(p) (2.28) 

Phiae = arg max II_(p) = p7n-(p) (2.29) 

where the subscript + (-) refers to the solution of (2.16) with the largest (smallest) fraction 

of buyers. There are two ways to maximize the profit for the monopolist: to sell to a small 

amount of customers at a high price or to sell to a large amount of customers but at a 

reduced price. The reason for that is because of the stability (equilibrium) of these two 

states in the evolution of the market. If the price is between these two states, it will tend 

to change quickly to one of these two equilibria. The stability of the equilibria opposed to 

the temporary character of the other possible solution is the reason why we can assume 

that there are only two solutions to the previous program. 

2.3 Learning By the Customers 

The fundamental question in the agent-based theory is: which model describe human 

behaviour best? In order to understand the process of learning by agent in many multi- 

agent platforms, and especially Moduleco which was used to run the simulations, we are 

going to investigate some of them and have a look at their differences. This process was 

necessary to verify that the method used in the software Moduleco for the agents to learn 

was appropriate to the assumptions made. Even if there are many papers relating to this 

subject, we are only considering one general model that can be split into several models 

by taking different values of the parameters. Actually, we can consider different learning 

rules in Moduleco, based on this particular algorithm, and the aim of this section was to 

have a better understanding of this process, and so avoiding to use a random learning 

rule which can be not applicable to our model. 

Like Camerer [3] and his Experience Weighted Attractions (EWA) scheme, we consider 

a general family of learning rules, which allows us to represent in a single expression many 

learning rules proposed in the literature and studied in the following pages ((5], [21], 

10



[22]). The EWA is a general model. It combines elements of two different approaches. 

One approach starts with the premise that agents keep track of the history of previous 

behaviour of the other agents and form some belief about what others will do in the 

future based on past observation. Then they tend to choose a strategy that maximizes 

their expected payoffs given the beliefs they formed. A different approach assumes that 

strategies are reinforced by their previous payoffs, and the propensity to choose a strategy 

depends in some way on its own stock of reinforcement. Agents who learn by reinforcement 

do not generally have belief about what other agents will do. 

Given the actual utility U}(t) of strategy w, in Moduleco, each agent uses the following 

adaptive rule to update the attractions: 

  

AP(t+7) = [1 — nQ)JAPO) + nOAMUPO), (2.30) 

Aj(t) = 6 + (1 — 6)J[w;(t), w], (2.31) 

me b(t) 
AT a) eavmreg can O) (2.32) 

where I(x, y) is the indicator function (I(z,«) =1, I(x,y) = 0 for y # x) 

and 7 is the elementary time step. 

The factor A;(t) allows to update differently the attractions of played and non-played 

strategies. These strategies will not have the same impact on the behaviour of the agent for 

the next choice he will have to make. The influence of delta in its formula is fundamental 

because it measures the relative weight given to foregone payoffs compared to actual 

payoffs, in updating attraction. 

u(t) is usually called learning rate, discount factor or depreciation rate of past experience 

in statistical learning theory. It weights the relative importance of recent payoffs with 

respect to the past estimations (the most recent information are more important than the 

others). The values of the learning parameters (0) > 0, « € {0,1},¢6>0and0<d<1 

in (2.30), (2.31) and (2.32) correspond to different assumptions about the rationality and 

cognitive capacities of the customers. We can parametrise the model by choosing different 

values of the parameters when we create our models: (0), 4, &, 6, 6. These parameters 

allow to decline different learning algorithms. 

The abcve equations may be simplified within the binary-choices framework of our 

model. First, since w € {0,1}, we may write A;(t) = 6 + (1 —4)w;(t) in (2.31). Moreover, 

since the utility of strategy w = 0 is strictly zero, the corresponding attraction converges 

to 0 asymptotically, independently of the past decisions. Any rational customer initializes 

A®(0) = 0, without the need of learning. We only consider in the following learning the 

attractions for buying, A}. In the case of binary choices, after the strategy w,(t) is played, 

al



the attraction for buying in next period is estimated as follow: 

Aj(t +7) = [L— nQJAi(t) + u([ + (1 — du (QU), (2.33) 

0) 
Bt) +¢ 

where U}(t) is-the actual utility of strategy w = 1 at period t. 

u(t-+7) = (1—r)   +K(1—¢) (2.34) 

2.3.1 Decision Rules 

Decisions are taken based on the learned attractions. We assume that each agent 

chooses a strategy w at time ¢ using a probability law that depends on his attraction for 

buying at time ¢, P(w(t)|A}(t)). Several decision rules have been used in the literature, 

but here we explicit them in the case of binary decisions. 

2.3.1.1 Myopic Best Response 

Myopic Best Response selects the strategy optimizing the expected utility: 

w(t+7) = O(Ai(t)) (2.35) 

where O is the heavyside function (equal to 1 if z > 0, 0 otherwise). The decision depends 

then only cn the sign of the attraction and not on its magnitude: the individual buys 

whatever the value of the attraction provided is positive. This response is optimal with 

respect to the attractions. 

In the special case where the attractions are equal to the utility earned at the preceding 

period this decision rule coincides with what is usually called Cournot Best Reply in the 

literature. 

2.3.1.2 Trembling Hand 

The adopted strategy is selected using the following probabilistic decision rule: 

Pg(w(t+7)) = 1) =1-€(t) (2.36) 

P3(w(t + 7)) = 0) = €(t) (2.37) 

where ¢ is a noise parameter (0 < € < 1). In our case of binary decisions, we have: 

1 

= 1+ expZA}(t) 
(2.38) 
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This rule reduces to the myopic best response if 3 — oo. 

2.3.2 Learning Rules 

We can generate different learning rules. Although we consider the special case of 

binary decisions, where the agents only need to estimate the attractions for buying, the 

discussion that follows is very general, easily transposable to situations with more strate- 

gies. 1 

y(t) sets the memory decay rate of past attractions. This decay may arise because of 

limited memory capacity or because the agent believes that older information may not be 

as relevant as the new one. It is parametrized by the values of « and @, which control the 

time dependence of the learning rate. 

2.3.2.1 Myopic Learning 

For ¢ = 0 and any « € {0, 1}, u(t) = 1 and (2.4) gives: 

Ai(t +7) = [6 + (1 — 6)w;(t)]U} (t), (2.39) 

This is myopic learning since the attraction at each time step t only relies on the out- 

come of the preceding iteration, without keeping any trace of the previous steps. 

The value of 5 allows to update the attraction of the played strategy in a different 

way from that of non-played ones. If 6 = 1, all the strategies are equally updated, a 

learning scherne known as fictitious play. If 6 = 0, we get reinforcement learning: the 

attraction for buying is only updated after buying, that is to say only if it is positive. Oth- 

erwise, it remains negative and its absolute value decays by a factor 1—ju(t) at each period. 

2.3.2.2 Time-averaged Learning 

If « = 0 and ¢ > 0, the learning rate decreases through time. Moreover, equation (2.5) 

gives directly: 
4(0)(1 = 4) 

H(0)(1 — $1) + (1 — 4) 

If  < 1, p(t) converges in the limit of t + oo to 1 — ¢, the same time independent 

w(t+7) = (2.40) 

learning rate as when « = 1. This convergence is faster the smaller the value of ¢, and 

for ¢ = 0, the value ys = 1 is reached after only one time step: in that particular case, 
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only the last utility determines the attraction, like in myopic learning. 

2.3.2.3 Time-decay Learning 

When ¢ > 1, the learning rate decreases asymptotically like ¢~*, so learning becomes less 

and less effective with time. A too fast decrease of j1(t) may stop prematurely the learning 

process, whereas excessively large values of y(t) may induce a chaotic behaviour. Small 

values of ¢ (but greater than 1) are preferable for successful learning, at the price of long 

learning times. 

2.3.2.4 Weighted Belief Learning 

When 0 < 6 < 1, we have weighted belief learning: the utility of the strategy actually 

played at time t has a greater influence on updating the corresponding attraction than 

the potential utility of non-played strategies have on their own attractions. As a conse- 

quence, non-buyers will systematically underestimate the absolute value of the attraction 

for buying. 
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2.4 Mean Field Approach 

The type of connectivity has a strong influence on the model’s evolution, that is the 

reason why to suppose the extreme case with full connectivity is making the model less 

  

    

  

  

realistic. 

Neighbourhood (a) No relation (b) Localised rela- | (c) Generalised re- 
tions lations 

Level of interac- || independent agents | Localized interac- | Global interactions 

tions tions 

Sensitivity to the |) Null Strong Null 

network topology 

Avalanches No Localized in the | not localized in the       network     network   
  

Table 2.1: A typology of interactions and demand dynamics. 

In the first case (a), there is no relation between agents, it corresponds to the case 

of each agent doesn’t have any neighbours. In this case, the aggregate demand doesn’t 

depend on any interaction structure, and there is no external effect (local or global). The 

agents are independent to one another. 

In the sccond case (c), all agents interact by means of global interactions (e.g. the 

rate of adoption in the whole population), or full connectivity. Let 7 = N,/N be the rate 

of adoption within the population. For N sufficiently large, this rate is close to the rate 

of adoption within the neighbourhood of each agents: 7 ~ N,/(N —1). 

This case corresponds to the Mean Field Approximation in statistical physics. 

The intermediate case (b) corresponds to situations where agents have specified rela- 

tions, but their neighbourhood can be regular or not. Not all agents are directly connected 

to one another. This local interdependence gives rise to localised avalanches in the network 

(cE3.20)! 

A many-body system with interactions is generally difficult to solve exactly because 

of the treatment of combinatorics generated by the interaction terms in the Hamiltonian 

when summing over all states. The aim of mean field theory is to solve these combinatorial 

problems. 

The main idea of this theory is to replace all interactions with an average or effective 

interaction, to replace randomly fluctuating quantities by their expectation, thus neglect- 

ing fluctuations. The effect of interaction is incorporated into the average field produced 

by all the other spins and small influence on an agent of the system will not be material. 

In field theory, the Hamiltonian may be expanded in terms of the magnitude of fluctu- 

ations around the mean of the field. The Mean Field Theory can so be viewed as the 
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simplest. model expansion of the Hamiltonian in fluctuations. Physically, it means that 

the system has no fluctuations, but it coincides with the idea that one is replacing all 

interactions with a mean field. 

The main idea of the Mean Field Approximation is, when considering a particular 

agent 7, to neglect the fluctuations of the agents interacting with i. The resulting system 

behaves as one composed of independent variables, and this independence allow us to 

factorize the probability density function. More specifically, for all j different from i, 

the J; are fixed to their mean value. However, these mean values are unknown and 

it is actually the goal of the approximation to compute them. Therefore, the method 

depends on a self-consistency condition which is that the mean computed based on the 

approximation must be equal to the mean used to define this approximation. An approach 

consists of performing a perturbation theory with the mean field model as the reference 

model of zeroth order model. In this approach, we assume that the fluctuations are small 

and so the interactions with individual nodes are neglected and replaced by a mean field. 

To illustrate this theory, we can explore a generalization of this approach to our prob- 

lem by writing a differential equation describing the time evolution of one J;, this J; will 

be for instance the profit obtained the last time the buyer dealt with the j** seller, or it 

may be some moving average value of past profits from seller j: 

a = -YJjt+ < 15 >, (2.41) 

where < 7 > is the average profit, related to 7 the profit obtained from one actual trans- 

action (the price at which the monopolist sells the good less the cost to produce or buy 

it at first). 7 is a scaling coefficient always smaller than 1 in order to take into account 

that the events far in the past have to be progressively forgotten. < m > is obtained as 

follow: 

exp(BJj) 
Yi, exp(BJx)’ 

where the fraction represents the probability that a buyer 7 visits a seller j and P(j) is 

<1; >= 1P(j) (2.42) 

the probability that the shop still has goods to sell when he comes. We suppress here the 

i index corresponding to the buyer. In other words, the above set of equations couples the 

evolution of all the J;. Equilibrium values are obtained by equating the derivatives to zero. 

Instead of using a real oligopolistic market as this is the case in the Marseille wholesale 

fishmarket, we are here considering a simpler case of two shops, a duopoly, and to further 

simplify computation, we suppose that P(j) = 1, which happens when buyers always find 
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what they require at the seller they visit. It means that the seller always have in stock 

what the buyer need which is of course not the case in reality and is influencing the price 

of the good as well as we will see in the Chapter 6. The equilibrium relations are in this 

particular case: 

I exp(BJi) 
< Wi >= eB) + exp(Bh)’ ae 

oi exp(BJ2) 
sae Une aig eA ey 

Subtracting these two equations, we see that the difference between the two fidelities, 

A= J, — Jo, obeys the following implicit equation: 

exp(BA) —1 
Soe 2 T exp(BA) +1’ 

(2.45) 

Actually, the right side of the equation is the hyperbolic tangent of GA/2. The above 

equation has either one or three solutions according to the slope of the hyperbolic tangent 

at the origin’ By developing the hyperbolic tangent in series for small values of GA/2, it 

is easily seen that for: 

p<6.=, (2.46) 
There is only one solution A = 0 and Jj = Jz = z- Since in this case the average J; 

are small and equal, the probabilities of visiting either shop simply fluctuate. This is 

due to an other parameter not taken in consideration in this thesis but that is noticeable 

in the empirical study of the Marseille FishMarket; the physical distance between the 

different shop. This distance may not be the same from one day to the other and some 

non-faithful buyers are only randomly making their choice at the first position; No order 

is observed. In the opposite situation, when ( is above ,, the zero solution is unstable 

and one obtains two symmetrical solutions where one fidelity is larger than the other one 

by a factor which is exponential in bs The transition between the two regimes is abrupt. 

A development in series of the hyperbolic tangent around 0 shows that the larger fidelity 

increases in @ as the square root of the distance to the transition: 

(2.47) 

  

Fidelities are then continuous across the transition, but they increase (or decrease) with 

an infinite slope at the transition. Expression (2.46) can be generalized to any number n 

of shops: 

p=, (2.48) 
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The above analysis shows that as long as the mean field approximation remains valid, 

the qualitative behavior of the dynamics, ordered or disordered, only depends on one 

parameter: the ratio between § and f. All other parameters simply change the scale of 

profits, prices, numbers of shops and customers. The time scale of learning depends on 

y: order, when achieved, is reached faster for larger values of . 

The three parameters 7, 3 and 7 are so controlling the transition. Sellers set prices 

and thus determine 7, the buyers’ profit. The buyers characteristics determine § and 7. 

We might assume that agents are not all identical and that their characteristic parameters 

vary. Prices may not vary widely since there is competition between sellers, and so if a 

seller wants to make profits he has to adapt his prices to be competitive and to avoid 

having to lower his prices later. On the other hand, memory (characterised by ) and 

discrimination rate (characterised by 8) might differ between buyers. If these variations 

are large enough, we might expect to observe two distinct classes of buyers: faithful 

buyers, who most of the time visit the same shop, would be those whose parameters are 

such that B> B,, while searchers with parameters such that 8 < 8, would wander from 

shop to shop without finding the best seller (in respect with the price, and if the seller 

has good with the quality they are looking for). Indeed precisely this sort of “division of 

labour” is observed on the Marseille fish market which was one of the empirical points for 

this thesis: some buyers are faithful, ie. are going to the same seller when they want to 

purchase a good, and others are trying several times in different: sellers to find the best 

value/product for them, but this research is made randomly because the parameter Bis 

not strong enough, even if we will see at the end of the thesis with the proper study of the 

Marseille fish market that some unfaithful buyers are sometimes buying the good where 

there are a lot of buyers already, but their favourite seller can change from one day to 

another. 

2.5 Maximum Entropy Principle 

In most: real life situations, the probability distributions of random variables x are 

unknown. In elementary situations, it is possible to assume a distribution, based on 

considerations of symmetry or other a priori knowledge (we may know an average value 

or some global constraints). In some cases, supplementary information can be obtained 

through measurement or observations. If we ask the following question: 

What is the probability distribution of the possible states x of a system, Piz) 

compatible with our measurements and/or our prior knowledge ? 

The mazimum entropy principle, first introduced by Shannon in 1948 and Jaynes {11] 

in 1957, give the following answer: 
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Among all the distributions that are compatible with the constraints (usually, empirical 

facts like conservation of energy in mechanical systems, experimental results, etc...), the 

probability P(x) that contains the maximal available information is the one that maxi- 

mizes the entropy. 

In other words, the less biased distribution that encodes certain given information is 

that which maximizes the information entropy, it does not include any information besides 

that carried by the available data or our prior knowledge. 

19



Chapter 3 

Theoretical analysis 

3.1 Ising Model and Disorder 

3.1.1 Ising Model 

The Ising model has been proposed in 1925 [10] to explain the physical properties 

of magnets. These are a consequence of interacting magnetic moments carried by the 

elementary particles (electrons and protons) that constitute the molecules of the solid. 

The magnetization of a piece of condensed matter is a macroscopic observable, obtained 

by adding the contributions of the molecular moments, called spins hereafter. If each spin 

adopted any arbitrary orientation, the sum would be vanishing small. This is indeed the 

case of most materials around us (glass for instance). 

In presence of a magnetic field, magnetic moments exhibit a “preferred” orientation 

(the one that minimises the moments’ magnetic energy). They become aligned parallel 

to the field, and a macroscopic magnetic moment is observable. One of the challenging 

questions at the beginning of last century was to explain why some materials, like Iron, 

present a permanent magnetization in the absence of external magnetic fields. The Ising 

model allows to understand how such a collective state may appear, due to very strong 

quantum mechanical interactions between moments. 

The model considers N spins s; (i = 1,..., N) that may be oriented either up (s; = 1) 

or down (s; = —1) vectorially. The binary spins of the Ising model allow for a scalar 

notation; sums of such vectors are simple algebraic sums. 

In the absence of spin interactions, the energy of an individual spin s; in an external 

magnetic field is: 

’ E,; = —hs;, (3.1) 

A spin parallel to A has energy —h, while if it is antiparallel, the energy is higher: +h. 

The total energy of a system of N non-interacting spins in an external magnetic field h 
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is the sum of the individual energies: 

N 

E=-)ohsi, (3.2) 
i=l 

In the state of minimal energy, called fundamental state, the spins are all parallel to h: 

the sign of s; is that of h. The total magnetization M is: 

N 

M=).s=N,-N., i (3.3) 
i=l 

where N, is the number of spins parallel to h, and N_ = N — N, is the number of 

spins antiparallel to h. Now, consider a system where the spins interact with each other. 

By interaction we mean that each spin produces an effective microscopic magnetic field 

called exchange field, on the others. The field produced by spin k on spin i is proportional 

to the spin’s own magnetic moment: Jj,8,. The constant of proportionality Ji,, called 

exchange constant in physics, represents the strength of the interaction. If Ji, > 0, it is 

ferromagnetic. It favors that spin i be oriented parallel to s,. If Ji. <0, the interaction 

is anti-ferromagnetic and favours antiparallel alignment. 

The local field acting on spin i is the sum of the fields produced by its neighbours and 

the external field h, 
N 

hy= SS Tins +h, (3.4) 
kel 

The spin’s energy E; = hs; depends on the orientation of the neighbours through the 

exchange field Ji.s,. The total energy of a system of interacting Ising spins is: 

1 N N 

B==5 Dy esse = Ay se, (3.5) 
i=l ik=l 

were the factor 3 is introduced to compensate for the double counting of each couple of 

spins (i,k) in the sum over i and k. Now the spins’ orientations in the state of minimal 

energy, which are parallel to their local fields, cannot be as easily determined as before, 

due to the interactions. 

In the case of non-interacting spins, Ji, = 0 and we recover previous equations: the 

energy is the sum of the energies of the independent spins. 
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3.1.2 Quenched/Annealed Disorder 

By analogy with physical processes, we talk about quenched disorder when some 

parameters defining a system’s behavior are random variables which do not evolve with 

time, i.e. they are quenched or frozen. As a typical statistical physics example, we may. 

cite spin glasses. 

It is opposite to annealed or moving disorder, where the random variables are allowed 

to evolve themselves (parameters take part in dynamics with the same type of state 

variables). The evolution of a system presenting an annealed disorder is related to that 

of the degrees of freedom defining the system. These systems are usually considered to 

be easier to deal with mathematically, since the average on the disorder and the thermal 

average may be treated on the same footing. 

The IWP of the agent consists of a component h; common to all the agents and into 

an idiosyncratic component 6; which represents the diversity of taste between the agents. 

The fixed idiosyncratic component 6; is supposed to be distributed between the agents 

according to a symmetrical law of probability of density f(@), a repartition function F(@) 

and zero mean. 

The agents are positioned randomly on a network with fixed structure, that we can de- 

scribe as a random field. As this field is fixed, the physicists qualify this situation of 

quenched disorder. We can oppose it to the other alternative model, where 6; are ran- 

dom. In this case, we are dealing with Markovian Random Fields and the corresponding 

disorder is described as annealed by the physicists. 

3.2 Avalanches and Hysteresis 

In the presence of externality, two different situations may exist, depending on the price: 

one with a small fraction of adopters and one with a large fraction. The jump in the 

number of buyers occurs at different price values according to whether the price increases 

or decreases, leading to hysteresis loops as presented below. 

3.2.1 Avalanches 

The term avalanche is associated with a chain reaction where the latter is directly 

induced by the behavioural modification of one or several other agents and not directly 

by the variation in cost. The cost influence is only indirect. For example, in the left part 

of the Table 3.1, an external cost variation (the same for all agents: C to CG’) induces 

a simultaneous (but independent of all social influence) change of two agents 7 and j 

(connected one to the other or not). Thus, the mechanism is directly related to the cost 
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and is independent to the social network. If, on the other hand, the cost variation induces 

the behavioural change of agent 7, and therefore, because of agent 7 changes his behaviour, 

then agent j changes also his behaviour by social effect without any new change in cost, 

by “domino effect”. In that case, the cumulative effect of a chain of such induced influences 

is called an “avalanche”. 

  

  

Direct; effect of price Indirect effect of price 
(social influence : avalanche) 

variation i cost variation m cost 
(Ci *.G) (Ci C= 

4 i 
7 \ Change of agenti : 

J i 

Change of Change of | Change of agent j a 
agent 1 agent j       
  

Table 3.1: Direct and indirect effect of prices upon individual choices. 

3.2.2 Hysteresis 

Another important qualitative result of the mean field approach is the existence of 

hysteresis effects: buyers might still have a strong preference for one shop that offered 

good deals in the past, even though the current deals they offer are less interesting than 

those now offered by other shops. The adoption by a single “direct adopter” may lead to a 

significant change in the whole population through a chain reaction of “indirect adopters”. 

The jump in the number of adopters occurs at different cost values according to whether 

the costs increases or decreases, leading to hysteresis loops as presented below. If the 

Idiosyncratic Willingness to Pay (IWP) is the same for all agents (H; = H, for all i), 

the model would be equivalent to the (quenched) Ising Model with an “uniform external 

field”: H—C. In such case, we would have a “first order transition” with all the population 

abruptly adopting as H > P. In the figure below, this initial (decreasing) threshold is: 

Prin = H, where the whole population abruptly adopts. After adoption, the increasing 

cost threshcld is: Pnaz = H + J, where the whole population abruptly chose w; = 0 (for 

all i). When agents are adopters, cost variations between Prin and Pmax have no effect 

on the agents choice. Within that zone [Pnin, Pmaz], there are two possible equilibria for 

a given cost. 

From a theoretical point of view, there is a singular price P* = H + J/2 (the cen- 

ter of the interval |Pmin, Pmaz|, Which corresponds to the unbiased situation, where the 
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Figure 3.1: Hysteresis with uniform Idiosyncratic Willingness to Pay (2,=8) 

willingness to pay is neutral on average, there are as many agents likely to buy or not 

to buy (7 = 1/2). Let suppose that we start within a similar network in such a neutral 

state. The agents makes their initial choice on the basis of some prior expectation about 

the number of adopters and further choice by updating this prior by use of the observed 

outcome (cf. 2.3.2). Assuming first that all the agents have the same expectation nf = n° 

for all i, each agent has a willingness to pay equal to: H + Jn® — Pe = J(j? — 0.5). 

n° > 1/2, the expected surplus is positive and all agents adopt. Then, the surplus will be 

J/2. Conversely, if n° < 1/2, the expected surplus is negative and no agent chooses to buy 

the product. The final result is similar if we have two classes of people with heterogeneous 

expectations. Those with nf* > 1/2 (in proportion a) adopt. If a > 1/2, the percentage 

of adopters is such as pessimistic agents also adopt, and so on until complete adoption 

(and inverse process for a < 1/2. This critical point plays a central role in the so called 

spontaneous symmetry breaking, even when agents are only locally connected. As in our 

simple example, the collective equilibrium state become identical to the individual state: 

either all agents adopt, or no agent adopts (cf. {6)). 

So a given variation in price may induce one or more adoption(s) in the neighbour- 

hood of an agent, and therefore, through social influence, the change in the consumer 
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willingness to pay may lead this agent to adopt indirectly. The most spectacular result in 

avalanches may be observed when all agents update their choices simultaneously (Figure 

3.2). 
The Figure 3.2 illustrates the fact that the variation in price may have an influence on 

the behavior of the agent but the social influence is stronger and that is the reason why 

we can observe a first order phase transition with respect to the price, a sudden adoption 

by most of the agent at a precise 

  

tep. These adoptions are not due to the change in price 

directly but more to the behaviour of the neighbours of the agent that choose to buy at 

this step. 
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3.3 Different Phases 

After introducing the different type of phase transitions, we are looking at a model 

which describes the properties of many different systems (physical as well as social). This 

type of study has already been carried out for various network architectures. In the 

presence of externality, and depending on the parameters, two different stable equilibria - 

or “phases” - may exist for a given cost: one with a small fraction of buyers (in some case 

with no adopter) and one with a large fraction (in some cases, everybody adopts). By an 

external variation of the cost, a transition may be observed between these phases. 

3.3.1 Phase Transition 

In thermodynamics, a phase transition is the transformation of a thermodynamic 

system from one phase to another. A great diversity of economic and social phenomena, 

strongly depending on the social interactions, show similar properties as thermodynamic 

system as for their dynamics and stationary states. 

The three following characteristic facts are observed : 

abrupt transitions: the passage from one state to another is sudden (it could be 

with respect to the price, to the time, to the temperature, etc...). 

e stability: once the new state installed, it appears very stable. 

coexistence of equilibrium: in spite of similar economic and social conditions, dif- 

ferent equilibria may be observed. 

Robustness and coexistence are the essential ingredients responsible for a phenomenon of 

hysteresis, as it has been seen in the previous section. 

In the modern classification scheme, phase transitions are divided into two broad 

categories: 

The first order phase transitions are those that involve a latent heat. During such a 

transition, a system absorbs or releases a fixed among of energy and during this process, 

the temperature of the system will stay constant as heat is added. 

The second class of phase transitions are the second order phase transitions also 

called continuous phase transitions. These have not latent heat. 

In these systems, there exists a special combination of parameters, known as critical 

point, at which the transition between two states becomes a second order transition. Near 

the critical point, the distinction between the two different phases (or states) is almost 

non-existent. 
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3.3.2 Multiple Solutions and Customers Phase Diagram 

We consider the simplest system where the individuals willing to pay large prices are fewer 

than those willing to pay low ones. This is a population where H;, the individuals’ IWP 

distribution is triangular around its mean value H, such that the fraction of individuals 

with a given H; decreases linearly with H;. 

With normalized parameters h = H/oy, x; = (Hi — H)/on, where oy is the 

variance of the IWP distribution, the random variables x; have zero mean and unitary 

variance. As it has already been used in the work from V. Semeshenko and J.P. Nadal 

[22], we can show here an example with a triangular probability density function given 

by: 

0 if <-—V2 

f= it 2 <a 22 (3.6) 
0 if2/2<-a 

This triangular distribution is used in this section because it presents the advantage of 

allowing an analytical determination of the system’s equilibrium properties, but this dis- 

tribution is more theoretical than practical. Some more recent studies ([23]) are using a 

logit IWP distribution that are more realistic but harder to understand and this type of 

graph would be only complicating the explanation about the multiple solutions. 

The fraction’ of buyers is given by the solutions of the equation 7 = fe f(x)dz. 

For each posted price the monopolist’s profit is II(n) = (p — ¢) where c is the unitary 

cost, i.e. the cost of one unit of the good. We can so, as usually described in the literature 

about economics ({1], [24]), visualize the properties of the system on a Phase Diagram, 

and so still make the parallel with physics. 

We can see on the Figure 3.3 the customers phase diagram. V. Semeshenko and J.P. 

Nadal [22] analysed that there are different equilibrium states for different values of the 

normalized parameters j = J/oy and p—h = (P—H)/oy. For j = 0, if the price p 

is larger than the maximal IWP in the population (p > h + 2/2), then nobody buys 

and n = 0. On the contrary, when it falls below the smallest TWP in thé population 

(9 < h — s/2), all the customers buy the product (7 = 1). For intermediate prices, 

n(j = 0) decreases with the price: 

ane ee for —Vi<p—h<2v2 (3.7) 

and saturates at 1 = 0 for p—h > 2V2; n=1 for p—h < -v2. 
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Figure 3.3: Customers Phase Diagram 

If j > jp = 3V2/2, there is a range of prices for which two different solutions co-exist. 

One corresponds to a large fraction of buyers, and the other one to a fraction of buyers 

bounded by a finite upper value represented by the dashed line. Notice that for p—h and 

j large enough, the two co-existing solutions are 7 = 0 and 7 = 1, due here again to the 

boundedness of the support of the [WP distribution. 

3.3.3. Seller’s Phase Diagram and The Seller’s Dilemma 

The monopolist want to find optimal solutions of the equation (2.27) in order to 

maximize his profit, ie. to find out if he would rather sell to a large proportion of 

customer at a lower price or the only a small percentage of clients but at a high price. 

The result for pafax depends only on the two parameters h —c and j. 

Following the work from V. Semeshenko and J.P. Nadal [22], we obtain that the 

possibility that two solutions coexist (as shown on the figure 3.4) put the seller into a 

dilemma : does he have to sell to more customers at a lower price, or to less buyers at a 

higher price? If the monopolist doesn’t know precisely the parameters of the market (the 

distribution of Hj, the values of H, J, ...), he knows however that he will expect a phase 

diagram very similar to this one. 

Practically, thanks to advertising for example, we may have an increase of H ("that’s 

what you need") or of J ("everybody has it, so do not hesitate to get it"). However, 

because the first order phase transition is discontinuous, the seller can not guess when he 

should modify his price for a very important value to increase his profit. The question 

28



H-C 

a 

a> 

oo 

  

Figure 3.4: Seller’s Phase Diagram 

of whether the customers will actually buy or not is a coordination problem, whose issue 

depends on the dynamics of the adoption process. 

The fraction of buyers, the optimal price and the corresponding monopolist’s profit are 

functions of h — ce. 
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Chapter 4 

More Complicated Models 

We examine in this chapter the case of more complicated models, for instance, the effect 

on the phase transition of introducing a small world structure in a regular lattice. 

4.1 Small worlds 

Following the paradigm of a “small-world” initiated by Milgram [15], Watts and Stro- 

gatz [26] proposed a formalisation in the field of disordered systems. Their original small- 

world starts from a regular network where n agents are on a circle (one-dimensional, 

periodic lattice) and each agent is linked with his 2k nearest neighbours. 

  

  

  

  

(a) Regular network | (b) Regular network | (c) Random network (d) Small-world 

connectivity k = 6 full connectivity random connectivity k = 4 and 3 links rewired             

Table 4.1: Regular, random and “small-world” networks. (modeled with Moduleco) 

In their rewiring algorithm, links can be broken and randomly rewired with a proba- 

bility p. In this way, the mean connectivity remains constant, but the dispersion of the 

existing connectivity increases. For p = 0 we have a regular network and for p = 1 a 

random network. Intermediate values between 0) and 1 correspond to the mixed case, 

where a lower p corresponds to a more local neighbour-dependent network. The version 

30



of the algorithm implemented in Moduleco took h nodes, broke i links for each of these 

nodes and randomly rewired the broken links with other nodes. 

Following Watt [26], two main structural indicators characterise a network through 

both the local and the global dimensions of its connectivity. These indicators use the 

language of graph theory: each node (agent) is called a “vertex” and each link an “edge”. 

The connectivity of a vertex is the number of edges attached to the vertex. 

In economics, the Small-World architecture has been applied by Jonard [12] to bilateral 

games, and markets models haye been developed by Wilhite [28], among others. 

For the spatial prisoner dilemma game, agents play a symmetric game with each of 

their neighbours on a lattice. In such a game, defection is the only Nash equilibrium of the 

one-shot game, and complex dynamics may arise, making the simulation very useful. In 

our game, at a given period of time, each agent plays the same strategy (S1: co-operation 

or $2: defection) and, at the end of the period, each agent observes the strategy of his 

neighbours and the average cumulated payoff. Jonard [12] has established for the best 

average payoff rule that the stability of cooperative coalitions depends on the degree 

of regularity in the structure of the network. In this example (Table 4.2), we have a 

co-operation in a regular network, one dimensional-periodic neighbour 4 structure (on 

a circle), but this cooperation is unsustainable : we make it sustainable by a rewiring 

disorder. We have a population of N = 36 agents (32 co-operators and 4 defectors), 

and the aim of this simulation is to improve the strength of a network against defection. 

The four temporary defectors are symmetrically introduced into the network. When the 

network is regular, defection is the winning strategy, and diffused quickly to the whole 

population. 

  

$1: co-operation (blue) ; $2 : defection (red) 
  

     equilibrium 

Within the regular network case, the number of defectors 

grew and became stable for 100% of the population 

        

Table 4.2: Symmetric introduction of defection in a regular network of co-operators. 

(modeled with Moduleco) 
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Without any rewiring, the system reaches an equilibrium with all the agents that do 

not want to buy any good. 

Moreover, in roughly one half of the cases, defectors are limited to four or less. We ran 

500 simulations and the first results (cf. Table 4.3) suggest that the percentage of stable 

co-operators becomes higher with sufficiently distant local neighbourhood. It means that: 

the more distant the rewire is in the network, the less probability we have to end up with 

defectors. 
  

defectors 2 3 4 6 | 8 | 17 | 22 | 36 

percentage |} 10.2 | 11.8 | 16.6 | 0.4 | 1.0 | 0.8 | 0.4 | 32 
  

                        

Table 4.3: Statistical results for 500 simulations. 

In some cases, changes in the structure of the networks by minor modifications on 

the neighbourhood of some agents allow co-operation to protect against defection. In the 

previous example, taking the same symmetric system at t = 0, the number of defectors 

increases at first and reaches 70% of the population, but the rewired link, in some case, 

may reverse this evolution in a second step. In such a case (Table 4.4), defection decreases 

towards stabilisation around 10%. A one link rewiring is sufficient to limit to only 1/3 

the percentage of cases with a totality or a majority of defectors. 

  

  

        equilibrium evolution of the population 
  

Table 4.4: Making the network more robust against defectors’ invasion by rewiring only 

one link. (modeled with Moduleco) 

But by only rewiring 2 agents, we can see on this figure on the left part that the 

equilibrium reached by the system is almost only composed of buyers and the evolution of 

the system (right part) with the dynamics of the system, i.e. the number of new defectors 

at each step (in green) and the total number of defectors at each step. 
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The only way to run simulations about small worlds in a realistic scenario (with em- 

pirical data) would be to have information about the location of the buyers or the sellers 

during the day or the date of the transactions. This information was not available in the 

data we gathered but it would be interesting to simulate this on a bigger market and see 

the impact of the geographical layout of the numerous agents. 

The aim of this first part of the thesis was to analyse the theory and equations im- 

plemented in Moduleco, because the first aim of this project was to implement a tool to 

simulate and compare the behaviour of simulated agents and the real evolution of a mar- 

ket, the Marseille wholesale fishmarket in this case. That is the reason why the statistical 

analysis hereafter will not really have a direct link with the previous study, even if the 

Moduleco software was used to run almost all the simulations. 
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Chapter 5 

A Multi-Agent Platform: MODULECO 

5.1 Presentation of MODULECO/ACE 

We used ACE (Agent-based Computational Economics) approach to investigate cor- 

responding market mechanisms and underline in what way the knowledge of generic prop- 

erties of complex adaptive system dynamics can enhance our perception of the market 

mechanism in the numerous cases where individual decisions are inter-related. 

Moduleco [13] is a french modular “multi-agent” platform designed to simulate markets 

and organisations, social phenomenon and population dynamics. Moduleco was originally 

created by Denis Phan, ENST-Bretagne, France, and Antoine Beugnard, and is now 

maintained by Gilles Daniel, University of Manchester, UK, and Denis Phan. Moduleco 

is under GNU General Public Licence, so downloadable on the official website!. 

5.1.1 Why MODULECO ? 

Moduleco is an object oriented modular framework, designed for the multi-agent sim- 

ulations and using medium to formalise agent interactions. 

The abstract sight of the world in Moduleco is adapted to a mathematical background 

and is a little bit different from the other multi-agent simulation platform (Ascape, Repast, 

Madkit). 

The dynemics of the social system are based on the interactions that agents established 

together or with an environment external to the world. The interactions between agents 

are explained through the really important notion of “medium” that allows to build easily 

relations between agents. 

The framework is hard to understand at the beginning because of its abstraction, but 

it guides a lot the models conceptor. It is implemented in Java, and runs on all platforms 

'http://www.cs.manchester.ac.uk/ai/public/moduleco 
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with a Java Virtual Machine. 

However, Moduleco provide not enough tools for the graphic interpretation of the 

results; the models conceptor has to code graphic outputs to handle it. 

To conclude, the “economic and social sciences” orientation and the code’s extension 

capacities make of Moduleco a perfect tool to realize a platform adapted to our needs. 

5.1.2 Reverse engineering of the platform 

The first step of the conception and development of a platform adapted to our study 

was the reverse engineering of the chosen platform, Moduleco. This step was crucial to 

understand its architecture and its way to work; it allows to explain the modifications 

and the improvements that we have to make in order to obtain the final platform. 

A documentation about the existing Moduleco platform was made before looking into 

the code, but there wasn’t a lot of papers about the architecture of the platform, this step 

was the longest because of the high complexity of the code. 

To summarize, in Moduleco, a multi-agent system is made of a world represented 

by the class World. This world is an agent who belongs to the group "ecoAgent" in 

Moduleco and is considered as the "environment". This world is populated with an group 

of independent agents of which characterics and behaviour are defined in the class Agent. 

These agents live in the group "ecoAgent" in which they are considered as "basicAgent". 

Their disposition and the links between agents and their initialisation are made with a 

function of the class World. The communication between agents is made using the class 

Medium. 
This class links two agents in an unique way giving the relation a particular role. 

An other type of agents can be defined: the "extra-agents". These agents are different 

from the "normal" agents and often appear as actors external from the system. This 

framework propose a set of classes allowing some abstraction and making easier the work 

of the models conceptor. 
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This UML Diagram summarize the logic of Moduleco’s framework : 
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Figure 5.1: Moduleco’s framework 

This diagram summarizes the kernel classes of the Moduleco Framework. The yellow 

classes are the basic structural classes of Moduleco (Agent, World and Medium), the grey 

classes are related to the spatial relationship between agents (ZoneSelector, WorldZone, 

VonNeuman, Random), green boxes are related to the temporal aspects of the simulation 

(TimeScheduler, LateCommit and EarlyCommit) and pink boxes are concrete implemen- 

tations of mediums and are related to the collaboration among agents, including spatial 

and temporal aspects. The red classes are the classes that the conceptor has to implement 

to create his model. By programing these classes, we can decide the particular behaviours 

for the world and the agents: predefined positions on the grid, neighbourhood, ... 

5.2. Work on Moduleco 

Meta-models are already built in Moduleco: they can be used as a guide in the develop- 

ment of new models built “from scratch” as solution to a problem or design need, or they 

can be more specified to correspond to the technology that the developer should use to 

be more specific to his problem. So Moduleco offers many models already developed that 

could be imitated, such as the Two Part Tariff and Consumption Externality model. 
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5.2.1 Modifications made on MODULECO 

The basic-version of our model was strictly neo-classical monopoly with two part tariff 

and consumption externality, following Littlechild (1975). Consumers have variable will- 

ingness to pay, according to an idiosyncratic parameter, distributed on [0,1] and with 

an externality effect from their neighbourhood. In this simulations, we can change the 

neighbourhood type. 

5.2.2 Simulations results 

Theta 0.800736 Theta 0.294999 

Theta min 0.04 Theta min 0.04 
Alpha (0.5 Alpha [0.5 
Epsilon |1.5 Epsilon {1.6 

q 1.651004 q -79.001457 

  

  

      

  

Figure 5.2: Agent Editor in Two Part Tariff Competition 

The agent editor is a pop-up opening by right clicking on the agent. White zones are 

editable, grey one aren’t. 

Recording the simulation results. 

One of the fundamental functionalities of Moduleco is to make it possible to the user 

to observe results of simulations in graphic form. The conceptor can define in the model of 

the Java classes allowing to view the values of the variables. The graphic representations 

are charged in the interface during launching the model. The conceptor of the model can 

build himself these graphs, but he also can use the available functionalities. In this last 

case, only the data to be put up will have to be specified, which make the work of the 

conceptor much easier. 

Furthermore, Moduleco allows us to record the outputs of the simulations, with the 

class “Recorder” which aims at recording the variables of the world and the agents specified 

by the final user thanks to the Graphic User Interface. These variables are then recorded in 
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a cvs file (Comma Separated Value), interpretable by Excel. It is possible to do arithmetic 

operations on these variables, such as averages or sums. 

5.2.3. Neighbourhood in Moduleco 

In Moduleco, all relationships between agents are supported by specific Mediums. 

Such classes define how agents interact and how they are connected together. For example, 

NeighbourMedium allows Moduleco to define the set of neighbours an agent can have. 

Once his neighbourhood defined, an agent can invoke the services of his neighbours, 

such as getting specific information, for instance. Neighbours have specific subclasses for 

each specific topology such as WorldZone (all agents in the grid), NeighbourVonNeuman 

(North, South, East and West agents of the current agent on a grid) and Neighbour8 

(the 8 closest agents on a circle), As a result, the communication topology is defined 

by the Neighbourhood. The grid is just an easy way to represent agents on a screen 

(that is offered by default, but that can be changed). For heuristic purposes, a circle 

representation is available, useful for the one-dimensional, periodic lattice. 

    

  

  

                      

World VonNeuman Moore Random 

  

  

A random neighbourhood is also available like with, for instance, a BoundedRandom- 

Zone topology. Finally, it is possible to change a regular network by rewiring some links, 

in the way of the “Small-Worlds”. 

  

  

  

  
Figure 5.3: Neighbourhood Editor in Moduleco 

We can edit an agent’s neighbourhood by left, clicking on the agent. 
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5.2.4 Avalanches using Moduleco 

Results of numerical simulations on Moduleco permit us to illustrate the difference 

between localised avalanches and non-localised avalanches. In a system composed of 

36 agents, the evolution of the number of customers is studied for different forms of 

neighbourhood. In the case where agents are isolated one from the others (no neighbours), 

the dynamic of the system is limited to 36 avalanches made up of only one agent. The 

social effect is null and the term “avalanche” does not seem to be really relevant for this 

case, it could be simply characterized as a spin flip. If agents are connected to two 

other agents (“neighbour 2”), the network is a circle, and, in numerical simulations, 13 

avalanches were observed on average. For a “neighbour 4”, the numerical simulations 

showed 9 avalanches on average. In these two cases, the localised effects of the avalanches 

are very clear because in each one, agents who modify their behaviour are in direct 

relation/connexion with the agent that precedes them. 

In the other cases, that is, in the situation where all agents are connected one to 

the other (“world” neighbourhood), the agent composition of the 7 avalanches on aver- 

age is dispersed on the network, and the local interdependence is replaced by a global 

interdependence. 

The size of the largest avalanche is more significant in the last case where all the agents 

are connected one to the other. 
  
Neighbours 0 2 | 4 | world 

Avalanches || 36 spin flips | 13 | 9 is 
  

                

Table 5.1: Statistical results for 36 agents over 100 simulations. 

Actually, the number of avalanches decreases with the size of the neighbourhood, while 

the size of the largest cascade increases. This result can seem obvious at first sight but it 

is not because it will totally depend on the configuration of the system and will change if 

we rewire some link in the network, for example. 

This proposition is still true if we are changing the number of agents in the simulations: 

  

Neighbours 0 2 | 4 | world 

Avalanches || 45 spin flips | 15 | 9 7 

Avalanches || 60 spin flips | 23 | 10 7 

Avalanches || 80 spin flips | 24 | 12 8 

Avalanches |] 100 spin flips | 28 | 13 8 

  

  

  

                  
Table 5.2: Statistical results for 45, 60, 80, and 100 agents over 100 simulations. 
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When we have an agent with an average willingness to pay, if, in his initial neighbour- 

hood, he is surrounded by agents with a small willingness to pay, he is likely to purchase 

the good late (with a relatively small price), Increasing the number of neighbours de- 

creases the risk of appearance of this kind of “frozen zone”, the agent buys lately because 

he is not exposed enough to the social effect produced by his neighbours. On the contrary, 

if he is surrounded by agents who have a strong willingness to pay, he will buy the product 

rapidly. 

The distribution of individual characteristics (willingness to pay) and the structural 

properties of the network of relations will influence the relative importance of the negative 

effect (frozen zone) and the positive effect. 

In the simplest version of the simplest model, N agents play the symmetric game (prisoner 

dilemma) with each of their two neighbours on a circle (one dimensional periodic lattice). 

It exhibits a phase transition between two states : complete defection (nobody adopt the 

product) and almost complete co-operation (with a frozen zone). 

Figure 5.4: Example of a “frozen zone” of 5 agents for a one dimensional periodic lattice. 
(modeled with Moduleco) 

5.2.5 Description of phase transition using Moduleco 

The direct application of the theory studied previously in this thesis is to create a model 

to simulate the behaviour of a fixed number of agents (in this example we are using 1296 

agents) and to observe the apparition of first order phase transition. 

The development of this model was made by programming in Java and setting the 

different behaviour, but the graphic interface is hereafter very user-friendly and the other 

parameters can be entered manually when the application is opening. 
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This phase transition was illustrated shortly in the Chapter 3 and we are here explain- 

ing in detail the process of this transition. 
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Figure 5.5: Phase transition: initial state. (modeled with Moduleco) 

We randomly (JavaRandom) dispatch buyers in the population of the agents (figure 
5.5). The price is initially 1.2594 and has to remain between 0.9 and 1.26, but it is 

evolving automatically depending on the willingness to pay of the agents. The evolution 

of the price is the simulation of the behaviour of the only seller of a monopolistic market. 
Rapidly, the number of buyers reach an equilibrium with approximately 10% of the agents 

deciding to buy the good. 

The number of buyers is then increasing slowly and the price of the good is decreasing 
as well (see figure 5.6). We can observe below the graph of the penetration rate the 

  

cumulated logit distribution for idiosyncratic h;, which is the willingness to pay without 
social influence. On the side of the graph of the penetration rate, there is the bar chart 

of the cumulated distribution for the total willingness to pay including social influence. 

These two graphs are very useful to make sure that the social influence is the major factor 

that will cause the phase transition. 

But after 450 steps of the simulation, a large number of agents decide to buy almost 

at the same time. We are observing a first order phase transition. This transition is 

  

not directly due to the change in the price but to the social influence because the price 
changed constantly since the beginning of the simulation. This is so confirming the theory 
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Figure 5.6: Phase transition: first equilibrium. (modeled with Moduleco) 

analysed in the first part of this thesis. The green line on the graph corresponds to the 

the derivative of the penetration rate, or adoption rate, we can therefore observe a peak 

at the level of the phase transition. 

The last figure represents the second equilibrium reached after this phase transition. 

This corresponds to a large amount of buyers (almost 90%) adopting the good at a lower 

price. This equilibrium is stable except if the price of the good starts to increase and 

then we would observe an hysteresis to come back to the initial state: a small number of 

buyers with a good at a high price.
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Figure 5.7: First Order Phase Transition. (modeled with Moduleco) 
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Figure 5.8: Phase transition: second equilibrium. (modeled with Moduleco) 
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Chapter 6 

Empirical Evidence 

6.1 Analysis of data from the Marseille fishmarket 

; In order to see whether there was any empirical evidence of ordered or disordered 

behaviour of buyers in a market, we started from a data base of the 237162 transactions 

that took place on the wholesale fish market in Marseille (M.I.N Saumaty). The particular 

interest of fish markets for economists is that they exhibit two features which make them 

a natural subject of analysis for economic analysis. Firstly, fish is a perishable good 

and the fact that, as a result, stocks cannot be carried over makes the formal analysis 

of the market simpler. Secondly the organization of such markets varies from location 

to location with little obvious reason (Marseille, France: pairwise trading; Sete, France: 

Dutch auction, i.e. descending price). On this market over 700 buyers meet over 40 

sellers, to trade different types of fish. The market is organised as in our model, that is, 

no prices are posted, sellers start with a stock of fish which has to be disposed of rapidly 

because of its perishable nature. Buyers are either retailers or restaurant owners. Deals 

are made on a bilateral basis and the market closes at a fixed time. Of course the model 

is a caricatute of the real situation since the alternative for a buyer to purchasing his 

optimal good is, in fact, to purchase , in his view, some inferior alternative. 

The data base contains the following. information : 

700 buyers 

40 sellers 

And, for each individual transaction : 

1. Name of buyer 

2. Name of seller 

3. Type of fish 
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4. Weight of fish bought 

5. Price per kilo and total 

6. Order in seller’s transactions 

This transactions took place from 02/01/1988 to 29/06/1991 inclusive. 

Total numer of transactions : 237162. 

The sellers start. with a stock of fish every day, and they have to sell it rapidly because 

of its perishable nature. Buyers are retailers or restaurant owners. The model is an 

extreme simplification of the real situation : there are different: kinds of fish on the market, 

each species of fish is heterogeneous, buyers don’t demand only one unit of fish and the 

alternative for a buyer to purchasing his optimal good is, in fact, to purchase some, in his 

view, inferior alternative. 

In the following table, we can see an example with the number of transactions and the 

total weight for some transaction classes (or categories) where the column transac. relates 

the number of transactions in the period and kg. is the total weight of fish exchanged. 

  

  

  

  

  

‘Transaction classes (TC) Buyers Sellers 
oD Name ‘Transac.| kg | 1D [transac.| kg | 1 |transac.| kg 
12 {Small sole 3631 | 2044999 | 160 3419 | 26755.51| 62 | 1648 | 1282.25 

| 13 [Whiting 3084 | 23271.69| 78 | 3281 | 25350.2 | 143| 1781 | 12248.19 
| 45 [Small hake 3057 | 23575.2 | 1 | 2670 | 19177.11| 44 | 1652 | 10764.82 

10 [Big sole 2563 | 16420.38| 80 | 2584 | 19030.16| 148| 1651 | 1615.91 
78 |Mixed second choice 2332 | 11377.67| 279| 2027 | 14143.79| 134] 1623 | 10780.86 
54 [Big alive mantis shrimp 2258 | 14236.97| 129| 1795 | 132946 | 75 | 1515 | 1589.53 
14 [Medium hake 2248 | 17302.97| 186| 1539 | 11937.3 | 58] 1411 | 9504.34 
11 |Medium sole 2065 | 15347.67| 86 | 1190 | 8037.71 | 127] 1404 | 8939.14 

| 79 [Big sea-hen 1849 | 12749.67|278| 1179 | 9857.41 | 38 | 1361 | 10719.88 
| 97 |Cleaned mullet 1785 | 149585 | 75 | 957 | 3599.64 | 78 | 1356 | 10456.23 
| 55 {Small alive mantis shrimp 1647 | 9742.85 |177| 990 | 7129.71 | 59 | 1343 | 8658.34 
| 56 [Big stowed mantis shrimp 1539 | 19168.62| 85 | 9860 | 8416.43 118) 1318 | 9043.4 
| 100 |Big angler fish 1375 | 7377.19 |269| 840 | 3762.47 | 43 | 1147 | 8774.42 

| 70 |Big scold fish 1262 | 6569.03 | 22 | 726 | 5878.52 | 100| 1139 | 7199.81 
2. [Big cuttlefish 1200 | 9434.73 | 206| 708 | 3788.93 | 54 | 1094 | 6482.03 
58 [Big pink shrimp 1190 | 4694.2 | 91| 670 | 4447.75 | 138] 1090 | 6741.73 
17 [Medium mullet 1168 | 11303.51|126| 664 | 5008.23 | 83 | 1073 | 7559.3 
16 [Big Mullet 1121 | 13340.5 | 281) 646 | 3638.49 | 64 | 1037 | 7542.84 
42 |Small polyp 1114 | 11401.07| 237) 625 | 4208.26 |111| 1030 | 7010.41 
57 _|Small stowed mantis shrimp | 870 | 6141.14 | 182| 616 | 5263.99 | 95 | 1023 | 7096.78                       

Figure 6.1: Example of the database. 

Using Microsoft Excel, we discover a lot of organisation in terms of prices and buyers 

preferences for sellers. In particular, we immediately observes that most frequent buyers, 

who visit the market more than once per week, visit only one seller, while less frequent: 

buyers would visit several sellers, which is consistent with our model. Actually a frequent 

buyer tends to be more loyal to one shop than another, the frequency has to be considered 

as the organized regime. The transactions data will be summarized in this section in terms 

that only address the organisation issue. 
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Let examine the buyers and sellers size distributions. We define the size as the weight 

of the fish bought or sold by the agents. As shown on the figure below, there is no 

dominant size among the sellers while the buyers are clustered on the small size. The 

distribution of buyers presents a notable peak while that of sellers is rather flat. On the 

other hand it is obvious that there are a few very large buyers. 

  

    
buyers’ distribution sellers’ distribution 

0.00035 000120 ——— 

0.00030 6.000100 

_ | 0.000080 
3 0.00020 -- | 2 
5 | 0.000060 -, 
2 oooois = | 8 

= o.0010 -- i = o.o00040 
.00005 9.000020 

6.00000 ini enced 0.000000 -- - 
o § 10 15 2 3 wm 3% o os 1 15 2 28 3 

quantity kg) x10" quantity (ka) x10%4       

Table 6.1: Buyers and Sellers size distributions. 

6.1.1 Loyalty in Marseille Fishmarket 

At first, to compare the theory with the empirical data, we have to check whether indi- 

vidual buyers displayed ordered or disordered behaviour during the time of the recorded 

transactions. Since the classical approach to agent behaviour predicts searching for the 

best price, and since searching behaviour implies visiting different shops, any manifes- 

tation of order would tend to support our theoretical prediction. If we find evidence of 

ordered behaviour for certain buyers, a second step is then to relate the difference in the 

observed behaviours of these traders to some difference between their characteristics and 

those of other buyers. 

Using the data and running them in excel, we obtain this 

  
market shares monthly purchase 

of share bought 

largest sellers from one seller 
1% 7 2n¢ | 3rt | > 95% | > 80% 

cod 43% | 14% | 12% || 48% 

trout 18% | 7% | 6% || 28% 56% 
sardine || 20% | 15% | 15% |] 22% 52% 

  

  
  

  

                      

Table 6.2: Loyalty in Cod, Trout and Sardine Market 
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We consider statistics for cod, trout and sardine transactions in 1989, cf. Table 6.1. 

We are interested in loyalty issues, so we have concentrated on the buyers who were 

present in the market for at least 9 months to allow order behaviour. 

The first three columns of the table represent the percentage over the all market of cod, 

trout and sardine sold by the three more efficient sellers of the Marseille fish market 

whereas the last two columns represent the percentage of sellers who buy more than 95% 

and more than 80% respectively of their monthly purchases from one seller only. 

As can be seen in the first three columns of the table, the market for cod is much more 

concentrated than the market for trout or sardine. In the cod market almost half the 

buyers (86 of 178) buy more than 95% of their monthly purchases from one seller only, as 

we can read in the fourth column of table. In the trout and sardine market, buyers are 

loyal too, but to a lesser degree : more than one half of them buy more than 80% from 

one seller. We observe that there are large fractions of loyal buyers in all three markets. 

An other approach of this thesis was the connection between the behavior of the buyers 

and the parameters ( (discrimination rate) and the cumulated profit 7/y. 9 surely vary 

from buyer to buyer, but we do not have any direct way given the data to test it a priory. 

We can however estimate the ratio 7/7 by looking at the monthly purchases of the buyers. 

  

Figure 6.2: Each dot represents a buyer in Marseille fish market and its loyalty to his 
favorite seller (relative frequency of visits) as a function of his monthly purchase in cod. 

The horizontal axis represents the weight in kg of cod bought in a month and the vertical 

axis the frequency of visits. 

Low purchases correspond to infrequent buyers whereas large purchase are those of 

buyers who visit nearly everyday the market. 

47



6.1.2 Price dynamics 

To analyse the price dynamics during the day we show two types of graph. We first rank 

the daily transactions by the time of day in which they occurred and then we perform 

averages for the transactions by the time of day in which they occurred and then we 

perform averages for the transaction with the same rank. As shown in the figure 6.3, the 

average price goes down as the rank of the transactions increases. A strange regularity 

appears: for a large number of transactions the average price starts increasing for the last 

transactions. 

This apparent paradox can be understood linking the price stopping rule followed by 

the buyers to the relationship between last transactions variation in price and the quantity 

of fish of the day. 

For many buyers, arriving at the transaction T, it may be optimal to buy even if the price 

is high when they have not reached the minimum quantity in order to satisfy customers 

demand. In days in which there is a low quantity of fish, it may be optimal to buy at 

higher than average prices starting from a number of transaction before the last one since 

with a limited supply it is likely that waiting for the last one will result in a difficulty to 

buy the needed fish. 
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Figure 6.3: Average price for each rank of transaction. 

We can link this observation to the theoretical work we reviewed in the first part of this 

thesis, and particularly the section about the mean field approach where we introduced 

an equation to obtain the average profit. We remind here this equation: 
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exp(BJ;) 
Y, exp(BJi)’ 

This formula is the multiplication of the profit obtained from one actual transaction, 

<1; >=7P(j) (6.1) 

the probability that the shop still has goods to sell when the buyer is coming and the 

probability that a buyer 7 visits a seller 7. This equation may explain the fact of the high 

price at the beginning and at the end of the period of transactions: at the beginning of 

the period, all the sellers have the good needed (if we assume that there is only one type 

of good, otherwise it will depend on the type of fish), so the probability will be really 

close to 1. The only fact that incites the price not to go too up is the fact that there 

is a competition and so he has the choice between several sellers. The price afterwards 

reduces slowly because the sellers have a perishable good and so want to avoid to still 

have stock at the end f the period. On the other side, at the end of the period, the last 

term will be more influent because the buyer will not really have a lot of choices to find 

its special need and so the seller who still have good will be able to increase its price to 

sell the fish because he knows he can’t really lose a lot of money as it could have been the 

case at the middle of the period. 

6.1.3 Buyers and Sellers Price performance 

The first question here is: are price performances related to the amount of fish transacted? 

The two figures below (6.4 and 6.5) will provide an answer. Basically it seems that the 

amount of fish bought or sold have no influence on price performances. This conclusion is 

robust for buyers while for sellers we can observe that large ones never sold at an average 

price lower than 7 euros, while some of the smaller sold at lower average price. 
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Figure 6.4: Buyers price performances. 
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Figure 6.5: Sellers price performances. 

So to find out if there are some buyers that pay higher (lower) prices than others we 

do a more sophisticated analysis. For each individual (buyer or seller), we calculate the 

monthly average price and rank the individual by its price, in increasing order. For each 

month, we associate the number one to the individual with the lowest price, two to the 

second, and so on... We are only doing this analysis over 9 months, so an individual that 

was always present on the market has a vector of 9 numbers attached denoting the ranks. 

If Mister X has the vector [12,5,...], this means that there were eleven other people with an 

average price lower than his average price on January, four people having a lower average 

price on February, ... To evaluate the performance of the subject we establish a threshold 

(for example 10) and count the number of times the rank of the individual was less or 

equal to the threshold. In the following table we denote with s the number of successes in 

this procedure, p the number of months he was present on the market. With r we identify 

the rank of the individual if we consider the average price on all his transactions over the 

whole period and all transactions, the price column is the average price and quantity is 

the total quantity. So from the following table we can infer that buyer 271 was present for 

all the 9 months; over the 9 months, his monthly average price was among the 10 lowest 

average prices. He bought 2991 Kg. of fish during the whole period at an average price 

slightly higher than 2 euros and this was the third lowest average price. But this result 

was not only on the overall market but true specifically for sole and whiting as well.



  

  

  

        

All Classes Sole ‘Whiting 

[idTsTp[r[ price | quantity | id [s[p| id [s/p 
[164] 9/9] 7 | 3.077800 430 271/89) 169|/6|7 

(2 9/9} 3 | 2.178703 | 2991.52 | 164/6|8|271| 4/6 

170|8|9| 4 | 2.769652 | 1231.99 | 165| 4) 7 | 187) 3/6 

| 176 | 7|9| 17 | 3.725731 | 2054.42 | 105|3|9| 155|3|6 

| 258 7|9| 11 | 3.350421 | 581.84 | 221|3)7|237/3/6 

| 153] 7|8| 10 | 3.309000 | 140.92 | 241/3)5| 281) 2|7 

177 | 6| 9 | 12 | 3.522101 | 7129.71 | 177|3| 9] 153) 2|5 

259 | 6| 9 | 26 | 4.163261 | 317.77 | 101|3|7)| 138|2|7 

169 | 6 | 9 | 16 | 3.678469 | 1449.74 | 178/3|/6) 1 |2|7 

1 |5}8| 13 | 3.579412 | 1917.11 | 278 | 2| 5 | 130| 2|7                 
  

Figure 6.6: Buyers with good performance. 

Even if it could seem paradoxical, most of the buyers with the best performance are 

not always those that remain loyal to one seller but those who choose to follow the “mass 

effect”. These agents seem more to respond to the influence of others around them than to 

their past experience as it could be observed by increasing the weight of J in simulations 

in Moduleco. They prefer to choose a seller that has already a lot of customers than to 

go to another one, even if he is cheaper. This could be explain by the fact that sometimes 

the quality of a fish could be indicated by the number of customers that are buying it in 

a particular shop. This behaviour seems to be adopted by several agents in the Marseille 

Fishmarket which could make think that these kind of agents are acting as a group and 

so be a sort of application of the mean-field theory. In the following table, we are showing 

the buyers with poor performance, which means that they are buying at very high prices. 

They all recorded a rank higher than 100. 

  

  

  

      

All Classes Sole Whiti 
id [sp] | price | quantity | id |s[p| id [s|p 
75 | 9|9|148/22.650290/ 3599.64 | 269|/6|7|201|7|9 
84 | 9| 9/130) 10.968370} 1125.12 | 91 |6|6| 84 |6/9 
270 | 9| 9/144) 18.587760| 1261.83 | 90 | 5| 6| 267/6|7 
106 | 9| 9 |145|18.716570) 427.93 | 263|5/6| 90 |6/8 
188 | 8| 9/141] 17.103560) 2235.15 | 199| 4/7] 279|5/9 
195 | 8| 9/137] 13.973550) 1818.57 | 273| 4) 6| 186|5/9 
82 | 7) 9|139]16.181110] 1634.21 | 162) 4/7) 91 |5|7 
148 | 7| 9 |132| 12.090210} 947.61 | 117) 4) 7) 121|5|8 

156 | 7 | 9|140| 16.467580| 788.25 | 217|4/7| 87 |5|8 
281 | 7| 8 |138| 14.803500| 3638.49 | 267 | 4| 7 | 272|4|6     
                  
Figure 6.7: Buyers with poor performance. 

In the 2 next figures, we are focusing on sellers. a good performing seller wants to sell 

at high prices and so will have a high rank: 

At the opposite, we have sellers with poor performance:



  

All Classes Sole Whiting 
  

  

id [5|p]r | price | quantity | 1d [s|p| id |s|p 
138 | 6|9 | 66 | 6.802716 | 6741.73 | 148|3/8| 30 |6|7 
83 |4|9| 48 | 7.745368 | 7559.3 | 81 |3/5/123|6|6 
148 | 4| 9 | 60 | 8.315651 | 11615.91 | 139/36 | 66 |5|9 
121 | 4|8 | 58 | 8.230408 | 2130.33 | 83 |3|8| 67 |5|9 
30 |4}7| 61 | 8.349025 | 7239.03 | 134|/3|7|145|4|7 

| 126 | 49 | 55 | 8.056547 | 3779.51 | 1003/5] 22 | 4|7 
| 146 | 3| 7 | 65 | 8.499142 | 5170.71 | 38 |2/7| 138] 4) 7 

45 |3|7| 51 | 7.910356 | 3315.49 | 122|1|7|118|4|8 
134 | 3 | 9 | 69 | 9.051084 | 10780.86 | 113|1|7| 37 |4|9 
66 | 3/9/63 | 8.304254 | 3173.71 | 129|1|7| 105|4|7 
  

Figure 6.8: Sellers with good performance. 

  

  

  

                        
All Classes Sole Whiting 

id [s[P| tr | price | quantity | id [s[p| id [s|p 
62 [6/7] 2 | 4.802500 | 2068.47 | 95 | 8| 8] 52 [6/6 

103|6|7| 3 | 4.880414 | 3952.92 | 143|8|9| 69 |6/6 

145|6|/9| 8 | 5.567217 | 5204.89 | 44 | 7/8) 44 |5|7 

110|6)7| 5 | 5.066325 | 4492.81 | 78 | 6| 8) 136)5|5 

67 |5|9| 14| 6.361449 | 6332.92 | 136) 6) 8] 58 |5|5 

139 | 5| 8| 25| 6.996613 | 5232.68 | 113) 6) 7| 143/5|7 

56 |4|5)| 7 | 5.562541 872 48 |5/5| 83 /4/5 

113| 4|9| 10| 5.832403 | 1489.01 | 58 | 5/8| 129/4/8 

130 | 3/9] 11| 5.837390 | 4837.3 | 134/37) 148/3/5 

48 |3|5| 1 | 4.142840} 681.45 | 122|3|7| 96 [3/9     
Figure 6.9: Sellers with poor performance. 

6.1.4 Other models 

The hypothesis of two main behaviors for the buyers seems to be confirmed by the loyalty 

section but it does not “prove” that this is the only possible model. As it is often the case 

with complex systems, several explanations at different level of generality can be used 

to describe observed phenomena. Furthermore, different models might not be mutually 

exclusive. 

One other explanation can be that contractual arrangements are developing between 

buyers and sellers. In general in fish markets, the sellers do not offer fish for specific 

customers but “(the buyer) comes here because he knows that he will find the kind of fish 

he requires”. Similarly, the buyers do not order fish, but they make the statement such as 

“T go there because he will have the fish that I want”. This is consistent with the mutual 

reinforcement mechanism suggested by the theory (increasing of the IWP with the time in 

choosing one seller more than another). If a particular buyer does not appear, this is not 

regarded as a breach of contract and if this happens over a period and some quantity of 

fish remains unsold, the seller will simply readjust his supply of fish accordingly to avoid 

having a surplus at the end of the day. 

We can find another explanation, based on the idea of “niches”: a buyer would prefer 

a given seller because he provides him a product closer to his specific needs. Let us first 
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note that the two hypothesis are not mutually exclusive: even if niches were an important 

factor, one would still have to explain why sellers choose a niche strategy rather than 

selling a large choice of fish. Loyalty of buyers might be a precondition for the profitability 

of “niches”. Anyway, direct examination and surveys show that even though certain sellers 

specialise in serving supermarkets or institution cafeterias, almost all niches are occupied 

by several sellers. This is also consistent with the fact that many buyers are retailers who 

have to serve inany different clients on their local markets. Another check for the existence 

of niches is clustering analysis according to average prices and quantities sold by sellers. 

Sellers are considered as members of the same cluster, when their distribution of prices 

and quantities significantly overlap. We did find two clusters of cod sellers, low cost bulk 

sellers (5 sellers) and expensive low quantity sellers (30 sellers). Since loyalty and search 

behaviour are observed in these two multi-member niches, the niche phenomenon cannot 

account by itself for the existence of loyalty; but according to our theory, it facilitates 

loyalty by decreasing the number of sellers in competition, and thus lowering the critical 

transition parameter. 

The model we used, including its variants, considers buyers as active agents and sellers 

as rather passive. Alternative and/or complementary explanations of the observed organ- 

isation could be based on a more active role of sellers. A possible test of the necessity 

of extra hypothesis implying that loyalty is due to sellers’ behaviour is to check whether 

different sellers have different fractions of loyal buyers among their customers, and if so, 

why. 

By measuring the fractions of loyal buyers of each seller, it seems that they are strongly 

and positively correlated with the average quantity of fish per transaction sold by the seller 

(at least for all sellers making more than one transaction per day on average). The buyers 

learning and search behaviour as described in the model seems to be sufficient to explain 

the observed organisation and evolution, further assumptions about seller behaviour could 

be neglected for the model. 

In the case of the wholesale fish market in Marseille, empirical data shows two kinds 

of buyers’ behaviour : some buyers randomly choose the seller they will visit, and others 

have strong preferences, almost always visiting the same seller. By modelling it with a 

logit choice function, we can assume that each buyer has his own logit parameter B. As 

we have already seen in previous sections, phase transitions may occur as a function of 6 : 

buyers with 3 above the critical value 3, will most of the time select the same seller, and 

buyers with 3 below the critical value will continue to explore the most sellers as possible 

to find the right price, and this will occur even if all the profits are identical. 

The logit choice function can be viewed as resulting from the maximization of a cost 
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function which expresses a compromise between exploration (keeping information about 

the market) and exploitation (making the largest surplus at the next transaction). This 

can be understood either as the result of the search for an optimal mixed strategy by the 

agent. 
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Chapter 7 

Conclusion 

In this thesis, we have tried as far as possible to clarify the links with statistical me- 

chanical models, with the aim of finding similarities between the model and the empirical 

evidence’ from the wholesale fish market of Marseille. We focused on a restricted class of 

models, because the literature of models of social influence in economics is ever growing 

and it is not possible to explore them all. 

We have first examined a simple model of a market in order to see how the customers 

behave when the are influenced by social pressure to buy, or not, a single good in a 

monopolistic market. This kind of behaviour is observed on many markets, and especially 

for perishable goods. 

Then, we have compared two special cases of the discrete choice model, the McFadden 

(McF) and the Thurstone (TP) models to show the differences between what the physicists 

call quenched’ disorder models and ‘annealed’ disorder models. 

In the simplest model, an ordered regime can appears, depending on the value of 

the agents discrimination rate, and when an individual’s parameters put him into the 

organized regime, buyers have strong preferences for one shop over all others and the 

market is rather stable. On the other hand, in the disordered regime, agents do not 

show any preference and market performance exhibits large fluctuations. The transition 

between the ordered and disordered regimes is continuous but very abrupt (at least for 

the simplest model) in terms of number of buyers: t is what characterize a first order 

phase transition in statistical physics. 

We then examined some papers already published about this subject and explored the 

theory about the link to statistical physics. Indeed, we tried to explain the Ising model 

in the field of physical properties of magnets. The equations were really similar to those 

developed in the first section of this thesis. The study of the different transitions that we 

can observe in physical processes as well as in agent’s behaviour in a market allowed us 

to make a comparison between the different types of transitions: quenched and annealed 

55



disorder, avalanches and hysteresis effects. The phase transitions and the coexistence of 

several equilibrium states were then applied following the research done by V. Semeshenko 

[23] and using a triangular probability density function in order to create simple customers 

and seller phase diagram for the monopolistic market. 

The introduction of more complicated models such as the Small-World initiated by 

Milgram [14] was an introduction to the influence of the connectivity of the network in 

its evolution. By only rewiring 2 agents, the evolution of the network could be totally 

different from the final equilibrium state without any rewiring. 

We then presented the improvements developed on Moduleco, which was our principle 

tool to observe and analyse the different evolutions of the system given the initial param- 

eters, the learning rules of the agents and the rules of progression of the components. 

An analysis of selected data from the Marseille fishmarket shows the existence of a 

bimodal distribution of searchers and faithful buyers, depending on their idiosyncratic 

willingness to pay and so on the regularity they are purchasing a good and visiting a 

particular seller. 

We have observed that in the simple model, and in others more realistic but without 

proper empirical data testing, in changing the connectivity of the network for example, 

that the presence of order, organisation and transition in a market is very dependent on 

the way in which agents react to their previous experience and to the reaction of their 

neighbourhood too. 

This paper also explains the declining price paradox for the fish market of Marseille 

linking the price stopping rule followed by the buyers to the relationship between last 

transactions variation in price and the quantity of fish of the day. The average price tends 

to increase for last transactions in days characterised by limited (compared to customer’s 

demand) supply of fish. 

The first aim of the use of Moduleco was to try to create a proper tool in order to 

input directly the data gathered and run simulations to observe if the behaviour of the 

agents would be the same as it is in the real market. However, it was only possible for this 

project to run simulations on data added manually in the software. Some modifications 

are necessary to make the software totally efficient and so inputting data automatically 

which would make it a very useful tool to study this kind of interactions between agents 

and compare the outputs to real life markets. 

To conclude, this thesis studied the similarities between statistical physics and agent- 

based macroeconomics and market dynamics. This approach of the financial markets is 

constantly in development and there are numerous papers and conferences appearing ev- 

ery month. We have learned different methods to analyse the behaviour of the agents in 

a social network but it seems that there is a constant wish to improve the simulation of 
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these behaviours to make them more realistic and cloning the human behaviour. However, 

following our analysis of the Marseille wholesale fishmarket, it appears that there are still 

areas that deserve further research: 

e The development of Moduleco to allow the direct use of numerical data and so 

compare properly the results obtained with those of the real markets. 

e The improvements of the models to obtain more human-like results in particular 

by avoiding using the simplest hypothesis and so characterizing a proper human 

behaviour in a market. 

e The analysis of an other set of data, for example the establishment of a telecommu- 

nication network such as mobile phones or broadband membership. The advantage 

of the fishmarket is that data can be gathered every day and so the data base could 

be really wide. 

Further work could be required in using other model than the mean-field approximation 

which is one of the simplest approximation, but this would complicate a lot the analysis 

of this kind of network and our aim is to simulate this model as real as possible but we 

still want to be able to analyse and interpret the results.
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