Sparsity and ‘Something Else’: An Approach to
Encrypted Image Folding

James Bowley and Laura Rebollo-Neira
Mathematics Department, Aston University, Birmingham BT7UK

Abstract—A property of sparse representations in relation to involving the null space yielded by the sparse represemtati
their capacity for information storage is di_SCU_SSEd. It is Bown of an image, to store part of the image itself in encrypted
that this feature can be used for an application that we term form. We term this application Encrypted Image Folding (EIF

Encrypted Image Folding. The proposed procedure is realizdle - . . .
through any suitable transformation. In particular, in thi s paper The main advantage of this proposal, in relation to standard

we illustrate the approach by recourse to the Discrete Cosim t€chniques, is thastorage and encryption can be achieved
Transform and a combination of redundant Cosine and Dirac simultaneously by means of simple data processing .stéps
dictionaries. The main advantage of the proposed techniqués proposed procedure can be carried out through any suitable
that both storage and encryption can be achieved simultanesly  ansformation. In particular, we consider here the Digcre
using simple processing steps. Cosine Transform (DCT) and a mixed dictionary composed of
a Redundant Discrete Cosine (RDC) dictionary and a discrete
|. INTRODUCTION Dirac Basis (DB). RDC and DB dictionaries are considered
The problem of reducing the dimensionality of a piece afeparately in [1]. A theoretical discussion with regardsato
data without losing the information content is of paramoumandom collection of elements of a Discrete Sine basis and
importance in signal processing. Well-established tizns§, a DB is presented in [20]. In this letter we would simply
from classical Fourier and Cosine Transforms to Wavelelgke to draw attention to the suitability of mixed dictiones
Wavelet Packets, and Lapped Transforms, just to mentioomposed of RDC and DB, for image representation. As
the most popular ones, are usually applied for generatiag tlar as sparsity is concerned, at the visually acceptablel lev
transformed domain where the processing tasks are realized40dB PSNR, they may render a significant improvement
Signals amenable to transformation into data sets of smalie comparison to established fast transforms such as the
cardinality are said to be compressible. Natural images, fOCT and Wavelet Transform (WT). An additional advantage
instance, provide a typical example of compressible data. of these dictionaries is that Matching Pursuit-like styée
In the last fifteen years emerging techniques for signdr selecting the atoms can be implemented at a reduced
representation are addressing the matter by means of higbdynplexity cost by means of the DCT. For these reasons,
nonlinear methodologies which decompose the signal intone illustrate our approach for EIF using a mixed RDC-DB
superposition of vectors, normally called ‘atoms’, sedect dictionary, in addition to standard the DCT.
from a large redundant set called a ‘dictionary’. The repre- The paper is organized as follows: Sec. Il motivates the use
sentation qualifies to be sparse if the number of atoms forofia mixed RDC-DB dictionary within the present framework.
satisfactory signal approximation is considerably smal@n Sec. Il discusses the fact that a sparse representatiobecan
the dimension of the original data. Available methodolsgiaised for embedding information. Based on such a possitality
for highly nonlinear approximations are known as Pursusitheme for image folding and a simple encryption procedure,
Strategies. This comprises Basis Pursuit [1], [2] and Matgh fully implementable by data processing, are discussed in
Pursuit-like algorithms, including Orthogonal MatchingrP Sec.IV. The conclusions are presented in Sec. V.
suit (OMP) and variations of these methods [3], [4], [5],,[6]
[71, [8], [9], [10]. The other ingredient of highly nonlinea
approximations is, of course, the dictionary providing the
atoms for the selection. In this respect, Gabor dictiosarave
been shown to be useful for image and video processing [11]Let us start by introducing the dictionaries and methodplog
[12]. Combined dictionaries, arising by merging for instan which will be used in Section Il for illustrating the preden
orthogonal bases, have received consideration in relabonapproach. Consider the s&t, defined as
the theoretical analysis of Pursuit Strategies [13], [145], 9 — 1)(i — 1
[16], [17]. From a different perspective, other approaches D, = {v;; v;; = p; COS(W(J——)(Z—)
based on dictionaries learned from large data sets [18], [19 2M
This communication exploits an inherent side-effect ofith p;, « = 1,..., M normalization factors and the notation
sparse representations. Since sparsity entails a pajestito v, ; indicating the componentof vectorv; € RY. If M = N
a subspace of lower dimensionality, a null space is gengratthis set is a Discrete Cosine (DC) orthonormal basisfor. If
Extra information can be embedded in such a space amfl= 2IN, with [ a positive integer, the set is a DC dictionary
then stably extracted. In particular, we discuss an apdica with redundancy2!.

Il. SPARSE IMAGE REPRESENTATION BYRDC-DB
DICTIONARIES
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H Y H NxN PARSITY RATIO (FOR OF D ACHIEVED BY THE MIXED
atomic decomposmon Of an Imag% R as RDC-DBDICTIONARY AND THAT YIELDED BY DCT AND DWT.
K
1= "cfd,,. (1)
[
The atomsdy,, i = 1,...,K are to be selected from therespectively. If M = 2IN, for some positive integel, the

dictionary D by a Pursuit Strategy. In the examples we givealculations can also be carried out through fast DCT by zero
here we have used OMP, which evolves as follows: Settipgdding. Thus, the complexity required for evaluation ofein
R? = T at iterationk + 1 the OMP algorithm selects theproducts in (2) isO(M?log, M). In order to highlight the

atom,d,, , say, as the one maximazing the absolute value cépacity of RDC-DB dictionaries to achieve sparse represen

the Frobenius inner productdl;, R¥)r, i =1,...,J, i.e., tation of natural images, we use them to represent the popula

k test images which are listed in the first column of Table | and

o1 = arg max |(d;, R®)p|with RF = I—Zcfdei- @) the pho'go of Ber_tr_and Russ_ell shqwn in Fig 1. For the actual
i=1,...J P} processing we divide each image into blockd 6k 16 pixels.

The sparsity measure we use is the Sparsity Ratio (SR) defined
The coefficients®, i = 1,...,k in (2) are such that the Frobe-as P Y P 4 (SR)

nius norm||R*|| 7 is minimum. Our implementation is based _ total number of pixels
on Gram Schmidt orthonormalization and adaptive biorthog- " total number of coefficients

onalization, as proposed in [S]. The complexity is domidatqn gl the cases the number of coefficients are determined so
by the calculation of the quantitie&l;, R*)r, i = 1,...,J as to produce a PSNR of 40dB in the image reconstruction
in (2) at each iteration step. For the present dictionahesé znd the dictionary is a mixed RDC (redundancy 2) and DB.
quantities can be evaluated by fast DCT. In order to discUgfe results are given in the second column of Table I. For
the matter let us re-name the dictionary atoms as follows comparison the third column of this table shows results pro-
form—=1. . M2 duced by DCT implemented using the same blocking scheme.
Y For further comparison the results produced by the Cohen-
Daubechies-Feauveau 9/7 DWT (applied on the whole image

d, - vi®v;,i=1,....M,j=1,...,.M

forn=M*+1,...,M*+ MN at once) are displayed in the last column of Table |. Notiee,th
play
d, —»v,®e;i=1,....M,j=1,...,N while for the fixed PSNR of 40 dB the DCT and DWT yield
form— M2+ MN+1.... M%>+L2MN comparable SR, the corresponding SR obtained by the mixed

, . dictionaries, for all the images, is significantly highehi§
dn —e®vji=1,....N,j=1,....M motivates the use of RDC-DB dictionaries in the application
fOFn=M2+2MN+1,...,J we are proposing.
dn —>ei®ej,i:1,...,N,j: 1,...,N.
[1l. ROOM FOR INFORMATION EMBEDDING
Since a sparse representation involves a projection onto a
lower dimension subspace, it also creates room for storing
‘something else’. The subspace, sy, spanned by thef-
N dictionary’s atomsg{d,, } X, rendering a sparse representation
k _ k . i iJi=1 A
(vi®v;,R")p = pip; Z RE(8,7)s,i%r,j 3) of an image is a proper subspace of the image spate” .

Hence, by denoting a&"(s,r) the element(s, r) of matrix
R* and definingy; ; = cos(%), the inner products
(d;,R¥)p,i=1,...,J are calculated as

sr=1 Thus, denoting byS3 the orthogonal complement &« in

. N RY*N we haveRM*N = S ¢t S where @ indicates

(vi©e; RN r=pi) R*(s.j)vs (4) orthogonal sum. Hence, if we take an eleméne Si and
s=1

add it to the image forming= = I + F, the imagel can be

N .
(e; ® v, RF)p — D ZRk(i, ). ) recovered fromG through the operation
. krzl Ps,G=Ps, (I4+F)=1, @)
(e; @ e, R")p = R"(i, j). (6)

where Ps, is the orthogonal projection matrix, onto the
If M = N (3) is the 2D DCT of the residudR* whilst (4) subspacey. This suggests the possibility of using the sparse
and (5) are the 1D DCT of the rows and columnsRf, representation of an image to embed the image with addltiona



dividing it into @ blocksI,, ¢ =1,...,Q of N, x N, pixels
each and compute their sparse representation
Kq
150 =3 "c"d,,  q=1,....Q. (10)
=1

We keep a numbet/, of these block of pixels as hosts for
embedding the coefficients of the remaining equations (10).
Each host bIockIf‘* is embedded as follows: Taking, =
NZ — K, of the coefficients to be embedded, we build a block
of pixels F, as in (8) and add it to the host block to obtain
G, = I + F,. Since the numbef! of host blocks is the
superior integer part of%, as sparsity increases less host
blocks are needed to embed the remaining ones. In the example
presented here for each host blagkwith ¢ = 1,..., H, we
have built the orthogonal basig/, i = 1,..., L, (c.f. (8)) by
randomly generating matriceg! € RNe*Na j = 1,... L,
using apublic initialization seed, for the random generator.
Through a projection matris, ontoSk, = spar{d,,, }fi"l,
Fig. 1. The small pictures at the top are the folded Image by Mefty we compute matrices! € SIL( as
and RDC-DB dictionary (right). The middle pictures are th@responding

unfolded images without knowledge of the private key tdatiite the rotation. ol =yl —Ps, yli=1,...,L,. (11)
The bottom pictures are the unfolded images when the cokegtis used. a4

Setting an initializatiorkey, which remainsunknownfor an

. . _ _ ~unauthorized user, we apply a random transformatigg, on
information stored in a matrif < SIJE In order to do thIS, these matrices to obtain a private set of matrices

we apply the earlier proposed scheme to embed redundant
: o : : q ;_ ~a1Lq
representations [21], which in this case operates as destri Hiey : (0], i=1,..., L) — {6 }; ;. (12)
below.
Embedding Scheme:Consider thatl® as in (1) is the
reconstruction of a sparse representation of an inlag#e

Next, through an orthogonalization proced@(-) we
obtain the orthonormal basis

embedL = N? — K numbersh;, i = 1,..., L into a matrix {ui}le = Orth(6?,i=1,...,L,). (13)
F € Si as prescribed below. _ N o
. Take an orthonormal basis;, i = 1,..., L for S& and that we use for embedding the coefficients of the remaining
form matrix F' as the linear combination Q- H_bIOCkS'

I We illustrate the results on a 8 b#56 x 256 photo of

F — Zh'“’ ®) Bertrand Russell divided into blocks &f x 8 pixels, using
T both standard DCT and the RDC-DB dictionary discussed in

Sec. Il

« Add F to I* to obtainG =I* +F. The top pictures of Fig. 1 are the folded images using DCT
Information Retrieval: Given G retrieve the numbers (left) and the RDC-DB dictionary (right). Each block &f 8
hi,i=1,...,L as follows. pixels in these figures is the superpositiéh = I, + F,

« Construct an orthogonal projection mati, , onto the described above. In both cases the method applied for finding
subspaceSi = spar{dy, }/£, and extract the imagk* the sparse representati@fi* is nonlinear, but the DCT case
from G asI® = Ps, G. N is O(K) faster than the mixed dictionaries onk (eing the

« From the givenG and the extractedl”™ obtain F average number of coefficients per block). Since the SR for
asF = G — I*. UseF and the orthonormal basisthe DCT is smaller than the SR for the mixed dictionary, the

u;, i = 1,...,L to retrieve the embedded numbergorresponding folded image is larger. The middle pictures a
hi,i=1,...,L the unfolded images when ancorrect securitykey is used.
hi = (W, F)p,i=1,..., L. ) They gre obtained as follows: Each lglock] in the top pic-
tures is used to recover the host blodfs], g=1,...,H as
One can encrypt the embedding procedure simply by randonjly: — p G,, q=1,...,H (top piece of image correctly
controlling the order of the orthogonal basis, i = 1,...,L  reconstructed). Subtracting these pixels to the corregipgn
or by applying some random rotation to the basis. An exampig, of the top picture we obtain the pixelB, which are
is given in the next section. used to retrieve the embedded coefficients, as in (9) but with
matricesu;, i = 1, ..., L, constructed with an incorre&ey

IV. APPLICATION TOENCRYPTEDIMAGE FOLDING (EIF) (¢ £, (13)). As seen in the largest portion of the middle pies,
We apply now the above discussed embedding schemewtith these coefficients the image cannot be reconstructaid at
fold and encrypt an image. For this we process the image biie bottom pictures are obtained in the same way but using



the correctkey. Let us point out that, for reconstructing thesuggest that advances in matters of sparse representatiyns
image from the coefficients, additional space has to be alfiowbenefit this application.

to store the indices of the atoms in the decomposition (10).

This is a requirement of nonlinear approximations for gahe
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