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ABSTRACT 

With regard to polymer fibre Bragg gratings, we investigate one of the consequences of the visco-elastic nature of the 
constituent polymer: hysteresis in the response of wavelength shift vs sensor elongation. We show that when a grating 
sensor is directly bonded to a substrate, the hysteresis is reduced by a factor of 10 from the case where the sensor is 
freely suspended between two supports. 
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1. Introduction 

Fibre Bragg grating sensors in polymer fibre are attracting interest because of their different material properties 
compared to silica1. For example, they can survive higher strains and they possess a much lower Young’s modulus and 
therefore perturb any structure to which they are attached rather less than does the comparatively stiff silica fibre; this is 
important when the structure is itself rather compliant, for example as is the case with a tapestry2. A potentially serious 
problem with polymer optical fibre Bragg grating (POFBG) sensors relates to the viscoelastic nature of the material. 
When a sizeable elongation is applied to the sensor and then released, there can remain a significant wavelength shift 
which only gradually relaxes over time. For example, in one experiment, a strain of 5% was applied by tensioning a 
POFBG sensor between two supports, one of which was mounted on a translation stage, resulting in a wavelength shift 
of 72nm. After 30 minutes the tension was removed but a wavelength shift of about 20nm remained3. 
 
It should be recognised however that when grating sensors are actually applied to the monitoring of strain in a structure, 
they are not normally fixed at points either side of the sensor; instead the sensor would usually be glued directly to the 
structure, or possibly embedded in it. In this work we investigate whether this method of fixation can mitigate the effects 
of the viscoelastic nature of the POF. 
 

2. Experiments 

Two identical fibre Bragg gratings were fabricated in a PMMA based single mode POF which had an outer diameter of 
about 180μm and a core diameter of 10μm. A helium-cadmium laser with a wavelength of 325nm and an ultraviolet 
(UV) power output of 30mW was used to inscribe the Bragg gratings in the POF. The laser beam was focused vertically 
downwards using a 10cm focal length cylindrical lens, through a 1034.2nm period phase mask and on to the fibre4. The 
single-mode POF was laid on a v-groove and taped down using polyimide tape. This type of fibre has an average 
inscription time of 7 minutes. The Bragg wavelength of the inscribed grating was in the region of 1530nm with a grating 
length of 2mm, determined by the width of the UV laser beam. 
 
Inscription was monitored using a 1550nm single mode 50:50 silica coupler, a broadband light source (Thorlabs ASE-
FL7002-C4) and an optical spectrum analyzer (OSA). A connection was made between the arm of the silica coupler and 
the POF using a FC/APC connector on the silica fibre which was then butt coupled to the POF. A small amount of 
polymer index matching gel was used in the coupling to reduce Fresnel reflections.  
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