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Abstract—We consider data losses in a single node of a packet- In this paper we model data losses insimgle nodeof
switched Internet-like network. We employ two distinct models, a packet-switched network like the Internet. There are two
one with discrete and thg other with continuous qne-dlmensmnal distinct features which must be preserved in this case: the
random walks, representing the state of a queue in a router. Both discrete character of data propagation and the possibility of
models have a built-in critical behavior with a sharp transition ’ ) -
from exponentially small to finite losses. It turns out that the data overflow in a single node. In the packet-switched network
finite capacity of a buffer and the packet-dropping procedure data is divided into packets which are routed from source to
give rise to specific boundary conditions which lead to strong destination via a set of interconnected nodes (routers). At each
loss rate flucj[uathns at the crltlgal point even in the absence of node packets are queued in a memory buffer before being
such fluctuations in the data arrival process. - .

serviced i.e. forwarded to the next node. (There are separate
buffers for incoming and outgoing packets but we neglect
this for the sake of simplicity). Due to the finite capacity of

Many systems, both natural and man-made are organizadmory buffers and the stochastic nature of data traffic, any
as complex networks of interconnected entities: brain cebgiffer can become overflown which results in packets being
[1], interacting molecules in living cells_[2], multi-speciesdiscarded
food webs [[8], social networks [[4] and the Internet [5] are We consider a model where noticeable data losses in a single
just a few examples. In addition to the classical Erdos—Rényiemory buffer start when the average rate of random packet
model for random networks [6], new overarching models efrrivals approaches the service rate. Under this condition
scale-freel[7] or small-world [8] networks turn out to describthe model has a built-in sharp transition from free flow to
real world examples. These and other network models haweesy behavior with a finite fraction of arriving packets being
received extensive attention by physicists (see Refs.[[9], [1opped. A sharp onset of network congestion is familiar to
for reviews). everyone using the Internet and was numerically confirmed in

A particularly interesting problem for a wide range of comélifferent models[[17]. Here we stress that such a congestion
plex networks is their resiliency to breakdowns. The possibilityan originate from a single node.
of random or intentional breakdowns of the entire network hasWhile data loss is natural and inevitable due to the data
been considered in the context of scale-free networks whereerflow, we show that loss rate statistics turn out to be highly
nodes were randomly or selectively removed [11], [12]] [13hontrivial in the realistic case of a finite buffer, where at the
or in the context of small-world networks where a randomxritical point the magnitude of fluctuations can exceed the
reduction in the sites’ connectivity leads to a sharp increaseduerage value, while they obey the central limit theorem only
the optimal distance across network which destroys its smati-the (unrealistically) long time limit. Such an importance of
world nature [[18], [14], [[15]. In all these models, the site ofluctuations in some intermediate regime is a definitive feature
bond disorder acts as an input which makes them very genesinesoscopiphysics, albeit the reasons for this are absolutely
and applicable to a wide variety of networks. different (note that even in the case of electrons, the origin of

Network breakdowns can result not only from a physicéhe mesoscopic phenomena can be either quantum or purely
loss of connectivity but from an operational failure of somelassical, see, e.gl, [18]). Although we model data arrivals as a
network nodes to forward data. In the more specific class Bfarkovian process, the loss rate at intermediate times shows
communication networks, this could happen due to excessleag-range power-law correlations in time. When excessive
loading of a single node. This could trigger cascades of failurdata losses start, it is more probable that they persist for a
and thus isolate large parts of the netwarkl [16]. In describinvghile, thus impacting on network operation.
the operational failure in a particular network node, one needsThe averageloss rate and/or transport delays were previ-
to account for distinct features of the dynamically ‘randondusly studied, e.g., in the theories of bulk quedes [19] [20]
data traffic which can be a reason for such a breakdown. or a jamming transition in traffic flow[[21]. What makes
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discarded during a time interva&l’ by

no+N
Ly(o)= Y 06,100, 0.L- 3

n=no+1

This means that the packet is discarded if by the moment
of its arrival the queue was at the maximal capadityas
illustrated in Fig[l. Thus the loss rafg (3) is defined ehtire

n by the processes at the boundary of the random walk (RW) so
that the continuous limit cannot be exploited. This makes th

Fig. 1. The model of data losses: incoming packets randomiyeain l0Ss statistics profoundly different from, e.g., the thagbly

discrete time intervals and join the queue of lengtimited by the memory gstydied statistics of first-passage time.
buffer capacityL. Packets in front of the queue are served at the same time . . .
intervals. If the queue sticks to the boundary, newly amgvipackets are Ve Will consider the average and the variance of the loss

discarded. rate, which we obtain directly from Ed.](3):
(Ln) =Ps(L)NGI(L, L), (4)
present considerations qualitatively different is thatamelyze no+N
fluctuationsof a discrete quantity, the number of discarded <£N2> = Z <5€mL5£n+l,L(ggm’L(;&n%w
packets. Although fluctuations in network dynamics were pre n,m=no+1
viously studied (see, e.d.[22]), this was done in the camtirs )
limit for the data traffic, through measurements or numérica = (L) + 2Ps( )G (L, L) Z Gm—n-1(L, L) (5)
simulations. n<m
where the conditional probability of the queue being of kang
Il. THE DISCRETEMODEL ¢ at time n provided that it was of lengtlf’ at time ng is

The mode of operation of a memory buffer is that packets gtefined by
rive randomly, form a queue in the buffer and are subsequentl 00N =5 6 5
serviced Each packet in the queue has typically a variable G (€ €') = (0, t,5.07) | (trgr) -
length and is normally serviced in fixed-length service $mi5—|ere<..
at discrete time intervals on a first-in first-out basis. Heme Egs. 1)
choose the simplest non-trivial model of this class: (i) kzds
have a fixed length of two service units; (ii) arrival and $esv

.) stand for the averaging over the telegraph noise of
—[(2). The stationary distribution of the queue tang
is related toG by

intervals coincide. The length of the queue afterservice Pst(f) = lim  Gpong(6,0) = (8¢, 4) . (6)
intervals,/,,, serves as a dynamical variable which obeys the no——00 v
discrete-time Langevin equation, After relatively straightforward calculations [23], we dirand
it = o + &, (1) expected (actually, built-in) critical behavior of the sage:
_ 1
where the telegraph noigg is defined by ! SR p—1, p>3
s S 1 — L.
L 0shsLo1 i probabilit NN = ) B Pee )
“EV0 =L probability L2l p<t:
0 £, =0 @ h /(1—p). Thus the | te f 1/2is of ord
B ) n=0, . . whereq = p/(1—p). Thus the loss rate fgr > is of order
&n = { -1, 1<¢,<L, with probability 1 —p 1, for p = 1/2 a small fraction of the buffer capacity and for

< 1/2 an exponentially vanishing function, as expected. The

The above means that the length of the queue, measureqyiyching between the three asymptotic regimes takes piace i
service units, either increases by one when one packeEarng narrow region (of widthv 1/L) aroundp =

and one s_ervice unit is served, or (_j_ecreases by one when NPhe result for the variance is far more 2interesting, as it

p‘_acket arrives. The b(_)undary conditions abov_e corresp«»ndshows significant fluctuations in the loss rate. It is coneahi

dlscardmggne\{vly arrived packet when buffgr is full & L) to express the variance in terms of the ‘compressibility’

and to an idle interval when no packet arrives at an emMpifined by

buffer (¢,, = 0). In a more general, continuous model we

will remove these restric_tions, aIIowing_ for arbitrary gi}a_\ (6L3) = xn (Ln),  6Ln(n) = Ln(n) — (Lyn) . (8)

Markovian nature of the input data traffic. The charactierist

features of our results would not change. The compressibility has been exactly calculatedlin [23. It
The main quantity which characterizes congestion is thehavior of x is illustrated in Fig.[R2 which shows its fast

packet loss rate which is defined via the number of packetErease at the critical poing, = 1/2.



This long-time correlation (in spite of the packet arrivairy
Markovian) is another clear sign of criticality.

IIl. THE CONTINUOUS MODEL

Consider the output buffer attached to the switching device
in the router. The speed of the input line of the buffer
4 (effectively, it is the capacity of the switching fabric) wid
//,/;////,,///;/ . .

Y / : normally be much bigger than the speed of the output line
- of the buffer. Hence, we can consider the packet arrival as

i
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//// an instantaneous process. Packets arrivals are treated as a
renewal process. The capacity of the bufferfligmeasured

in bits). The lengths of arriving packets are treated asoand

(measured in bits). The service (the capacity of the output

link) is considered to be deterministic. Note that the p#xke

are put in frames before being sent to the output link, the

corresponding randomness (due to the randomness of packet

Fig. 2. compressibilityy (for L = 1000) shows a fast increase of quctuationsSIZe) IS n_eg|80ted because it is much smaller of the randssnne

in time at the critical pointp = 1/2. of the arrival process (the overheads are much smaller ttean t

typical size of the packet). We normalise the lengths of pek

p, the speed of the output link,,, and the queue lengthby

—1 . .
CFor N > Ny = [(2p— 1%+ (x/L)?] ", ie. in the the size of the buffe. (the size of the buffer is then set to
limiting steady-state regime the compressibility saesadt e 1).
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1—[2p—1]| 2p — 1)L > 1 The procedure is the following: assume that at the moment
Xoo = 12p=1] (9) ofarrival of a packet of sizg, the state of the queuefdsthis is
%L, 2p—1|L « 1 followed by the gap; (random inter-arrival time) till the next

arrival. If £+ p < 1 then the packet joins the queue and the
queue length prior the next arrivalés= ¢+p—n/ng if £/ > 0
and/¢’ = 0 otherwise. If¢+p > 1 then the packet is discarded
and the queue length prior the next arrivatis= ¢ — 7/ if

¢ > 0 and? = 0 otherwise. Here we introduced the following
time scale

Although it diverges in the thermodynamic limit, — co and
N/L* — oo, at the transition poinp = 1/2, the variance[{8)
in this limit remains finite and obeys the central limit thewar.
However, this limit is reachable at the critical point onty f
unrealistically long timesV > Ny o< L2. In the intermediate,

practical regimel < N < Ny, the compressibility rapidly 1
increases with time: o = Tout (13)
1/2 2v/2 Ood:v 1—e @ the time required to empty a full buffer provided there are no
Xy =cN/Ze= poll i 2 » (A0 new arrivals
Y X X .
0

Assuming that the maximum packet size is much less than
so that the variance exceeds the average value of the ltess-ta(the buffer size) and the average incoming traffic rate
and, as can be shown, its distribution is no longer normal. (also normalised to the buffer size) is close to the senate: r

It is even more interesting that in this regime the fluctuatio
of the loss rate are no longer Markovian as they exhibit long- [Finio — 1] <1 (14)
time correlations. To show this, we consider the temporgle can treap,  and/ as continuous variables.

correlation function of the loss rate defined by Our aim is to calculate the statistics of the amount of the
Ro(N M) = (0LN(0) LN (M)) Mo N dropped traffic and the service lost due to idleness of theutut
2(N, M) = (6£%) ’ >N link during timet > 7 (77 is the average inter-arrival time) in

the regime[(14).
In the regime [(I4) and for observation timeés>> 7,
the system can be described by the Fokker-Planck equation
2 as follows (in terms of the transitional probability degsit
M functionw(?',t; ¢))

In the most relevant regiméy, > N > 1 and M > N, this
has been calculated to give

Ry(N, M) _pN o~ M(2p—1)%/2
XN

/4. — /4. 1 292 /.
—[2p—1erte (20— 11/3172) | (1) Orw(ll,t;6) = —adpw(ll, ) + 5o dpuw(l' ), (15)

N ] ) ) wherea and 0% are average moments of the change of the
At the critical point this reduces using E. [10) to queue size per unit time

./ N 1 1
N,M =ch/—=—. 12 = 2 _ 1 Ap2 R
Ro(N, M)perye = ¢\ 537 (12) a= (A0, o' = (AF) . At—0  (16)



and the following boundary and initial conditions are impds dynamics of the system near the boundéry- 1 which is
governed by the following transitional probability:

J(é” i €)|é/:0 1=0, (17)
’ | Ca(l' =0 a’t
w(ﬁ', t; €)|t:0 = 5(5’ -0 (18) wo (', t;€) = Noron €xp { o2 202]
/ 2 / 2
where 1 " {exp {_ (4202? } +exp {_%] } (26)
J(él,t;é) = aw(ﬂ',t;é) — 5025)@/11}(8’,1%;[) 5 (19) a 2&(1 _ él) ; 2_ ¢ — {4+ at
— ; exp |:_ 0_—2 :| eric |:——20-2t :|

is the probability current. BYAt — 0 in eq. [16) we mean that
it is much smaller than the observation time, but large ehougyhich is the solution of[{1I5) when the bounddry= 0 is sent
so that the underlying stochastic processes can be coedides —occ. The change in the state of the system during time
as continuous: can then be represented as follows:

n<At <t (20)
ALY =0 =0 = Nlo(t) + Alyogs (£, 150) (27)
The solution of [(15,1I7.18) can be expressed as follows
whereA/ly(¢) is the change in the state of the system if there

w(l',t;0) —9ev(t'=0) i exp [—(4;2/{2 +2U2)T] was no boundary, its statistics is determined by
= e @) (M) =at. (DO =ttrol), (@8
=at , =0 (6] 5
% [21k cos(2mkl’) + vsin(2mkl’)] 0 0
x [27k cos(2mkl) 4 v sin(2wke)] and Al (¢, 15 ) is the amount of traffic lost due to buffer
h overflowing. The moments of (28) can be defined as follows
where
2
v = % , T= %t (22) ([Ae@)™) = /dﬂ’dﬁ (0" —0)"wo (¢, t; 0)p(0) (29)
Note that the solution[(21) can be expressed in termg-of wherep(¢) is the stationary distribution.
functions. For the first two moment$ (29) in the limit— 0 we have
For the Laplace transform af(¢',¢; ¢) we have
ot
v (€' —0) (AL(t)) = at + —p(1) , ([AL#)]?) = 0%t (30)
W, e;0) = Low(l,t;0) = %eih() i
, o SR From [27.28.30) we can conclude that
X {2L cosh[k(¢ + £ —1)] + il sinh[k (¢ + ¢ —1)] o2t
€ € (Alioss (1)) = TP(l) (31)

<[Aéloss (t)]2> + 2<A£0 (t)Aéloss (t)) = O(t)

(23) The first of the relation§ (31) means th&éss (¢, ¢; £) is non-
zero only if ¢/, ¢ ~ 1 in the limit ¢t — 0. The second relation
where means either

RE Vet (24) (Do), (Mo (D) M) = 0(t)  (32)

From [23) we have for the probabilities of returning to the

+ cosh[k(|¢' — €] — 1)] + cosh[k(¢' + € — 1))

boundaries or
1 Alyoss(t) = —2ALo (1) + o(V1) (33)
W(0,€;0) = = [k cotanh(k) — V]
i (25) The relation[(3B) does not make sense physically, so in what
W(l,¢1) = — [k cotanh(k) + v] follows we accept option(32) and show that it is consistent
€ with the later calculations.
These will be used in the next section. Next we lift the restrictiont < 2/02. It can be shown that

the conditional moments (with the condition that the system

was in the staté at the beginning of the observation interval)
In this section we will concentrate on the statistics of thean be expressed as follows:

losses due to the buffer overflowing. The corresponding for-

IV. STATISTICS OF LOSSES

.. . . t;
mulae for the statistics of the server idleness can be ddain ) . koL k-1
using transformatiorf — 1 — £,v — —uv. My (t:.0) = Kirfo [T [ dta [T w(@stjn —1551) (34)
First, we estimate the size of fluctuations of the losses on =17 J=1

time scalet < 2/02. In order to do that we consider the X w(l,t1;0) , tgr1 =t



wherew(¢,t; ¢) is determined by[{21) and where

s 1 ! /g, 7
Tloss = %I_I)% g /dé /dg Aéloss (£ ’t’ é) Hoss (6) - L‘rploss(t) y  DPloss (t) - /dI ploss('rv t) (44)
L 2 (39) 0
= %1_13% n /dﬂ’dﬂ (0 — € —at)wo (0, t;0) = - with 1 — poss() being the probability for the system not to

drop a single packet over the period of timeSubstituting
" . . . \@E) into [43) we have
For unconditional moments in the stationary regime we ha

& L ﬁ’loss(s; E) Hoss p 21 1 ) €3 1)]1671
ml(ob)b( t) = /dé ml(m(t Op(L) € k:l
0 _ p(1) . 1
I S (36) = Floss(e) + W (1,6 1) { bt 1+sW(l,e1)
= k! H dr; H w(l,tjpa —t5;1) - p(1) In order thatP,(s; ) did not have an abnormal behaviour
=179 =1 (in particular, it did not contain terms liké(x)), we must
wherer is defined in[[ZR) ang(¢) is the stationary solution assume that (1)
of : ()= — 2
(@5) oot Puos(€) = o7t 1) (45)
p(0) = B7) Hence,
To calculatem(fs)s(t) we consider its Laplace transform: P €)= p(1) ___* 46
l N =)= Ea ey P T wwen] @9
k k —er (K i i i i
M (e) = Lm{D (1) = / dr e m® (1) Integrating this relation over, we recover[(45), which shows
(38) that our assumption is indeed correct.
0 1 In the regimes of short and long times we have
= klp(1) W (1,6 1) 5 .
o ) ¢ ) p(1)erfc {—} T<K1
whereW (1,¢; 1) is is defined by[(23). Froni(38) we obtain Ploss (23 1) = VAt (47)
ot olz —7p(1 T>1
i (0) = p(0)r = p() 5 (39) 2=t
. : . ~and
For the moment$(38) with > 1 we can identify the following W [4r
regimes: p(I/— 71
9 ploss(t) ™ (48)
Elp(1)e=k+3)/2 ¢ 1
]\/‘[l(olz)s( ) ( ) —(k+1) (40) 1 T>1
klpF(1)e ekl

The conditional PDF (with the condition that the system
Correspondingly, for the moments irrepresentation we havedropped at least one packet during the tithean be defined
as follows

(k+1)/2
k Ep(D) e 71
mi (1) = Ik +3)/2) (41) o | et [_9” } s
()Tt 7> 1 Wioss (23 1) = Do) o = dr VAT
DPloss
Now we turn our attention to the calculation of the PDF 5{56 - Tp(l)} T>1
Ploss(x; t) of the amount of the lost trafficy, during timet. (49)
To calculate it we consider its characteristic functionlet Now let us compare the results of the continous approach
e-representation: with those of Section Il. To make the comparison, we caleulat
P2 =rp . the central moments of losses in a similar way as the uncon-
loss (85 €) = Lo Ploss(T3€) (42) ditional ones in Eq.[(36). Here we will consider the variance
Ploss (23 €) = Lopross(2;t) of the lossesrZ (¢) only in the limit 7 > 1:
From [42) we obtain 1
o2, (t) = m{Y) () | —cotanh|v| — sinh =2 [v]

[l

e k
= 2
Ploss(s € Z k' /d(E X ETploss :E t) _ml(;s)s(t) |U| <1
k=0 0 43 3
oo (43) ~4 (50)
(k) 2@
OSS + Z k' Mloss |,U|mloss (t) |U| >1



In this long-time limit the ratio of the variance to the sgmarfor a single buffer, are determined by the network topology,
of the average vanishes, so that the distribution of dateksthe routing protocol, and the external input traffic disitibn
obeys the central limit theorem, as also seen from the secdadhe network. Of course, a detailed knowledge of all these
line of Eq. [49). This is essentially in agreement with thparameters is never available for a realistic network. W wi
result of the compressibility ., in [23]. Naturally, the present consider an analytically tractable albeit a simplified mode
considerations are much more general as we have not imposéith a homogeneous external traffic (all flows from any source

any artificial limitations on the random input traffic.

to any destination are considered statistically equivplen

Finally, we calculate the correlator of the fluctuations ofhen the above individual single-buffer input parametees a

losses measured during two time intervals of lengtlandi,
correspondingly and separated by the titfite

1

COI‘I‘(tl, tQ, T) = /dé p(tl, tQ, T)
0

— ) (t)m) (ta)

where
P(tl ) t27 T)

straightforwardly connected to the number of flows passing
through the appropriate buffer. This number, in turn, dejsen
on the topology, the protocol and the external load and is
equal to the link-betweenness of the corresponding buffer.
Fortunately for our considerations the distribution of sthe
guantities are empirically known through measurements on
the Internet([25]. This allowed us to analyze fluctuationd an
temporal correlations of losses in a realistic model of the

t1 t2
=7 /dt’l/dt; w(l,t] +ta —th +T;1)p(1)
0 0

with ry.ss defined in [[(3b).

In the regimeT > t;,t, andT > 2/0? it can be shown
that []
(2]
as we would expect. In fact, the correlator goes to zero exp?él
nentially if v # 0. In the opposite regime/o? > T > t1,t»
we have

corr(ty,ta, T') o 0, (51)

(4

(1) 1) 1 2 5]
[6]

= Myoss (tl)ml(oss (tQ)— 70T
[7]

which is again in agreement with the results of the discrete{g}
time considerations of Section I, showing the univergadit

COI‘I‘(lfl7 tQ, T)

(52)

the present approach. [10]
[11]
V. DISCUSSION ANDCONCLUSION [12]

As one would expect intuitively, loss events separatgth]
widely in time are uncorrelated as shown by equafion (51). I?Y
widely separated in time, we mean that the time separation[ i
the two observation intervals in which losses occur is much
longer than the time over which fluctuations of queue lengtfl
become comparable or much bigger than the buffer size,itseﬂfn
i.e.2/02.

However, in the case when the separation time is mugi!
smaller than2/0?, the correlations of loss fluctuations argyq
decaying very, very slowly, as can be seen from equafioh (52)
Such time intervals are likely to be comparable or even smnalf?1]
than the round trip times for typical TCP connections. TCP i§2]
the protocol that controls the rate at which data is sentsacro
a network, between a particular source and destination. TIR&
exact details of the congestion control operation of TCP cay
be found in [24].

Considerations of losses in a network, rather than in ]
single buffer, would require knowledge of the distributiamd
correlations of data traffic through different buffers camimg
the nodes. The two input parametessand 2 in Eq. (16)

[26]
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