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Abstract—We consider data losses in a single node of a packet-
switched Internet-like network. We employ two distinct models,
one with discrete and the other with continuous one-dimensional
random walks, representing the state of a queue in a router. Both
models have a built-in critical behavior with a sharp transition
from exponentially small to finite losses. It turns out that the
finite capacity of a buffer and the packet-dropping procedure
give rise to specific boundary conditions which lead to strong
loss rate fluctuations at the critical point even in the absence of
such fluctuations in the data arrival process.

I. I NTRODUCTION

Many systems, both natural and man-made are organized
as complex networks of interconnected entities: brain cells
[1], interacting molecules in living cells [2], multi-species
food webs [3], social networks [4] and the Internet [5] are
just a few examples. In addition to the classical Erdös–Rényi
model for random networks [6], new overarching models of
scale-free [7] or small-world [8] networks turn out to describe
real world examples. These and other network models have
received extensive attention by physicists (see Refs. [9], [10]
for reviews).

A particularly interesting problem for a wide range of com-
plex networks is their resiliency to breakdowns. The possibility
of random or intentional breakdowns of the entire network has
been considered in the context of scale-free networks where
nodes were randomly or selectively removed [11], [12], [13],
or in the context of small-world networks where a random
reduction in the sites’ connectivity leads to a sharp increase in
the optimal distance across network which destroys its small-
world nature [13], [14], [15]. In all these models, the site or
bond disorder acts as an input which makes them very general
and applicable to a wide variety of networks.

Network breakdowns can result not only from a physical
loss of connectivity but from an operational failure of some
network nodes to forward data. In the more specific class of
communication networks, this could happen due to excessive
loading of a single node. This could trigger cascades of failures
and thus isolate large parts of the network [16]. In describing
the operational failure in a particular network node, one needs
to account for distinct features of the dynamically ‘random’
data traffic which can be a reason for such a breakdown.

In this paper we model data losses in asingle nodeof
a packet-switched network like the Internet. There are two
distinct features which must be preserved in this case: the
discrete character of data propagation and the possibility of
data overflow in a single node. In the packet-switched network
data is divided into packets which are routed from source to
destination via a set of interconnected nodes (routers). At each
node packets are queued in a memory buffer before being
serviced, i.e. forwarded to the next node. (There are separate
buffers for incoming and outgoing packets but we neglect
this for the sake of simplicity). Due to the finite capacity of
memory buffers and the stochastic nature of data traffic, any
buffer can become overflown which results in packets being
discarded.

We consider a model where noticeable data losses in a single
memory buffer start when the average rate of random packet
arrivals approaches the service rate. Under this condition
the model has a built-in sharp transition from free flow to
lossy behavior with a finite fraction of arriving packets being
dropped. A sharp onset of network congestion is familiar to
everyone using the Internet and was numerically confirmed in
different models [17]. Here we stress that such a congestion
can originate from a single node.

While data loss is natural and inevitable due to the data
overflow, we show that loss rate statistics turn out to be highly
nontrivial in the realistic case of a finite buffer, where at the
critical point the magnitude of fluctuations can exceed the
average value, while they obey the central limit theorem only
in the (unrealistically) long time limit. Such an importance of
fluctuations in some intermediate regime is a definitive feature
of mesoscopicphysics, albeit the reasons for this are absolutely
different (note that even in the case of electrons, the origin of
the mesoscopic phenomena can be either quantum or purely
classical, see, e.g., [18]). Although we model data arrivals as a
Markovian process, the loss rate at intermediate times shows
long-range power-law correlations in time. When excessive
data losses start, it is more probable that they persist for a
while, thus impacting on network operation.

The averageloss rate and/or transport delays were previ-
ously studied, e.g., in the theories of bulk queues [19], [20]
or a jamming transition in traffic flow [21]. What makes
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Fig. 1. The model of data losses: incoming packets randomly arrive in
discrete time intervals and join the queue of lengthℓ limited by the memory
buffer capacityL. Packets in front of the queue are served at the same time
intervals. If the queue sticks to the boundary, newly arriving packets are
discarded.

present considerations qualitatively different is that weanalyze
fluctuationsof a discretequantity, the number of discarded
packets. Although fluctuations in network dynamics were pre-
viously studied (see, e.g. [22]), this was done in the continuous
limit for the data traffic, through measurements or numerical
simulations.

II. T HE DISCRETEMODEL

The mode of operation of a memory buffer is that packets ar-
rive randomly, form a queue in the buffer and are subsequently
serviced. Each packet in the queue has typically a variable
length and is normally serviced in fixed-length service units
at discrete time intervals on a first-in first-out basis. Herewe
choose the simplest non-trivial model of this class: (i) packets
have a fixed length of two service units; (ii) arrival and service
intervals coincide. The length of the queue aftern service
intervals,ℓn, serves as a dynamical variable which obeys the
discrete-time Langevin equation,

ℓn+1 = ℓn + ξn , (1)

where the telegraph noiseξn is defined by

ξn =

{

1, 0 ≤ ℓn ≤ L − 1
0, ℓn = L ,

with probabilityp

(2)

ξn =

{

0, ℓn = 0 ,
−1, 1 ≤ ℓn ≤ L,

with probability1 − p

The above means that the length of the queue, measured in
service units, either increases by one when one packet arrives
and one service unit is served, or decreases by one when no
packet arrives. The boundary conditions above correspond to
discarding a newly arrived packet when buffer is full (ℓn = L)
and to an idle interval when no packet arrives at an empty
buffer (ℓn = 0). In a more general, continuous model we
will remove these restrictions, allowing for arbitrary quasi-
Markovian nature of the input data traffic. The characteristic
features of our results would not change.

The main quantity which characterizes congestion is the
packet loss rate which is defined via the number of packets

discarded during a time intervalN by

LN (n0) =

n0+N
∑

n=n0+1

δℓn,Lδℓn+1,L . (3)

This means that the packet is discarded if by the moment
of its arrival the queue was at the maximal capacityL as
illustrated in Fig. 1. Thus the loss rate (3) is defined entirely
by the processes at the boundary of the random walk (RW) so
that the continuous limit cannot be exploited. This makes the
loss statistics profoundly different from, e.g., the thoroughly
studied statistics of first-passage time.

We will consider the average and the variance of the loss
rate, which we obtain directly from Eq. (3):

〈LN 〉 = Pst(L)NG1(L, L) , (4)

〈

LN
2
〉

=

n0+N
∑

n,m=n0+1

〈

δℓn,Lδℓn+1,Lδℓm,Lδℓm+1,L

〉

= 〈LN 〉 + 2Pst(L)G2
1 (L, L)

∑

n<m

Gm−n−1(L, L) . (5)

where the conditional probability of the queue being of length
ℓ at time n provided that it was of lengthℓ′ at time n0 is
defined by

Gn−n0
(ℓ, ℓ′) =

〈

δℓn,ℓ δℓn0
,ℓ′
〉

/
〈

δℓn0
,ℓ′
〉

.

Here〈. . .〉 stand for the averaging over the telegraph noise of
Eqs. (1) – (2). The stationary distribution of the queue length
is related toG by

Pst(ℓ) = lim
n0→−∞

Gn−n0
(ℓ, ℓ′) = 〈δℓn,ℓ〉 . (6)

After relatively straightforward calculations [23], we find and
expected (actually, built-in) critical behavior of the average:

1

N
〈LN 〉 = p

qL+1 − qL

qL+1 − 1
−→
L≫1















2p − 1, p > 1
2 ;

1
L+1 , p = 1

2 ;

1−2p
1−p qL, p < 1

2 ;

(7)

whereq ≡ p/(1−p). Thus the loss rate forp > 1/2 is of order
1, for p = 1/2 a small fraction of the buffer capacity and for
p < 1/2 an exponentially vanishing function, as expected. The
matching between the three asymptotic regimes takes place in
a narrow region (of width∼ 1/L) aroundp = 1

2 .
The result for the variance is far more interesting, as it

shows significant fluctuations in the loss rate. It is convenient
to express the variance in terms of the ‘compressibility’
defined by

〈δL2
N 〉 ≡ χN 〈LN 〉 , δLN (n) = LN (n) − 〈LN 〉 . (8)

The compressibility has been exactly calculated in [23]. Its
behavior ofχ is illustrated in Fig. 2 which shows its fast
increase at the critical point,p = 1/2.
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Fig. 2. compressibilityχ (for L = 1000) shows a fast increase of fluctuations
in time at the critical point,p = 1/2.

For N ≫ N0 ≡
[

(2p − 1)2 + (π/L)2
]−1

, i.e. in the
limiting steady-state regime the compressibility saturates at

χ∞ =







1−|2p−1|
|2p−1| , |2p − 1|L ≫ 1

2
3L, |2p − 1|L ≪ 1

(9)

Although it diverges in the thermodynamic limit,L → ∞ and
N/L2 → ∞, at the transition pointp = 1/2, the variance (8)
in this limit remains finite and obeys the central limit theorem.

However, this limit is reachable at the critical point only for
unrealistically long timesN ≫N0 ∝L2. In the intermediate,
practical regime,1 ≪ N ≪ N0, the compressibility rapidly
increases with time:

χN = c N1/2, c =
2
√

2

π

∞
∫

0

dx

x2

(

1 − 1 − e−x2

x2

)

, (10)

so that the variance exceeds the average value of the loss-rate
and, as can be shown, its distribution is no longer normal.

It is even more interesting that in this regime the fluctuations
of the loss rate are no longer Markovian as they exhibit long-
time correlations. To show this, we consider the temporal
correlation function of the loss rate defined by

R2(N, M) ≡ 〈δLN (0) δLN (M)〉
〈δL2

N 〉 , M > N .

In the most relevant regime,N0 ≫ N ≫ 1 andM > N , this
has been calculated to give

R2(N, M) =
pN

χN

[

e−M(2p−1)2/2

√

2

πM

− |2p − 1| erfc
(

|2p − 1|
√

M/2
)

]

. (11)

At the critical point this reduces using Eq. (10) to

R2(N, M)|p=1/2 = c−1

√

N

2πM
. (12)

This long-time correlation (in spite of the packet arrival being
Markovian) is another clear sign of criticality.

III. T HE CONTINUOUS MODEL

Consider the output buffer attached to the switching device
in the router. The speed of the input line of the buffer
(effectively, it is the capacity of the switching fabric) would
normally be much bigger than the speed of the output line
of the buffer. Hence, we can consider the packet arrival as
an instantaneous process. Packets arrivals are treated as a
renewal process. The capacity of the buffer isL (measured
in bits). The lengths of arriving packets are treated as random
(measured in bits). The service (the capacity of the output
link) is considered to be deterministic. Note that the packets
are put in frames before being sent to the output link, the
corresponding randomness (due to the randomness of packet
size) is neglected because it is much smaller of the randomness
of the arrival process (the overheads are much smaller than the
typical size of the packet). We normalise the lengths of packets
p, the speed of the output linkrout and the queue lengthℓ by
the size of the bufferL (the size of the buffer is then set to
be 1).

The procedure is the following: assume that at the moment
of arrival of a packet of sizep, the state of the queue isℓ, this is
followed by the gapη (random inter-arrival time) till the next
arrival. If ℓ + p ≤ 1 then the packet joins the queue and the
queue length prior the next arrival isℓ′ = ℓ+p−η/η0 if ℓ′ > 0
andℓ′ = 0 otherwise. Ifℓ+p > 1 then the packet is discarded
and the queue length prior the next arrival isℓ′ = ℓ− η/η0 if
ℓ′ > 0 andℓ′ = 0 otherwise. Here we introduced the following
time scale

η0 ≡ 1

rout
, (13)

the time required to empty a full buffer provided there are no
new arrivals.

Assuming that the maximum packet size is much less than
1 (the buffer size) and the average incoming traffic raterin

(also normalised to the buffer size) is close to the service rate:

|rinη0 − 1| ≪ 1 (14)

we can treatp, η andℓ as continuous variables.
Our aim is to calculate the statistics of the amount of the

dropped traffic and the service lost due to idleness of the output
link during time t ≫ η̄ (η̄ is the average inter-arrival time) in
the regime (14).

In the regime (14) and for observation timest ≫ η̄,
the system can be described by the Fokker-Planck equation
as follows (in terms of the transitional probability density
function w(ℓ′, t; ℓ))

∂tw(ℓ′, t; ℓ) = −a∂ℓ′w(ℓ′, t; ℓ) +
1

2
σ2∂2

ℓ′w(ℓ′, t; ℓ) , (15)

wherea and σ2 are average moments of the change of the
queue size per unit time

a ≡ 1

∆t
〈∆ℓ〉 , σ2 ≡ 1

∆t
〈∆ℓ2〉 , ∆t → 0 (16)



and the following boundary and initial conditions are imposed

J(ℓ′, t; ℓ)|ℓ′=0,1 = 0 , (17)

w(ℓ′, t; ℓ)|t=0 = δ(ℓ′ − ℓ) (18)

where

J(ℓ′, t; ℓ) ≡ aw(ℓ′, t; ℓ) − 1

2
σ2∂ℓ′w(ℓ′, t; ℓ) , (19)

is the probability current. By∆t → 0 in eq. (16) we mean that
it is much smaller than the observation time, but large enough
so that the underlying stochastic processes can be considered
as continuous:

η̄ ≪ ∆t ≪ t (20)

The solution of (15,17,18) can be expressed as follows

w(ℓ′, t; ℓ) =2ev(ℓ′−ℓ)
∞
∑

k=1

exp
[

−(4π2k2 + v2)τ
]

4π2k2 + v2

× [2πk cos(2πkℓ′) + v sin(2πkℓ′)]

× [2πk cos(2πkℓ) + v sin(2πkℓ)]

(21)

where

v ≡ a

σ2
, τ ≡ σ2t

2
(22)

Note that the solution (21) can be expressed in terms ofθ-
functions.

For the Laplace transform ofw(ℓ′, t; ℓ) we have

W (ℓ′, ǫ; ℓ) ≡ Lτw(ℓ′, t; ℓ) =
1

2

ev(ℓ′−ℓ)

κ sinh(κ)

×
{

2v2

ǫ
cosh[κ(ℓ′ + ℓ − 1)] +

2κv

ǫ
sinh[κ(ℓ′ + ℓ − 1)]

+ cosh[κ(|ℓ′ − ℓ| − 1)] + cosh[κ(ℓ′ + ℓ − 1)]

}

(23)

where
κ ≡

√

ǫ + v2 (24)

From (23) we have for the probabilities of returning to the
boundaries

W (0, ǫ; 0) =
1

ǫ
[κ cotanh(κ) − v]

W (1, ǫ; 1) =
1

ǫ
[κ cotanh(κ) + v]

(25)

These will be used in the next section.

IV. STATISTICS OF LOSSES

In this section we will concentrate on the statistics of the
losses due to the buffer overflowing. The corresponding for-
mulae for the statistics of the server idleness can be obtained
using transformationℓ → 1 − ℓ, v → −v.

First, we estimate the size of fluctuations of the losses on
time scalet ≪ 2/σ2. In order to do that we consider the

dynamics of the system near the boundaryℓ = 1 which is
governed by the following transitional probability:

w0(ℓ
′, t; ℓ) =

1√
2πσ2t

exp

[

−a(ℓ′ − ℓ)

σ2
− a2t

2σ2

]

×
{

exp

[

− (ℓ′ − ℓ)2

2σ2t

]

+ exp

[

− (2 − ℓ′ − ℓ)2

2σ2t

]}

− a

σ2
exp

[

2a(1 − ℓ′)

σ2

]

erfc

[

2 − ℓ′ − ℓ + at√
2σ2t

]

(26)

which is the solution of (15) when the boundaryℓ = 0 is sent
to −∞. The change in the state of the system during timet
can then be represented as follows:

∆ℓ(t) ≡ ℓ′ − ℓ = ∆ℓ0(t) + ∆ℓloss(ℓ
′, t; ℓ) (27)

where∆ℓ0(t) is the change in the state of the system if there
was no boundary, its statistics is determined by

〈∆ℓ0(t)〉 = at , 〈[∆ℓ0(t)]
2〉 = σ2t + o(t) , (28)

and ∆ℓloss(ℓ
′, t; ℓ) is the amount of traffic lost due to buffer

overflowing. The moments of (28) can be defined as follows

〈[∆ℓ(t)]n〉 =

∫

dℓ′dℓ (ℓ′ − ℓ)nw0(ℓ
′, t; ℓ)p(ℓ) (29)

wherep(ℓ) is the stationary distribution.
For the first two moments (29) in the limitt → 0 we have

〈∆ℓ(t)〉 = at +
σ2t

2
p(1) , 〈[∆ℓ(t)]2〉 = σ2t (30)

From (27,28,30) we can conclude that

〈∆ℓloss(t)〉 =
σ2t

2
p(1)

〈[∆ℓloss(t)]
2〉 + 2〈∆ℓ0(t)∆ℓloss(t)〉 = o(t)

(31)

The first of the relations (31) means that∆ℓloss(ℓ
′, t; ℓ) is non-

zero only if ℓ′, ℓ ∼ 1 in the limit t → 0. The second relation
means either

〈[∆ℓloss(t)]
2〉, 〈∆ℓ0(t)∆ℓloss(t)〉 = o(t) (32)

or

∆ℓloss(t) = −2∆ℓ0(t) + o(
√

t) (33)

The relation (33) does not make sense physically, so in what
follows we accept option (32) and show that it is consistent
with the later calculations.

Next we lift the restrictiont ≪ 2/σ2. It can be shown that
the conditional moments (with the condition that the system
was in the stateℓ at the beginning of the observation interval)
can be expressed as follows:

m
(k)
loss(t; ℓ) = k!rk

loss

k
∏

i=1

ti+1
∫

0

dti

k−1
∏

j=1

w(1, tj+1 − tj ; 1)

× w(1, t1; ℓ) , tk+1 ≡ t

(34)



wherew(ℓ′, t; ℓ) is determined by (21) and

rloss ≡ lim
t→0

1

t

∫

dℓ′
∫

dℓ ∆ℓloss(ℓ
′, t; ℓ)

= lim
t→0

1

t

1
∫

−∞

dℓ′dℓ (ℓ′ − ℓ − at)w0(ℓ
′, t; ℓ) =

σ2

2

(35)

For unconditional moments in the stationary regime we have

m
(k)
loss(t) ≡

1
∫

0

dℓ m
(k)
loss(t; ℓ)p(ℓ)

= k!

k
∏

i=1

τi+1
∫

0

dτi

k−1
∏

j=1

w(1, tj+1 − tj ; 1) · p(1)

(36)

whereτ is defined in (22) andp(ℓ) is the stationary solution
of (15):

p(ℓ) =
2ve2vℓ

e2v − 1
(37)

To calculatem(k)
loss(t) we consider its Laplace transform:

M
(k)
loss(ǫ) ≡ Lτm

(k)
loss(t) =

∞
∫

0

dτ e−ǫτm
(k)
loss(t)

= k!p(1) [W (1, ǫ; 1)]
k−1 1

ǫ2

(38)

whereW (1, ǫ; 1) is is defined by (23). From (38) we obtain

m
(1)
loss(t) = p(1)τ = p(1)

σ2t

2
(39)

For the moments (38) withk > 1 we can identify the following
regimes:

M
(k)
loss(ǫ) =

{

k!p(1)ǫ−(k+3)/2 ǫ ≫ 1

k!pk(1)ǫ−(k+1) ǫ ≪ 1
(40)

Correspondingly, for the moments int-representation we have

m
(k)
loss(t) =







k!p(1)
τ (k+1)/2

Γ[(k + 3)/2]
τ ≪ 1

pk(1)τk τ ≫ 1

(41)

Now we turn our attention to the calculation of the PDF
ploss(x; t) of the amount of the lost traffic,x, during timet.
To calculate it we consider its characteristic function in the
ǫ-representation:

P̃loss(s; ǫ) ≡ LxPloss(x; ǫ) ,

Ploss(x; ǫ) ≡ Lτploss(x; t)
(42)

From (42) we obtain

P̃loss(s; ǫ) =

∞
∑

k=0

(−s)k

k!

∞
∫

0

dx xkLτploss(x; t)

= Ploss(ǫ) +

∞
∑

k=1

(−s)k

k!
M

(k)
loss(ǫ)

(43)

where

Ploss(ǫ) = Lτploss(t) , ploss(t) =

∞
∫

0

dx ploss(x, t) (44)

with 1 − ploss(t) being the probability for the system not to
drop a single packet over the period of timet. Substituting
(38) into (43) we have

P̃loss(s; ǫ) = Ploss(ǫ) +
p(1)

ǫ2

∞
∑

k=1

(−s)k[W (1, ǫ; 1)]k−1

= Ploss(ǫ) +
p(1)

ǫ2W (1, ǫ; 1)

[

−1 +
1

1 + sW (1, ǫ; 1)

]

In order thatPloss(s; ǫ) did not have an abnormal behaviour
(in particular, it did not contain terms likeδ(x)), we must
assume that

Ploss(ǫ) =
p(1)

ǫ2W (1, ǫ; 1)
(45)

Hence,

Ploss(x; ǫ) =
p(1)

ǫ2W 2(1, ǫ; 1)
exp

[

− x

W (1, ǫ; 1)

]

(46)

Integrating this relation overx, we recover (45), which shows
that our assumption is indeed correct.

In the regimes of short and long times we have

ploss(x; t) =















p(1)erfc

[

x√
4τ

]

τ ≪ 1

δ
[

x − τp(1)
]

τ ≫ 1

(47)

and

ploss(t) =











p(1)

√

4τ

π
τ ≪ 1

1 τ ≫ 1

(48)

The conditional PDF (with the condition that the system
dropped at least one packet during the timet) can be defined
as follows

wloss(x; t) ≡ ploss(x; t)

ploss(t)
=















√

π

4τ
erfc

[

x√
4τ

]

τ ≪ 1

δ
[

x − τp(1)
]

τ ≫ 1

(49)
Now let us compare the results of the continous approach

with those of Section II. To make the comparison, we calculate
the central moments of losses in a similar way as the uncon-
ditional ones in Eq. (36). Here we will consider the variance
of the lossesσ2

loss(t) only in the limit τ ≫ 1:

σ2
loss(t) ≈ m

(1)
loss(t)

[

1

|v|cotanh|v| − sinh−2 |v|
]

≈















2

3
m

(1)
loss(t) |v| ≪ 1

1

|v|m
(1)
loss(t) |v| ≫ 1

(50)



In this long-time limit the ratio of the variance to the square
of the average vanishes, so that the distribution of data losses
obeys the central limit theorem, as also seen from the second
line of Eq. (49). This is essentially in agreement with the
result of the compressibilityχ∞ in [23]. Naturally, the present
considerations are much more general as we have not imposed
any artificial limitations on the random input traffic.

Finally, we calculate the correlator of the fluctuations of
losses measured during two time intervals of lengtht1 andt2
correspondingly and separated by the timeT :

corr(t1, t2, T ) =

1
∫

0

dℓ ρ(t1, t2, T )− m
(1)
loss(t1)m

(1)
loss(t2)

where

ρ(t1, t2, T )

= r2
loss

t1
∫

0

dt′1

t2
∫

0

dt′2 w(1, t′1 + t2 − t′2 + T ; 1)p(1)

with rloss defined in (35).
In the regimeT ≫ t1, t2 and T ≫ 2/σ2 it can be shown

that
corr(t1, t2, T ) →

T→∞
0 , (51)

as we would expect. In fact, the correlator goes to zero expo-
nentially if v 6= 0. In the opposite regime2/σ2 ≫ T ≫ t1, t2
we have

corr(t1, t2, T ) = m
(1)
loss(t1)m

(1)
loss(t2)

1

p(1)

√

2

πσ2T
(52)

which is again in agreement with the results of the discrete-
time considerations of Section II, showing the universality of
the present approach.

V. D ISCUSSION ANDCONCLUSION

As one would expect intuitively, loss events separated
widely in time are uncorrelated as shown by equation (51). By
widely separated in time, we mean that the time separation of
the two observation intervals in which losses occur is much
longer than the time over which fluctuations of queue length
become comparable or much bigger than the buffer size itself,
i.e. 2/σ2.

However, in the case when the separation time is much
smaller than2/σ2, the correlations of loss fluctuations are
decaying very, very slowly, as can be seen from equation (52).
Such time intervals are likely to be comparable or even smaller
than the round trip times for typical TCP connections. TCP is
the protocol that controls the rate at which data is sent across
a network, between a particular source and destination. The
exact details of the congestion control operation of TCP can
be found in [24].

Considerations of losses in a network, rather than in a
single buffer, would require knowledge of the distributionand
correlations of data traffic through different buffers comprising
the nodes. The two input parameters,a and σ2 in Eq. (16)

for a single buffer, are determined by the network topology,
the routing protocol, and the external input traffic distribution
to the network. Of course, a detailed knowledge of all these
parameters is never available for a realistic network. We will
consider an analytically tractable albeit a simplified model
with a homogeneous external traffic (all flows from any source
to any destination are considered statistically equivalent).
Then the above individual single-buffer input parameters are
straightforwardly connected to the number of flows passing
through the appropriate buffer. This number, in turn, depends
on the topology, the protocol and the external load and is
equal to the link-betweenness of the corresponding buffer.
Fortunately for our considerations the distribution of these
quantities are empirically known through measurements on
the Internet [25]. This allowed us to analyze fluctuations and
temporal correlations of losses in a realistic model of the
Internet [26].
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I. Csabai,Physica A307, 516 (2002).
[18] I. V. Lerner, Nucl. Phys.A 560, 274 (1993).
[19] J. W. Cohen,Single Server Queue, North-Holland, Amsterdam (1969).
[20] M. Schwartz,Telecommunication Networks, Protocols, Modeling and

Analysis, Addison-Wesley (1987).
[21] O. J. O’Loan, M. R. Evans, and M. E. Cates,Phys. Rev. E58, 1404

(1998); T. Nagatani,ibid 58, 4271 (1998).
[22] M. A. de Menezes and A.-L. Barabási,Phys. Rev. Lett.92, 028701

(2004); J. Duch and A. Arenas,ibid 96, 218702 (2006).
[23] I.V. Yurkevich, I.V. Lerner, A.S. Stepanenko and C.C. Constantinou,

Phys. Rev. E74, 046120 (2006).
[24] M. Allmanm, V. Paxson and W. Stevens, Internet RFC 2581,IETF

(1999).
[25] X. Dimitropoulos, D. Krioukov, and G. Riley.Revisiting internet aslevel

topology discovery. In “Passive and Active Measurement Workshop”
(PAM), Boston, MA, (2005).

[26] A.S. Stepanenko, C.C. Constantinou, I.V. Yurkevich, and I.V. Lerner,in
prepartion. (2008).


	Introduction
	The Discrete Model
	The Continuous Model
	Statistics of losses
	Discussion and Conclusion
	References

