
Average and reliability error exponents inlow-density parity-hek odesN.S. Skantzosy�, J. van Mouriky, D. Saady and Y. KabashimazyNeural Computing Researh Group, Aston University, Birmingham B4 7ET, UK� Institut for Theoretial Physis, Celestijnenlaan 200D, KULeuven, Leuven, B-3001BelgiumzDept. of Computational Intelligene & Systems Siene, Tokyo Institute ofTehnology, Yokohama 2268502, JapanAbstrat. We present a theoretial method for a diret evaluation of the averageand reliability error exponents in low-density parity-hek error-orreting odes usingmethods of statistial physis. Results for the binary symmetri hannel (BSC) arepresented for odes of both �nite and in�nite onnetivity.PACS numbers: 89.70.+, 05.50.+q, 75.10.Hk, 89.20.Pf1. IntrodutionLow-density parity-hek odes (LDPC) have attrated signi�ant interest in reentyears due to their simpliity and exeptionally high performane [1℄. Their simpliityand inherent randomness make them amenable to analysis using established methods inthe area of statistial physis. These have been employed in a number of papers [2℄-[9℄to gain insight into the properties of LDPC odes and to evaluate their performane.These studies inlude the evaluation of ritial noise levels for given odes [2℄,an exat alulation of weight and magnetisation enumerators [4℄, the performane ofirregular odes [3℄, properties of odes in real-valued hannels [5℄, and the derivation ofbounds for the reliability exponent [6℄, to name but a few. These studies also representthe interdisiplinary nature of this researh area and illustrate the suessful interationbetween researhers in the two disiplines.The evaluation of error exponents has been a long-standing problem in informationtheory [10, 11℄. E�orts to obtain exat expressions and/or bounds to the error exponentresulted in partial suess; although tight bounds have been derived in the ase ofrandom odes and LDPC with in�nite onnetivity [10℄, only limited results have beenobtained for sparely onneted odes. Main stream tehniques to takle the probleminlude sphere-paking and union-bound arguments [11, 10℄. Below a ertain ode-rate value, the estimated bounds also beome loose and require using the `expurgatedexponent' tehniques [10℄ for obtaining a tighter bound.



Average and reliability error exponents in low-density parity-hek odes 2In this paper, we employ methods of statistial physis to evaluate diretly theaverage error exponent and typial reliability exponent in Gallager and MN [12℄ LDPCodes. The average error exponent is obtained by arrying out averages over theensemble of randomly generated LDPC odes of given rate and onnetivity; whilethe reliability exponent is obtained by seleting the best odes in that ensemble.Averages result in the emergene of marosopi variables, representative of the ensembleproperties, that an be obtained numerially and used to alulate the average errorexponent (in the urrent alulation we assume that short loops, whih ontributepolynomially to the blok error probability in LDPC odes [13℄, have been removed).Average error exponent solutions have been obtained for both �nite and in�niteonnetivity vetor ensembles, while reliability exponent solutions have been obtainedonly in the ase of in�nite onnetivity.As a referene point to test our theory, we use known results obtained in theinformation theory literature for solvable limits (e.g. odes of in�nite onnetivity),and �nd that our method reprodues them exatly. Perhaps not surprisingly, we also�nd that at �xed noise level and ode rate, the reliability exponent for odes of �niteonnetivity is always upper-bounded by that of the in�nite-onnetivity ase.Before we proeed, the distintion between the typial bounds found previouslyusing methods of statistial physis [6℄, and the urrent alulation should be lari�ed.In the former, one employs methods of statistial physis to alulate the typial valueof a bound based on inequalities introdued by Gallager; while in the urrent alulation,a diret estimation of the average error exponent, rather than a bound, is sought. Anadditional advantage of the urrent approah is that it an be extended to providereliability exponent values for LDPC odes by restrited averages over odes of highperformane.The paper is organised as follows: In setion 2, we introdue the general odingframework and the tehnique used. In setions 3 and 4 we present an outline of thederivation and the solutions obtained in both �nite and in�nite onnetivity asesrespetively. In Setion 5 we ompare the error exponent results obtained for MN odesto those of Gallager odes in both �nite and in�nite onnetivity ases. Disussion andonlusions are presented in setion 6.2. De�nitionsA regular (k; j) Gallager error-orreting ode is de�ned by the binary (N � K) � N(parity hek) matrix A = [C1jC2℄, whih is known to both sender and reeiver. The(N�K)�(N�K) matrix C2 is taken to be invertible. The number of non-zero elementsin eah row of A is given by k, while the number of non-zero elements per olumn isgiven by j � k(N �K)=N .Gallager's enoding sheme onsists of generating a odeword t 2 f0; 1gN froman information (message) vetor s 2 f0; 1gK (with N > K) via the linear operationt = GTs (mod 2) where G is the generator matrix de�ned by G = [IjC�12 C1℄ (mod 2).



Average and reliability error exponents in low-density parity-hek odes 3The ode rate is then given by R � K=N = 1 � j=k, and measures the informationredundany of the transmitted vetor.Upon transmission of the odeword t via a noisy hannel, taken here to be a BSC,the vetor r = t+n0 (mod 2) is reeived, where n0 2 f0; 1gN is the true hannel noise.The statistis of the BSC is fully determined by the ip rate p 2 [0; 1℄:P (n0i ) = (1� p) Æn0i ;0 + p Æn0i ;1 (1)Deoding is arried out by multiplying r by A to produe the syndrome vetorz = Ar = An0, sine AGT = 0 by onstrution. In order to reonstrut the originalmessage s, one has to obtain an estimate n for the true noise n0. First we seletthe parity hek set of A and n0, i.e. all n that satisfy the parity hek equations:Ip(A;n0) � fn j An = An0g. Sine all operations are performed in modulo 2arithmeti, Ip(A;n0) typially ontains exp[NR ln(2)℄ andidates for the true noisevetor n0.It was shown (see e.g. [2, 6, 8℄ for tehnial details) that this problem an beast into a statistial mehanis formulation, by replaing the �eld (f0; 1g;+mod(2))by (f1;�1g;�), and by adapting the parity heks orrespondingly. From the parityhek matrix A we onstrut the binary tensor A = fAhi1���iki; 1� i1<i2 � � � <ik�Ng,where Ahi1���iki = 1 if A has a row in whih the elements fi;  = 1; : : : ; kg are all 1 (i.e.when the bits hi1 � � � iki are involved in the same parity hek), and 0 otherwise. Thefat that eah bit i1 = 1; : : : ; N is involved in exatly j parity heks is then expressedby Pi2<���<ik Ahi1���iki = j; 8 i1 = 1; : : : ; N and the parity hek equations beomeQk=1 ni =Qk=1 n0i, 8Ahi1���iki = 1.Deoding now onsists in seleting an n from Ip(A;n0), on the basis of itsnoise statistis, whih are fully desribed by its magnetisation m(n) = 1=NPi ni(orresponding to the weight in the information theory literature). Note that the numberof ipped bits in a andidate noise vetor n is given by N(1�m(n))=2. Therefore, weintrodue a Hamiltonian or ost funtion for eah noise andidate that is negativelyproportional to its magnetisation:H(n) = �F NXi=1 ni = �FNm(n) (2)where we take F = 12 log 1�pp , suh that up to normalisation exp(�H(n)) yields theorret prior for andidate noise vetors generated by the BSC [14℄. Then, a vetor nfrom Ip(A;n0) with the highest magnetisation (lowest weight) is seleted as a solution;this orresponds to Maximum A Posteriori (MAP) deoding.We are now interested in the probability that other andidate noise vetors areseleted from the parity hek set Ip(A;n0), other than the orret (i.e. true) noisevetor n0, for any given ombination fn0;Ag; this is termed the blok error probability.In order to alulate this probability, we introdue an indiator funtion:�(n0;A) = lim�1;2!1 lim�1;2!�� �Z�11 (n0;A; �1) Z�22 (n0;A; �2)����1=�2=� (3)



Average and reliability error exponents in low-density parity-hek odes 4where Z1(n0;A; �1) = Xn2Ip(n0;A)nn0e��1H(n); Z2(n0;A; �2) = Xn2Ip(n0;A)e��2H(n): (4)The partition funtions Z1(n0;A; �1) and Z2(n0;A; �2) di�er only in the exlusion ofn0 from Z1. If the true noise n0 has the highest magnetisation of all andidates in theparity hek set (deoding suess), the Boltzmann fator exp[��H(n0)℄ will dominatethe sum over states in Z2 in the limit � ! 1, and �(n0;A) = 0. Alternatively, ifsome other vetor n 6= n0 has the highest magnetisation of all andidates in the parityhek set (deoding failure), its Boltzmann fator will dominate both Z1 and Z2 and�(n0;A) = 1. Note that the separate temperatures �1 and �2, whih are put to be equalto � in the end, and the powers �1;2 whih are taken to be �� in the end, have beenintrodued in order to allow us to determine whether obtained solutions are physial ornot. The power � � 0 have been introdued to restrit the indiator funtion results to0/1. In priniple, this an be done by taking the limit �! 0; however, in setion 3, weshow that �nite 0 < � < 1 values will be used due to various onstraints.To derive the average error exponent, we take the logarithm of the indiator funtionaverage with respet to all possible realisations of true noise vetors n0, and the ensembleof regular (k; j) odes A:Q = limN!1 1N log 

�(n0;A)�n0�A (5)where hf(n0)in0 = 1(2 oshF )N Xn0 exp(FXi n0i ) f(n0) (6)and hf(A)iA = PAQNi1=1 Æ[Pi2<���<ik Ahi1���iki � j℄ f(A)PAQNi1=1 Æ[Pi2<���<ik Ahi1���iki � j℄ : (7)To obtain an expression for the reliability exponent one arries out a similaralulation with one main di�erene: prior to averaging the indiator funtion overthe ensemble of regular (k; j) odes A, one takes the averaged expression with respetto realisations of true noise vetors n0 to a power r whih favours ode onstrutionswith a low average error probability (i.e., r < 1). The logarithm of the expressionaveraged over the ensemble of odes A is then divided by r to remove the exponent.The expression alulated is:Qr = limN!1 1Nr log 
�
�(n0;A)�n0�r�A (8)Sine there are only disrete degrees of freedom, physially meaningful solutions musthave a non-negative entropy, requiring the disorder-averaged entropies of the twopartition funtions (4) to be non-negative. Note that due to the order of taking thelogarithm vs the various averages, expressions (5) and (8) are not equivalent to a(quenhed) disorder-averaged free energy. Using general priniples one an show that for



Average and reliability error exponents in low-density parity-hek odes 5general values of �1;2 and �1;2, the disordered-averaged entropies (with averages takenover the joint distribution of ode-onstrutions fAg, true- and andidate-noise fn0;ngas suggested by (5) and (8)) are given, for both alulations (5) and (8), byhSxi = �Qr��x � �x�x �Qr��x � 0; x = 1; 2 (9)whih have to be positive.3. Average error exponent - general solutionUsing standard statistial physis methods suh as in [14℄, we perform the gaugetransformation ni ! nin0i , and the averages over true noise (6) and ode onstrutions(7). In the ase of r 6= 1, eah quantity arries two indies (a replia index and anotherindex oming from the power r); however, the two indies fatorise unless an expliit,more omplex, symmetry breaking struture is introdued. Here, we do not assume amore omplex struture that entangles the two types of indies; we also assume thesimplest replia symmetri sheme [15℄ to arrive at the following expression for theaverage error exponent (r = 1), and for the reliability exponent (optimised r):Qr(�1; �2; �1; �2) = 1rExtr�;�̂ � jk log I1[�℄� j log I2[�; �̂℄ + log I3[�̂℄�(10)where I1 = Z kY=1 fd�(x; y)g 1 +Qk=1 x2 !r�1  1 +Qk=1 y2 !r�2 (11)I2 = Z fd�(x; y) d�̂(x̂; ŷ)g�1 + xx̂2 �r�1 �1 + yŷ2 �r�2 (12)I3 = Z jY=1 fd�̂(x̂; ŷ)g*"Xu=�1 e�1Fn0u jY=1�1 + ux̂2 �#�1
� "Xv=�1 e�2Fn0v jY=1�1 + vŷ2 �#�2+rn0 (13)where we have used the short-hand notation df(x; y)=dxdy f(x; y). For r = 1, funtionalextremisation of (10) with respet to the densities �(x; y) and �̂(x̂; ŷ) results in a losedset of equations (reminisent of `density evolution' equations [1℄):�̂(x̂; ŷ) = Z k�1Y=1 fd�(x; y)g Æ "x̂� k�1Y=1 x# Æ "ŷ � k�1Y=1 y# (14)�(x; y) = DDÆ hx� D�(x̂;�1)D+(x̂;�1)i Æ hy � D�(ŷ;�2)D+(ŷ;�2)iEE0

1 ��0 : (15)



Average and reliability error exponents in low-density parity-hek odes 6where DD� EE0 � Z j�1Y=1 fd�̂(x̂; ŷ)g 
D�1+ (x̂; �1)D�2+ (ŷ; �2) � �n0 ; (16)D�(z; �) � [e�Fn0 j�1Y=1(1 + z)℄� [e��Fn0 j�1Y=1(1� z)℄: (17)For given (�1; �2; �1; �2) in general, solutions to (14) and (15) an only be obtainednumerially. Inserting these solutions into (10) we then obtain Q(�1; �2; �1; �2), whihbeomes the average error exponent for �1 = ��2 = � > 0, and for �1 = �2 = � !1.We must reall, however, that physially meaningful solutions must satisfy theonditions (9) stating that the entropies related to the full and the restrited partitionsums are non-negative.We restrit ourselves to regions below the thermodynami transition where theaverage ase is dominated by the ferromagneti solution, suh that we an �x the systemdesribed by Z2 in (4) to the ferromagneti solution. This dominane is guaranteed ifthe following onstraint is satis�ed�Q�� �����1=��2=� � 0 : (18)It turns out that for given � > 0, the largest value of � for whih (18) is satis�ed isgiven by the simple expression � = 1=(1 + �). Hene, in order to maximise �, we mustlook for the smallest value �� that satis�es the onditions on the non-negativity of theentropies (9). Unfortunately, in general this value �� an only be obtained numerially.The value obtained for the average error exponent by this analysis is then given byQ(1=(1 + ��); 1=(1 + ��); ��;���) from (10).In �gure 1 we present the obtained average error exponent as a funtion of the iprate for (k; j) = (4; 3), (R = 1=3) and (k; j) = (6; 3) (R = 1=2) odes. We observe thatthe error exponent indeed onverges to zero, as it should, when the ip rate approahesits ritial value.Notie the similarity between the equations obtained here and in [6℄ in spite of thedi�erent starting points. It has been shown in [6℄ that the analysis should be re�ned inlow rate regions by onsidering a more omplex bound. The re�ned analysis resulted intight bounds of the error exponent even in the region of low ode-rates, similar to thoseobtained using expurgated exponent methods. In the next setion we will show thatthe seletion of 'best odes' through the optimisation of the power r, in alulating thereliability exponent, provides similar results to those obtained in [6℄.4. An exatly solvable limit: k; j !1Whereas for �nite density odes solutions for the average error exponent are obtainednumerially, in the limit of k; j ! 1 (while keeping the rate R = 1 � j=k �nite) oneobtains two types of analyti solutions to equations (14) and (15), whih an be veri�ed
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Average and reliability error exponents in low-density parity-hek odes 8requires that � = 1=2, suh that � = 1 andQI = � jk log 2� log[eF + e�F ℄ + log[eF + e�F + 2℄ (22)whih is exatly the Bhattaharyya limit [11℄.The average error exponent as obtained from the type II solution is given byQII = � �� jk log 2 + log 2 osh[�F ℄�+log[2 osh(F��F�)℄�log 2 oshF (23)The ondition on the entropy hS2i � 0 is satis�ed for all � > 0, whereas the onditionhS1i � 0 is violated below the ritial (freezing) temperature 1=�� obtained from� jk log 2� ��F tanh[��F ℄ + log 2 osh[��F ℄ = 0 (24)This negative entropy is an artifat of the assumption about the symmetry betweenreplias, and is easily remedied by onsidering a `frozen RSB' ansatz [2℄. Using thisansatz and taking into aount ondition (18), the (frozen) average error exponentobtained from the type II solution, is �nally given byQfrII = F tanh[��F ℄ + jk log 2� log 2 oshF (25)What remains is to determine whether the type I or type II solution is physiallydominant, by using Q as a generating funtion for alulating the related free energies(through its derivative with respet to �). Results for the ase of k; j !1 are presentedin �gure 2 for p = 0:01 and p = 0:05.4.2. Reliability exponentTo obtain the reliability exponent we take equations (10)-(13) and optimise with respetto r. Deriving a general set of equations similar to (14,15), that an be solved iteratively,is diÆult in this ase. However, in the limit k; j !1, we observe that we an restritthe possible solutions of �̂(x̂; ŷ) to two di�erent types:Type I: �̂(x̂; ŷ) = 12 [Æ(x̂� 1) + Æ(x̂ + 1)℄ Æ(ŷ � 1) (26)Type II: �̂(x̂; ŷ) = Æ(x̂) Æ(ŷ � 1) (27)In this ase, knowledge of the solution for �̂(x̂; ŷ) is suÆient for alulation thereliability exponent (10). Furthermore, the expression obtained from the type II solutionturns out to be idential to that of the average error exponent (25).On the other hand, the reliability exponent obtained from the type I solution issomewhat di�erent, and takes the form:Qr I = �1r jk log 2�log[osh(F )℄+1r log[oshr(F )+oshr((2���1)F )℄ :(28)



Average and reliability error exponents in low-density parity-hek odes 9Given the relation (18) and � = 1=(1 + �), one obtains � = 1, � = 1=2, and theexpression redues toQr I = �1r jk log 2� log[osh(F )℄ + 1r log[oshr(F ) + 1℄ : (29)Optimising the expression with respet to r, one obtains a similar expression to theexpurgated exponent result [10℄Eex(r; R) = maxr �ln 2 oshF � 1r ln [(2 oshF )r + 1℄ + 1r (1� R) ln 2� ;(30)whih is also idential to the result obtained for the average bound of the reliabilityexponent in [6℄.The reliability exponent is therefore idential to the average error exponent exeptfor very low R values as shown in �gure 2 for p = 0:01 and p = 0:05 (marked by a dottedline in the two ases onsidered).
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Average and reliability error exponents in low-density parity-hek odes 105. MN odesIn this setion, we extend our treatment of the average error and reliability exponent toregular MN odes [12℄, a variant of LDPC odes.A regular MN ode is de�ned by the binary N � (N + K) matrix A = [CsjCn℄,onatenating two sparse matries with the N �N matrix Cn assumed invertible. TheN � K matrix Cs has k non-zero elements per row and j per olumn while Cn has tnon-zero elements per row and per olumn. The ode rate is given by R � K=N = k=j.The enoding sheme onsists of generating a odeword t0 2 f0; 1gN from an (unbiased)message vetor s0 2 f0; 1gK via t0 = (C�1n Cs)s0. Upon sending t0 through the noisyhannel the vetor r = t0 + n0 is reeived, where n0 is the true hannel noise (1).Deoding is arried out by multiplying the reeived vetor r by Cn to produethe syndrome vetor z = Css0 + Cnn0. In order to reonstrut the original message,one selets the best estimate (s;n), for the true (s0;n0) from the parity hek setIp = f(s;n) jCss+ Cnn = zg, on the basis of the message/noise statistis. Note thatsine we take the message vetor s0 to be unbiased, the seletion will only be based onthe noise statistis.Sine most alulation steps are ompletely analogous (although lengthier) to thoseof Gallager odes, we only state the �nal general expression for MN odes:Qr(�1; �2; �1; �2) = 1rExtr�;�̂;�;�̂ n (31)� k log Z fd�(x; y) d�̂(x̂; ŷ)g�1 + xx̂2 �r�1 �1 + yŷ2 �r�2� t logZ fd�(x; y) d�̂(x̂; ŷ)g�1 + xx̂2 �r�1 �1 + yŷ2 �r�2+ log Z kYi=1 fd�(xi; yi)g tYl=1 fd�(ul; vl)g�1+Qi xiQl ul2 �r�1�1+Qi yiQl vl2 �r�2+ kj logZ jY=1 fd�̂(x̂; ŷ)g"X�=� jY=1�1 + �x̂2 �#r�1 "X�=� jY=1�1 + �ŷ2 �#r�2
+ log Z tYl=1 fd�̂(x̂l; ŷl)g*"X�=� e�1�Fn0 tYl=1 �1 + � x̂l2 �#�1

�"X�=� e�2�Fn0 tYl=1 �1 + � ŷl2 �#�2+rn09=;with the short-hand notation df(x; y)=dxdy f(x; y). As for Gallager odes, for �1 =�2 = �, and �1 = ��2 = �, Qr beomes the average error exponent for r = 1 , whilefor optimised r it beomes the reliability exponent. Furthermore, the onditions (9) and(18) must always be satis�ed.Similarly to the ase of Gallager odes one an derive a set of funtional equations(reminisent of 'density evolution' equations [1℄) for �; �̂; � and �̂.
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