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t. We present a theoreti
al method for a dire
t evaluation of the averageand reliability error exponents in low-density parity-
he
k error-
orre
ting 
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s. Results for the binary symmetri
 
hannel (BSC) arepresented for 
odes of both �nite and in�nite 
onne
tivity.PACS numbers: 89.70.+
, 05.50.+q, 75.10.Hk, 89.20.Pf1. Introdu
tionLow-density parity-
he
k 
odes (LDPC) have attra
ted signi�
ant interest in re
entyears due to their simpli
ity and ex
eptionally high performan
e [1℄. Their simpli
ityand inherent randomness make them amenable to analysis using established methods inthe area of statisti
al physi
s. These have been employed in a number of papers [2℄-[9℄to gain insight into the properties of LDPC 
odes and to evaluate their performan
e.These studies in
lude the evaluation of 
riti
al noise levels for given 
odes [2℄,an exa
t 
al
ulation of weight and magnetisation enumerators [4℄, the performan
e ofirregular 
odes [3℄, properties of 
odes in real-valued 
hannels [5℄, and the derivation ofbounds for the reliability exponent [6℄, to name but a few. These studies also representthe interdis
iplinary nature of this resear
h area and illustrate the su

essful intera
tionbetween resear
hers in the two dis
iplines.The evaluation of error exponents has been a long-standing problem in informationtheory [10, 11℄. E�orts to obtain exa
t expressions and/or bounds to the error exponentresulted in partial su

ess; although tight bounds have been derived in the 
ase ofrandom 
odes and LDPC with in�nite 
onne
tivity [10℄, only limited results have beenobtained for sparely 
onne
ted 
odes. Main stream te
hniques to ta
kle the problemin
lude sphere-pa
king and union-bound arguments [11, 10℄. Below a 
ertain 
ode-rate value, the estimated bounds also be
ome loose and require using the `expurgatedexponent' te
hniques [10℄ for obtaining a tighter bound.
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he
k 
odes 2In this paper, we employ methods of statisti
al physi
s to evaluate dire
tly theaverage error exponent and typi
al reliability exponent in Gallager and MN [12℄ LDPC
odes. The average error exponent is obtained by 
arrying out averages over theensemble of randomly generated LDPC 
odes of given rate and 
onne
tivity; whilethe reliability exponent is obtained by sele
ting the best 
odes in that ensemble.Averages result in the emergen
e of ma
ros
opi
 variables, representative of the ensembleproperties, that 
an be obtained numeri
ally and used to 
al
ulate the average errorexponent (in the 
urrent 
al
ulation we assume that short loops, whi
h 
ontributepolynomially to the blo
k error probability in LDPC 
odes [13℄, have been removed).Average error exponent solutions have been obtained for both �nite and in�nite
onne
tivity ve
tor ensembles, while reliability exponent solutions have been obtainedonly in the 
ase of in�nite 
onne
tivity.As a referen
e point to test our theory, we use known results obtained in theinformation theory literature for solvable limits (e.g. 
odes of in�nite 
onne
tivity),and �nd that our method reprodu
es them exa
tly. Perhaps not surprisingly, we also�nd that at �xed noise level and 
ode rate, the reliability exponent for 
odes of �nite
onne
tivity is always upper-bounded by that of the in�nite-
onne
tivity 
ase.Before we pro
eed, the distin
tion between the typi
al bounds found previouslyusing methods of statisti
al physi
s [6℄, and the 
urrent 
al
ulation should be 
lari�ed.In the former, one employs methods of statisti
al physi
s to 
al
ulate the typi
al valueof a bound based on inequalities introdu
ed by Gallager; while in the 
urrent 
al
ulation,a dire
t estimation of the average error exponent, rather than a bound, is sought. Anadditional advantage of the 
urrent approa
h is that it 
an be extended to providereliability exponent values for LDPC 
odes by restri
ted averages over 
odes of highperforman
e.The paper is organised as follows: In se
tion 2, we introdu
e the general 
odingframework and the te
hnique used. In se
tions 3 and 4 we present an outline of thederivation and the solutions obtained in both �nite and in�nite 
onne
tivity 
asesrespe
tively. In Se
tion 5 we 
ompare the error exponent results obtained for MN 
odesto those of Gallager 
odes in both �nite and in�nite 
onne
tivity 
ases. Dis
ussion and
on
lusions are presented in se
tion 6.2. De�nitionsA regular (k; j) Gallager error-
orre
ting 
ode is de�ned by the binary (N � K) � N(parity 
he
k) matrix A = [C1jC2℄, whi
h is known to both sender and re
eiver. The(N�K)�(N�K) matrix C2 is taken to be invertible. The number of non-zero elementsin ea
h row of A is given by k, while the number of non-zero elements per 
olumn isgiven by j � k(N �K)=N .Gallager's en
oding s
heme 
onsists of generating a 
odeword t 2 f0; 1gN froman information (message) ve
tor s 2 f0; 1gK (with N > K) via the linear operationt = GTs (mod 2) where G is the generator matrix de�ned by G = [IjC�12 C1℄ (mod 2).
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he
k 
odes 3The 
ode rate is then given by R � K=N = 1 � j=k, and measures the informationredundan
y of the transmitted ve
tor.Upon transmission of the 
odeword t via a noisy 
hannel, taken here to be a BSC,the ve
tor r = t+n0 (mod 2) is re
eived, where n0 2 f0; 1gN is the true 
hannel noise.The statisti
s of the BSC is fully determined by the 
ip rate p 2 [0; 1℄:P (n0i ) = (1� p) Æn0i ;0 + p Æn0i ;1 (1)De
oding is 
arried out by multiplying r by A to produ
e the syndrome ve
torz = Ar = An0, sin
e AGT = 0 by 
onstru
tion. In order to re
onstru
t the originalmessage s, one has to obtain an estimate n for the true noise n0. First we sele
tthe parity 
he
k set of A and n0, i.e. all n that satisfy the parity 
he
k equations:Ip
(A;n0) � fn j An = An0g. Sin
e all operations are performed in modulo 2arithmeti
, Ip
(A;n0) typi
ally 
ontains exp[NR ln(2)℄ 
andidates for the true noiseve
tor n0.It was shown (see e.g. [2, 6, 8℄ for te
hni
al details) that this problem 
an be
ast into a statisti
al me
hani
s formulation, by repla
ing the �eld (f0; 1g;+mod(2))by (f1;�1g;�), and by adapting the parity 
he
ks 
orrespondingly. From the parity
he
k matrix A we 
onstru
t the binary tensor A = fAhi1���iki; 1� i1<i2 � � � <ik�Ng,where Ahi1���iki = 1 if A has a row in whi
h the elements fi
; 
 = 1; : : : ; kg are all 1 (i.e.when the bits hi1 � � � iki are involved in the same parity 
he
k), and 0 otherwise. Thefa
t that ea
h bit i1 = 1; : : : ; N is involved in exa
tly j parity 
he
ks is then expressedby Pi2<���<ik Ahi1���iki = j; 8 i1 = 1; : : : ; N and the parity 
he
k equations be
omeQk
=1 ni
 =Qk
=1 n0i
, 8Ahi1���iki = 1.De
oding now 
onsists in sele
ting an n from Ip
(A;n0), on the basis of itsnoise statisti
s, whi
h are fully des
ribed by its magnetisation m(n) = 1=NPi ni(
orresponding to the weight in the information theory literature). Note that the numberof 
ipped bits in a 
andidate noise ve
tor n is given by N(1�m(n))=2. Therefore, weintrodu
e a Hamiltonian or 
ost fun
tion for ea
h noise 
andidate that is negativelyproportional to its magnetisation:H(n) = �F NXi=1 ni = �FNm(n) (2)where we take F = 12 log 1�pp , su
h that up to normalisation exp(�H(n)) yields the
orre
t prior for 
andidate noise ve
tors generated by the BSC [14℄. Then, a ve
tor nfrom Ip
(A;n0) with the highest magnetisation (lowest weight) is sele
ted as a solution;this 
orresponds to Maximum A Posteriori (MAP) de
oding.We are now interested in the probability that other 
andidate noise ve
tors aresele
ted from the parity 
he
k set Ip
(A;n0), other than the 
orre
t (i.e. true) noiseve
tor n0, for any given 
ombination fn0;Ag; this is termed the blo
k error probability.In order to 
al
ulate this probability, we introdu
e an indi
ator fun
tion:�(n0;A) = lim�1;2!1 lim�1;2!�� �Z�11 (n0;A; �1) Z�22 (n0;A; �2)����1=�2=� (3)
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he
k 
odes 4where Z1(n0;A; �1) = Xn2Ip
(n0;A)nn0e��1H(n); Z2(n0;A; �2) = Xn2Ip
(n0;A)e��2H(n): (4)The partition fun
tions Z1(n0;A; �1) and Z2(n0;A; �2) di�er only in the ex
lusion ofn0 from Z1. If the true noise n0 has the highest magnetisation of all 
andidates in theparity 
he
k set (de
oding su

ess), the Boltzmann fa
tor exp[��H(n0)℄ will dominatethe sum over states in Z2 in the limit � ! 1, and �(n0;A) = 0. Alternatively, ifsome other ve
tor n 6= n0 has the highest magnetisation of all 
andidates in the parity
he
k set (de
oding failure), its Boltzmann fa
tor will dominate both Z1 and Z2 and�(n0;A) = 1. Note that the separate temperatures �1 and �2, whi
h are put to be equalto � in the end, and the powers �1;2 whi
h are taken to be �� in the end, have beenintrodu
ed in order to allow us to determine whether obtained solutions are physi
al ornot. The power � � 0 have been introdu
ed to restri
t the indi
ator fun
tion results to0/1. In prin
iple, this 
an be done by taking the limit �! 0; however, in se
tion 3, weshow that �nite 0 < � < 1 values will be used due to various 
onstraints.To derive the average error exponent, we take the logarithm of the indi
ator fun
tionaverage with respe
t to all possible realisations of true noise ve
tors n0, and the ensembleof regular (k; j) 
odes A:Q = limN!1 1N log 

�(n0;A)�n0�A (5)where hf(n0)in0 = 1(2 
oshF )N Xn0 exp(FXi n0i ) f(n0) (6)and hf(A)iA = PAQNi1=1 Æ[Pi2<���<ik Ahi1���iki � j℄ f(A)PAQNi1=1 Æ[Pi2<���<ik Ahi1���iki � j℄ : (7)To obtain an expression for the reliability exponent one 
arries out a similar
al
ulation with one main di�eren
e: prior to averaging the indi
ator fun
tion overthe ensemble of regular (k; j) 
odes A, one takes the averaged expression with respe
tto realisations of true noise ve
tors n0 to a power r whi
h favours 
ode 
onstru
tionswith a low average error probability (i.e., r < 1). The logarithm of the expressionaveraged over the ensemble of 
odes A is then divided by r to remove the exponent.The expression 
al
ulated is:Qr = limN!1 1Nr log 
�
�(n0;A)�n0�r�A (8)Sin
e there are only dis
rete degrees of freedom, physi
ally meaningful solutions musthave a non-negative entropy, requiring the disorder-averaged entropies of the twopartition fun
tions (4) to be non-negative. Note that due to the order of taking thelogarithm vs the various averages, expressions (5) and (8) are not equivalent to a(quen
hed) disorder-averaged free energy. Using general prin
iples one 
an show that for
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he
k 
odes 5general values of �1;2 and �1;2, the disordered-averaged entropies (with averages takenover the joint distribution of 
ode-
onstru
tions fAg, true- and 
andidate-noise fn0;ngas suggested by (5) and (8)) are given, for both 
al
ulations (5) and (8), byhSxi = �Qr��x � �x�x �Qr��x � 0; x = 1; 2 (9)whi
h have to be positive.3. Average error exponent - general solutionUsing standard statisti
al physi
s methods su
h as in [14℄, we perform the gaugetransformation ni ! nin0i , and the averages over true noise (6) and 
ode 
onstru
tions(7). In the 
ase of r 6= 1, ea
h quantity 
arries two indi
es (a repli
a index and anotherindex 
oming from the power r); however, the two indi
es fa
torise unless an expli
it,more 
omplex, symmetry breaking stru
ture is introdu
ed. Here, we do not assume amore 
omplex stru
ture that entangles the two types of indi
es; we also assume thesimplest repli
a symmetri
 s
heme [15℄ to arrive at the following expression for theaverage error exponent (r = 1), and for the reliability exponent (optimised r):Qr(�1; �2; �1; �2) = 1rExtr�;�̂ � jk log I1[�℄� j log I2[�; �̂℄ + log I3[�̂℄�(10)where I1 = Z kY
=1 fd�(x
; y
)g 1 +Qk
=1 x
2 !r�1  1 +Qk
=1 y
2 !r�2 (11)I2 = Z fd�(x; y) d�̂(x̂; ŷ)g�1 + xx̂2 �r�1 �1 + yŷ2 �r�2 (12)I3 = Z jY
=1 fd�̂(x̂
; ŷ
)g*"Xu=�1 e�1Fn0u jY
=1�1 + ux̂
2 �#�1
� "Xv=�1 e�2Fn0v jY
=1�1 + vŷ
2 �#�2+rn0 (13)where we have used the short-hand notation df(x; y)=dxdy f(x; y). For r = 1, fun
tionalextremisation of (10) with respe
t to the densities �(x; y) and �̂(x̂; ŷ) results in a 
losedset of equations (reminis
ent of `density evolution' equations [1℄):�̂(x̂; ŷ) = Z k�1Y
=1 fd�(x
; y
)g Æ "x̂� k�1Y
=1 x
# Æ "ŷ � k�1Y
=1 y
# (14)�(x; y) = DDÆ hx� D�(x̂;�1)D+(x̂;�1)i Æ hy � D�(ŷ;�2)D+(ŷ;�2)iEE0

1 ��0 : (15)
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he
k 
odes 6where DD� EE0 � Z j�1Y
=1 fd�̂(x̂
; ŷ
)g 
D�1+ (x̂; �1)D�2+ (ŷ; �2) � �n0 ; (16)D�(z; �) � [e�Fn0 j�1Y
=1(1 + z
)℄� [e��Fn0 j�1Y
=1(1� z
)℄: (17)For given (�1; �2; �1; �2) in general, solutions to (14) and (15) 
an only be obtainednumeri
ally. Inserting these solutions into (10) we then obtain Q(�1; �2; �1; �2), whi
hbe
omes the average error exponent for �1 = ��2 = � > 0, and for �1 = �2 = � !1.We must re
all, however, that physi
ally meaningful solutions must satisfy the
onditions (9) stating that the entropies related to the full and the restri
ted partitionsums are non-negative.We restri
t ourselves to regions below the thermodynami
 transition where theaverage 
ase is dominated by the ferromagneti
 solution, su
h that we 
an �x the systemdes
ribed by Z2 in (4) to the ferromagneti
 solution. This dominan
e is guaranteed ifthe following 
onstraint is satis�ed�Q�� �����1=��2=� � 0 : (18)It turns out that for given � > 0, the largest value of � for whi
h (18) is satis�ed isgiven by the simple expression � = 1=(1 + �). Hen
e, in order to maximise �, we mustlook for the smallest value �� that satis�es the 
onditions on the non-negativity of theentropies (9). Unfortunately, in general this value �� 
an only be obtained numeri
ally.The value obtained for the average error exponent by this analysis is then given byQ(1=(1 + ��); 1=(1 + ��); ��;���) from (10).In �gure 1 we present the obtained average error exponent as a fun
tion of the 
iprate for (k; j) = (4; 3), (R = 1=3) and (k; j) = (6; 3) (R = 1=2) 
odes. We observe thatthe error exponent indeed 
onverges to zero, as it should, when the 
ip rate approa
hesits 
riti
al value.Noti
e the similarity between the equations obtained here and in [6℄ in spite of thedi�erent starting points. It has been shown in [6℄ that the analysis should be re�ned inlow rate regions by 
onsidering a more 
omplex bound. The re�ned analysis resulted intight bounds of the error exponent even in the region of low 
ode-rates, similar to thoseobtained using expurgated exponent methods. In the next se
tion we will show thatthe sele
tion of 'best 
odes' through the optimisation of the power r, in 
al
ulating thereliability exponent, provides similar results to those obtained in [6℄.4. An exa
tly solvable limit: k; j !1Whereas for �nite density 
odes solutions for the average error exponent are obtainednumeri
ally, in the limit of k; j ! 1 (while keeping the rate R = 1 � j=k �nite) oneobtains two types of analyti
 solutions to equations (14) and (15), whi
h 
an be veri�ed
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p pFigure 1. Average error exponent Q as fun
tion of the 
ip rate p for 
odes of(k; j) = (4; 3) (left pi
ture) and (k; j) = (6; 3) (right pi
ture). Lines with markers
orrespond to the �nite (k; j) 
ases. For 
omparison we also present (thi
k solid lines)the value of the average error exponent in the 
ase of k; j ! 1 with R = 1=4 (left)and R = 1=2 (right) as des
ribed in the analysis of se
tion 4. Note that the transitionfrom type I to type II solution o

urs at small p values outside the range of this �gure.by substitution. Moreover, in this limit one also obtains solutions in the reliabilityexponent 
al
ulation (8), whi
h are generally diÆ
ult to obtain for �nite k and j values.4.1. Average error exponentSolutions obtained in the average error exponent 
al
ulation take the following form:Type I: �(x; y) = 12 [Æ(x� 1) + Æ(x + 1)℄ Æ(y � 1)�̂(x̂; ŷ) = 12 [Æ(x̂� 1) + Æ(x̂ + 1)℄ Æ(ŷ � 1) (19)Type II: �(x; y) = Æ(y � 1) �G+(F (1+�2�1)) Æ(x�tanh(�1F ))+ G�(F (1+�2�2)) Æ(x+tanh(�1F ))��̂(x̂; ŷ) = Æ(ŷ � 1) Æ(x̂) (20)with G�(x) = 12 [1� tanh(x)℄.Taking �1 = �2 = � and �1 = ��2 = �, the average error exponent as obtainedfrom the type I solution is given byQI = � jk log 2� log 
oshF + log 
osh(�F�) + log 2 
osh(F � �F�) : (21)We �nd that the entropies (9) are always identi
ally zero, and that the 
onstraint (18)
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he
k 
odes 8requires that � = 1=2, su
h that � = 1 andQI = � jk log 2� log[eF + e�F ℄ + log[eF + e�F + 2℄ (22)whi
h is exa
tly the Bhatta
haryya limit [11℄.The average error exponent as obtained from the type II solution is given byQII = � �� jk log 2 + log 2 
osh[�F ℄�+log[2 
osh(F��F�)℄�log 2 
oshF (23)The 
ondition on the entropy hS2i � 0 is satis�ed for all � > 0, whereas the 
onditionhS1i � 0 is violated below the 
riti
al (freezing) temperature 1=�� obtained from� jk log 2� ��F tanh[��F ℄ + log 2 
osh[��F ℄ = 0 (24)This negative entropy is an artifa
t of the assumption about the symmetry betweenrepli
as, and is easily remedied by 
onsidering a `frozen RSB' ansatz [2℄. Using thisansatz and taking into a

ount 
ondition (18), the (frozen) average error exponentobtained from the type II solution, is �nally given byQfrII = F tanh[��F ℄ + jk log 2� log 2 
oshF (25)What remains is to determine whether the type I or type II solution is physi
allydominant, by using Q as a generating fun
tion for 
al
ulating the related free energies(through its derivative with respe
t to �). Results for the 
ase of k; j !1 are presentedin �gure 2 for p = 0:01 and p = 0:05.4.2. Reliability exponentTo obtain the reliability exponent we take equations (10)-(13) and optimise with respe
tto r. Deriving a general set of equations similar to (14,15), that 
an be solved iteratively,is diÆ
ult in this 
ase. However, in the limit k; j !1, we observe that we 
an restri
tthe possible solutions of �̂(x̂; ŷ) to two di�erent types:Type I: �̂(x̂; ŷ) = 12 [Æ(x̂� 1) + Æ(x̂ + 1)℄ Æ(ŷ � 1) (26)Type II: �̂(x̂; ŷ) = Æ(x̂) Æ(ŷ � 1) (27)In this 
ase, knowledge of the solution for �̂(x̂; ŷ) is suÆ
ient for 
al
ulation thereliability exponent (10). Furthermore, the expression obtained from the type II solutionturns out to be identi
al to that of the average error exponent (25).On the other hand, the reliability exponent obtained from the type I solution issomewhat di�erent, and takes the form:Qr I = �1r jk log 2�log[
osh(F )℄+1r log[
oshr(F )+
oshr((2���1)F )℄ :(28)
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he
k 
odes 9Given the relation (18) and � = 1=(1 + �), one obtains � = 1, � = 1=2, and theexpression redu
es toQr I = �1r jk log 2� log[
osh(F )℄ + 1r log[
oshr(F ) + 1℄ : (29)Optimising the expression with respe
t to r, one obtains a similar expression to theexpurgated exponent result [10℄Eex(r; R) = maxr �ln 2 
oshF � 1r ln [(2 
oshF )r + 1℄ + 1r (1� R) ln 2� ;(30)whi
h is also identi
al to the result obtained for the average bound of the reliabilityexponent in [6℄.The reliability exponent is therefore identi
al to the average error exponent ex
eptfor very low R values as shown in �gure 2 for p = 0:01 and p = 0:05 (marked by a dottedline in the two 
ases 
onsidered).
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Figure 2. Reliability and average exponents as fun
tion of the 
ode rate R for regulark; j !1 Gallager 
odes for whi
h analyti
al expressions 
an be derived; see (22) and(25) (dashed: p = 0:01 and solid: p = 0:05). The reliability exponent is identi
al tothe average error exponent ex
ept for very low R values where it is represented bythe 
urved solutions above the linear average exponent results marked by a dashedand solid lines, respe
tively. The transition point is marked by a verti
al line. Thetransition between solutions of type I and II is marked by � and the 
riti
al transitionpoint by a �.
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he
k 
odes 105. MN 
odesIn this se
tion, we extend our treatment of the average error and reliability exponent toregular MN 
odes [12℄, a variant of LDPC 
odes.A regular MN 
ode is de�ned by the binary N � (N + K) matrix A = [CsjCn℄,
on
atenating two sparse matri
es with the N �N matrix Cn assumed invertible. TheN � K matrix Cs has k non-zero elements per row and j per 
olumn while Cn has tnon-zero elements per row and per 
olumn. The 
ode rate is given by R � K=N = k=j.The en
oding s
heme 
onsists of generating a 
odeword t0 2 f0; 1gN from an (unbiased)message ve
tor s0 2 f0; 1gK via t0 = (C�1n Cs)s0. Upon sending t0 through the noisy
hannel the ve
tor r = t0 + n0 is re
eived, where n0 is the true 
hannel noise (1).De
oding is 
arried out by multiplying the re
eived ve
tor r by Cn to produ
ethe syndrome ve
tor z = Css0 + Cnn0. In order to re
onstru
t the original message,one sele
ts the best estimate (s;n), for the true (s0;n0) from the parity 
he
k setIp
 = f(s;n) jCss+ Cnn = zg, on the basis of the message/noise statisti
s. Note thatsin
e we take the message ve
tor s0 to be unbiased, the sele
tion will only be based onthe noise statisti
s.Sin
e most 
al
ulation steps are 
ompletely analogous (although lengthier) to thoseof Gallager 
odes, we only state the �nal general expression for MN 
odes:Qr(�1; �2; �1; �2) = 1rExtr�;�̂;�;�̂ n (31)� k log Z fd�(x; y) d�̂(x̂; ŷ)g�1 + xx̂2 �r�1 �1 + yŷ2 �r�2� t logZ fd�(x; y) d�̂(x̂; ŷ)g�1 + xx̂2 �r�1 �1 + yŷ2 �r�2+ log Z kYi=1 fd�(xi; yi)g tYl=1 fd�(ul; vl)g�1+Qi xiQl ul2 �r�1�1+Qi yiQl vl2 �r�2+ kj logZ jY
=1 fd�̂(x̂
; ŷ
)g"X�=� jY
=1�1 + �x̂
2 �#r�1 "X�=� jY
=1�1 + �ŷ
2 �#r�2
+ log Z tYl=1 fd�̂(x̂l; ŷl)g*"X�=� e�1�Fn0 tYl=1 �1 + � x̂l2 �#�1

�"X�=� e�2�Fn0 tYl=1 �1 + � ŷl2 �#�2+rn09=;with the short-hand notation df(x; y)=dxdy f(x; y). As for Gallager 
odes, for �1 =�2 = �, and �1 = ��2 = �, Qr be
omes the average error exponent for r = 1 , whilefor optimised r it be
omes the reliability exponent. Furthermore, the 
onditions (9) and(18) must always be satis�ed.Similarly to the 
ase of Gallager 
odes one 
an derive a set of fun
tional equations(reminis
ent of 'density evolution' equations [1℄) for �; �̂; � and �̂.
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Q Q
p pFigure 3. Average error exponent Q as fun
tion of the 
ip rate p obtained for Gallager(10) and MN 
odes (31). Left: results for MN 
odes of R = 1=4. Lower line and 
ir
les:(k; j; t) = (1; 4; 2). Upper line and diamonds: (2; 8; 3). Thi
k upper line: k; j ! 1.Right: results for Gallager and MN 
odes of R = 1=2. Lower line and 
ir
les: Gallager,(k; j) = (6; 3). Upper line and diamonds: MN, (k; j; t) = (3; 6; 3). Upper line: theanalyti
al solution of k; j !1 obtained via (22,25).5.1. Average error exponent - �nite k; j and tThe average error exponent 
an be 
al
ulated numeri
ally for �nite k; j and t values;the average error exponent Q as fun
tion of the 
ip rate p is shown in �gure 3.On the left, we show results for MN 
odes of �xed rate R = 1=4 with three di�erentsets of parameters (k; j; t) = (1; 4; 2) (
ir
les), (2; 8; 3) (diamonds) and k; j !1 (upperline). It is interesting to noti
e that average exponents for either k > 2 or t > 2 values
oin
ide with that of the in�nite 
onne
tivity 
ase (whi
h 
an be obtained analyti
ally).This 
omplements other interesting properties of MN 
odes, to do with their 
riti
al
ip rate values, that have been obtained previously, distinguishing them from GallagerLDPC 
odes [2, 4, 5℄.On the right, we see a 
omparison between average error exponents of Gallagerand MN 
odes (R = 1=2). The Gallager 
ode (k; j) = (6; 3) average error exponent(
ir
les) is signi�
antly below the random 
ode k; j ! 1 value (thin upper line) andthe equivalent MN 
ode (k; j; t) = (3; 6; 3) result (diamonds).5.2. Average and reliability error exponents - k; j; t!1The 
ase of k; j; t !1 is solvable exa
tly for all transmission rates, and both averageand reliability error exponents 
an be obtained analyti
ally. The solutions obtainedas well as the average and reliability error exponents 
al
ulated are identi
al to thoseof Gallager LDPC 
odes. Retrospe
tively, this is not surprising as both 
odes be
omerandom 
odes in this limit.
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ussionIn this paper we suggest a method for dire
t evaluation of the average and reliabilityerror exponent over the ensemble of LDPC error-
orre
ting 
odes of given rate and
onne
tivity. An analyti
al solution has been obtained, for both Gallager and MN
odes, using methods of statisti
al physi
s, whi
h is in perfe
t agreement with knownresults in the limit k; j(; t)!1 (with R �nite). The results for MN and Gallager 
odesbe
ome identi
al in this limit as both be
ome random 
odes.Average error exponent results obtained by our method for 
odes of �nite (k; j)values 
annot be obtained using traditional approa
hes used in the information theory
ommunity. As expe
ted, they seem to be upper bounded by the k; j !1 
urves, butsuggest a profoundly di�erent behaviour for Gallager and MN LDPC 
odes. Averageerror exponent results for Gallager 
odes show a gradually improved performan
e as theparameters (k; j) in
rease, until they �nally 
oin
ide with the k; j !1 error exponentresult. The results for MN 
odes be
omes identi
al to the k; j ! 1 error exponentresult for all k > 2 or t > 2. To some extent, this is in agreement with previousresults obtained for the 
riti
al 
ip rate of MN 
odes [2, 4, 5℄ and is a result of the
lose-to-random 
odebook they generate.An interesting feature of the present study is the similarity of our equations tothose obtained in [6℄ in spite of the di�erent approa
hes used. An important advantageo�ered by the 
urrent approa
h is a potential extension to sele
t high performan
e 
odesto obtain reliability exponent values for LDPC 
odes of �nite 
onne
tivity; obtaining su
hsolutions remains a diÆ
ult task and is 
urrently under study.A
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