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ABSTRACT 

Radial Basis Function networks with linear outputs 
are often used in regression problems because they 
can be substantially faster to train than Multi-layer 
Perceptrons. For classification problems, the use 
of linear outputs is less appropriate as the outputs 
are not guaranteed to  represent probabilities. In 
this paper we show how RBFs with logistic and 
softmax outputs can be trained efficiently using 
algorithms derived from Generalised Linear Models. 
This approach is compared with standard non-linear 
optimisation algorithms on a number of datasets. 

1 INTRODUCTION 

Radial Basis Function (RBF) networks with lin- 
ear outputs are often used in regression problems be- 
cause they can be substantially faster to train than 
Multi-layer Perceptrons (MLP). This is because it is 
possible to  choose suitable parameters for the ba- 
sis function parameters by an unsupervised tech- 
nique (such as selecting a subset of the data for cen- 
tres, using a clustering algorithm such as K-means, 
or training a mixture model with EM) so that the 
hidden unit activations model the unconditional in- 
put data density p(x). With the hidden unit pa- 
rameters fixed, and a sum of squared error func- 
tion, the optimisation of the outputs weights is a 
quadratic problem that can be solved using the meth- 
ods from numerical linear algebra. 

In classification problems, rather than directly 
outputting a classification it is advantageous to esti- 
mate posterior probabilities p(Ck Ix), since this al- 
lows us to compensate for different prior proba- 
bilities, combine the outputs of several networks, 
make minimum risk classifications under different 
cost functions and to set rejection thresholds: see 
[3]. For classification problems, the use of linear out- 
puts is less appropriate as then the network out- 
puts are not guaranteed to represent probabilities. 
With MLPs it is common practice to  use logistic 
(for two class) and softmax (for multiple classes) out- 
put nodes and appropriate cross-entropy error func- 
tion so as to ensure that the outputs sum to one and 
all lie in the interval [0,1]. This does not add sig- 
nificantly to the time taken to train an MLP since 
even with linear outputs, general purpose optimisa- 
tion routines must be used. 

However, an RBF with logistic or softmax outputs 
no longer has a quadratic error surface for the output 
layer. If general purpose optimisation algorithms are 

used, much of the speed advantage over MLPs is 
lost. In this paper we show how RBFs with logistic 
and softmax outputs can be trained efficiently using 
algorithms derived from Generalised Linear Models. 
We compare these models with standard RBF's on 
both synthetic and real datasets. 

2 TRAINING GENERALISED LIN- 
EAR MODELS 

2.1 GENERALISING LINEAR REGRES- 
SION 

This brief outline of generalised linear models is 
based on that in [8]. In linear regression theory, it is 
assumed that the errors follow a normal distribution 
with constant variance 02. The output of the model 
represents the mean conditioned on the input vector 
X: 

p = x P  (1) 
In a generalised linear model we replace the normal 
distribution for the target random variable Y by a 
distribution from the exponential family, which has 
the form: 

PY (Y, %q5) = exP{(rlY - b(77))/4#J) + C(Y,q5)} 

(2) 
where q is the 'natural parameter' and q5 is the 
'dispersion parameter'. For the normal distribution, 
8 = p and q5 = 02. The model now has the form 

v = x P  (3) 
The mean p of Py is modelled as a function of q: 
p = b'(q), where f = b' is called the link function. 
If q = 8, then the output of the generalised linear 
model is the natural parameter of the noise model, 
and f is the canonical link. 

The normal distribution is not an appropriate 
error model for classification problems, where the 
output variable is discrete. For a two class problem, 
we use a Bernoulli distribution 

where T ,  the probability of 'success' is the mean, 
and q = ln(T/(l - T)). This corresponds to  using 
a logistic function at the output of the generalised 
linear model. For an m class problem, we use the 
multinomial distribution on m variables: 
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where pi  is the probability of the ith class and 
M = Cz1 yi  is generally taken to  be equal to one. 
The model has m outputs and the canonical link 
function is the familiar softmax function: 

In the statistical literature this is known as multiple 
logistic regression. The target data should have a 
l-of-m encoding. 

2.2 PARAMETER ESTIMATION 

The obvious starting point for training these models 
is to  use maximum likelihood. For linear regression, 
this is equivalent to minimising the quadratic form 

(Y - XmT(y - XP) (7) 

with respect to 0, where X is the data matrix and 
Y is the target matrix. Equating the derivative to 
zero yields the normal equations 

(XTX)P = XTY (8) 

which can be solved efficiently by computing the 
pseudo-inverse Xt of X and setting P = XtY. This 
is numerically mdre stable than computing explicitly 
the inverse of the square matrix XTX. 

Maximum likelihood for both generalised linear 
models we are considering does not lead to a 
quadratic form, and so iterative methods are used 
instead. In principle there is no reason why general 
purpose nonlinear optimisation algorithms should 
not be used, but it is more efficient to take advantage 
of the special 'near-linear' form of the model. Let L 
denote the log likelihood and H = (d2C/dpdf lT)  the 
Hessian of C. The Fisher scoring method updates the 
parameter estimates P at the Tth step by 

(9) 

This is the same as the Newton-Raphson algorithm, 
except that the expected value of the Hessian 
replaces the Hessian'. Normally taking a full Newton 
step is not a good idea, as it is easy to  overshoot the 
maximum. However, there are two special features 
of the generalised linear model that make this 
procedure work well in practice: the log likelihood 
of logistic models has a single maximum, and it 
is possible to initialise the parameter P reasonably 
close to the maximum. 

The Hessian of the logistic model is equal to 
-XTWX, where W is a diagonal weight matrix 
whose elements are d n ) ( l  - d")). The gradient is 
equal to  XTWe, where the nth row of e is given by 

'In any case, for the canonical link, the Hessian coincides 
with its expected value. 
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We form the variable z, = XP, + e, which is the 
linearisation of the link function around the current 
value of the mean. Then the equation (9) reduces to: 

which is the normal form equation for a least squares 
problem with input matrix XTW:I2 and dependent 
variables W:I2z,. The weights change at each 
iteration, since they are a function of the parameters 
P,. The algorithm is known as Iterated Re-weighted 
Least Squares (IRLS). 

The reduction of the Newton step to the normal 
form equation (11) depends on being able to find 
a square root of W (which is easy in this case, as 
it is non-negative diagonal) , and compute XTW'I2 
efficiently (which can be done without a full matrix 
multiplication again as W is diagonal). We initialise 
the procedure by using the values ( ~ ( " 1  + 0.5)/2.0 
as a first estimate for dn) and from this deriving 
the other quantities needed. The uniqueness of the 
maximum of C was shown in [l]. 

The case of multiple logistic or softmax regres- 
sion is a little more complicated (and not so well doc- 
umented in the literature). The gradient and Hes- 
sian for a single input pattern x are given by 

To show that there is a unique maximum, it is 
sufficient to prove that the Hessian H is positive 
semi-definite. If a is an arbitrary vector, and we 
write C = (plbkl - plpk) ,  then 

aTHa = aTxCxTa = (xTa)TC(xTa) 2 0 
(13) 

since C is the covariance matrix of the multinomial 
distribution and is therefore positive semi-definite2. 
However, when'we write the Hessian in the form 
ETWE, where B is the (mn) x (mp) block matrix 
containing m copies of X along the diagonal (and 
p is the input dimension), the matrix W is an 
m x m block matrix, where each block is an n x n 
diagonal matrix containing the corresponding entries 
from C for each input pattern. W is no longer 
diagonal, but to compute its square root, we need 
only find a Cholesky decomposition of C. However, 
because C has m2 non-zero entries, it is no longer 
clear that this representation of the problem offers 
practical advantage. We have chosen to implement 
two alternative algorithms. In the first we calculate 
the exact Hessian by summing terms given by 
equation (12) for each row in the dataset. The 
resulting matrix is usually very ill-conditioned, but 
using singular value decomposition, it is numerically 
tractable to solve the original Fisher scoring equation 

2Thanks to Chris Williams for pointing this out. 
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(9). Alternatively, in a simplified algorithm, we can 
treat each output as independent, which yields the 
same update rule as for the logistic model (this is 
no surprise, since the marginal distribution for a 
single output in a multiple logistic model is binomial 
with probability p i ) ,  although this is not a good 
approximation to the true Hessian. In either case, we 
initialise the parameters using the same procedure 
as for logistic regression, but treating each output 
independently. 

3 NONLINEAR RBF NETWORKS 
. FOR CLASSIFICATION 

The output of RBF networks is usually given as a 
linear combination of basis functions: 

where x(J) is the ‘centre’ of the j t h  basis function. 
Once the parameters of the basis functions are fixed, 
the computation of the output weights is a linear 
regression problem, Y = +W, with .P denoting the 
design matrix. As in equation (7), this is solved 
by computing the pseudo-inverse of +. Because of 
the form of the solution, any linear constraint on 
the training targets is necessarily satisfied by the 
network outputs [7]. For a multi-class classification 
problem, where a 1-of-m encoding is used, the 
network outputs will sum to one just as the targets 
do. However, the network outputs need not lie in the 
range [0,1] and so it may not always be possible to  
interpret them as probabilities. Instead, we replace 
the linear output layer with logistic (for 2 class) and 
softmax (for more than 2 classes) models and use the 
relevant IRLS algorithm from section 2.2 for training. 
Software implementing this model was developed 
using the NETLAB neural network toolbox3. 

4 EXPERIMENTAL RESULTS 

In this section we present the results of using our 
method of training logistic output RBF networks on 
classification problems. Their performance is com- 
pared with linear output models, and the train- 
ing algorithm with scaled conjugate gradient (SCG) 
and quasi-Newton optimisation algorithms ([3] is a 
useful reference). The initial output layer weights 
for the logistic models trained by SCG and quasi- 
Newton algorithms are taken from a linear output 
model trained with a pseudo-inverse, which is an ef- 
ficient way to  get a much better than random start 
point. The initialisation of the output weights for 
IRLS training was discussed in Section 2.2 and ap- 
plies IRLS to  a ‘smoothed’ version of the targets. 

3Available from 
http://ww.ncrg.aston.ac.uk/netlab/index.html 

The RBF networks used thin plate splines as ba- 
sis functions (for the reasons given in [5]). The cen- 
tres were adjusted using either K-means or the EM, 
algorithm (so that they approximate the uncondi- 
tional density of the input data). Note that in all re- 
sults reported here, the reported computational ef- 
fort does not include the centre selection phase and is 
solely for the training of the output layer weights and 
biases. All algorithms had the same stopping crite- 
rion; both the absolute change in the weight vector 
and the error function should be less than 1 x 

4.1 SYNTHETIC DATASETS 

Figure 1: 2 class synthetic data. (a) Contour plot of 
linear output RBF. Contours a t  0, 0.5 and 1.0. :In 
the shaded region the output cannot be interpreted 
as a probability. (b) Contour plot of logistic output 
RBF. 

Two simple synthetic datasets have been created 
with a two-dimensional input space. In the two 
class case, data is drawn from a mixture of three 
Gaussians, two of which are assigned to one class. 
The generating parameters were selected so that the 
decision boundaries are non-linear. 

The graph in figure la shows that with linear 
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outputs, there are regions of the input space where 
the outputs are not confined to  the interval [0,1], 
and that this can occur even for training data. 
The learning curves in figure 2 show that the IRLS 
training algorithm is significantly faster than either 
SCG or quasi-Newton, as is also shown in table 1. 

Algorithm 
Linear outputs 

Softmax: exact Hessian 
Softmax: simplified 

SCG 
quasi-Newton 

I 
5 10 

x Id 

Figure 2: 2 class synthetic data. Learning curves 
(measured in flops) for logistic output RBF. 

Algorithm 1 flops 1 Error 
Linear outputs I 22323 I - 

IRLS I 122087 I 35.2262 
SCG 1467342 35.3275 

quasi-Newton 1142511 35.2262 

Table 1: Results on a 2 class synthetic dataset. 

To test the generality of this result, 10 replicated 
datasets were created by randomly sampling from 
the same mixture model. Table 2 contains the results 
of training 10 networks on these datasets. The error 
ratio is computed for each training set by dividing 
the error of each algorithm by the minimum error 
across all the algorithms. It shows that the IRLS 
is on average 6 times faster than the other two 
algorithms, and the computational effort is more 
consistent. 

Table 2: 
dataset. 

Results on replicated 2 class synthetic 

The three class synthetic dataset is drawn from 
a mixture of five Gaussians. Again, a linear output 
RBF can have non-probabilistic outputs in regions of 
input space where the density of training data is high 
(see figure 3a). The specialised training algorithms 
were an order of magnitude more efficient than SCG 
and quasi-Newton (see table 2). The 'simplified' 

flops 
59687 

2050376 
. 478152 
11031430 
11370906 

Error 
- 

94.95 
95.60 
95.01 
94.95 

Table 3: Results on 3 class synthetic data 

algorithm was fastest to converge, but tends to take 
a large up-hill step when close to the maximum 
likelihood, so that the algorithm terminates at a sub- 
optimal value. 

The results from 10 replicas of the 3 class data 
are given in Table 4. The IRLS algorithm is on 
average more than 4.6 times faster than SCG, and 
the computational effort is again more consistent. 
For 7 of the 10 datasets, the approximate Hessian 
failed to improve on the initial weights, and so the 
results are not tabulated. 

Table 4: 
dataset. 

Results on replicated 3 class synthetic 

4.2 REAL DATASETS 

We have tried out our method on three well known 
classification problems: Leptograpsus crabs, dia- 
betes in Pima women and forensic glass4. 

In the Leptograpsus crabs problem, the task is 
to determine the sex of crabs on the basis of 6 
measurements. Using the same procedure reported 
in [9], we took 80 training examples and 120 
test examples. The results, with some selected 
comparisons from [2], are reported in table 5. Note 
that SCG remained stuck in a local minimum 
despite several restarts, while IRLS and quasi- 
Newton achieved a training set log likelihood of near 
zero. Ten hidden units were used, since this was the 
smallest number for which the logistic RBF trained 
to a sufficiently low error. 

In the diabetes diagnosis problem, the task is to 
diagnose whether a subject has diabetes or not on 
the basis of 8 variables measuring various disease 
indicators. There are 200 training examples, and 
332 test examples. The default classifier (assigining 
every subject to the healthy class) has an error rate 
of 33%. The optimal RBF network had 8 hidden 

4Available from 
http://markov.stats.ox.ac.uk/pub/PR" 
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Algorithm 

RBF: Linear outputs 

SCG 
quasi-Newton 

MLP 
Linear Discriminant 
Logistic Regression 

MARS 

RBF: IRLS ' 

.- 
il- 

e -  

!. 

0 -  

1 -  

-2- 

flops 

48733 
364836 

3330815 
3245640 

- 
- 
- 
- 

0 

0 

flops 

96723 
436145 

1469126 
6493136 

- 
- 
- 

Figure 3: 3 class synthetic data. (a) Non- 
probabilistic predictions from linear output RBF 
(dotted region). (b) Decision boundaries of soft- 
max output RBF. 

Miclassification 
Rate % 

19.9 
21.4 

. - 
- 

22.6 
20.2 
19.9 

units: its results are compared with those achieved 
by other models (as given in [lo]) in table 6. 

In the forensic glass problem, the task is to 
determine the type of a glass sample from the 
refractive index and composition (weight fraction 
of eight oxides). There are 214 examples with 
6 classes, so performance is estimated using 10- 
fold cross-validation [lo]. To improve performance, 
a committee of 10 networks was used for each 
partition, as was done by Ripley in [lo] for the MLP. 
The results are contained in table 7; for comparison, 
the default rule (assigning to the largest class) has a 
misclassification rate of 65%. It should be noted that 
the computational effort for both MLP and Gaussian 
Process methods on this problem was very large 
(the latter required 24 hours on an SGI Challenge) 
compared with the softmax RBF approach (which 
took about 20 minutes on a less powerful computer). 
On the third dataset, the optimal number of hidden 
units for the linear output RBF was 25, while it was 
12 for the non-linear output RBF. 

214 

Figure 4: 3 class synthetic data. Learning curves 
(measured in flops) for softmax output RBF. 

Test Set 
Misclassifications 

6 
4 
- 
- 
3 
8 
4 

22.6 

Table 5: Results on crab data 

5 DISCUSSION AND CONCLU- 
SIONS 

In this paper we have demonstrated that the bene- 
fits of using non-linear output functions for classifi- 
cation problems can be achieved with RBF networks 
while still retaining their significant training speed 
advantage over MLPs. In addition, the IRLS algo- 
rithm is considerably faster than using more gen- 
eral non-linear optimisation methods. In our ex- 
periments, IRLS achieved the same final error val- 
ues as the quasi-Newton algorithm (to 4 decimal 
places), while scaled conjugate gradient often termi- 
nated at error values that were larger in the third sig-, . 

Algorithm 

RBF: Linear outputs 
RBF: IRLS 

SCG 
quasi-Newton 

MLP 
Linear Discriminant 
Logistic Regression 

Table 6: Results on diabetes data 
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Algorithm 
RBF: Linear outputs 

RBF: exact Hessian 
MLP 

Linear Discriminant 
MARS 

PP regression 
Gaussian Process 
Gaussian Mixture 

Table 7: Results, on forensic glass data. The 
simplified IRLS algorithm failed to converge. 

Misclassification Rate % 
31.4 
30.3 
23.8 
36.0 
32.2 
35.0 
23.3 
30.8 

nificant figure. 
In the future we hope to extend many useful re- 

sults for RBFs that depend on the pseudo-inverse so- 
lution for the output weights to  the non-linear out- 
put models considered in this paper using equation 
(11). For example, [6] explains the link between the 
degrees of freedom of an RBF model and the eigen- 
values of the design matrix and [ll] gives an in- 
terpretation of the hidden units. The single maxi- 
mum of the log likelihood means that a Bayesian ap- 
proach to regularisation with the Laplace approxi- 
mation is likely to be effective and we intend to pur- 
sue this further. In [4] there is an explanation of 
how to calculate the degrees of freedom for a gener- 
alised additive model, and it should be possible to ap- 
ply this to RBFs. 
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