
EFFICIENT TRAINING OF RBF NETWORKS FOR CLASSIFICATION

Ian T. Nabney

Neural Computing Research Group
Aston University, BIRMINGHAM, B4 7ET, UK

ABSTRACT

Radial Basis Function networks with linear outputs
are often used in regression problems because they
can be substantially faster to train than Multi-layer
Perceptrons. For classification problems, the use
of linear outputs is less appropriate as the outputs
are not guaranteed to represent probabilities. In
this paper we show how RBFs with logistic and
softmax outputs can be trained efficiently using
algorithms derived from Generalised Linear Models.
This approach is compared with standard non-linear
optimisation algorithms on a number of datasets.

1 INTRODUCTION

Radial Basis Function (RBF) networks with lin-
ear outputs are often used in regression problems be-
cause they can be substantially faster to train than
Multi-layer Perceptrons (MLP). This is because it is
possible to choose suitable parameters for the ba-
sis function parameters by an unsupervised tech-
nique (such as selecting a subset of the data for cen-
tres, using a clustering algorithm such as K-means,
or training a mixture model with EM) so that the
hidden unit activations model the unconditional in-
put data density p(x). With the hidden unit pa-
rameters fixed, and a sum of squared error func-
tion, the optimisation of the outputs weights is a
quadratic problem that can be solved using the meth-
ods from numerical linear algebra.

In classification problems, rather than directly
outputting a classification it is advantageous to esti-
mate posterior probabilities p(Ck Ix), since this al-
lows us to compensate for different prior proba-
bilities, combine the outputs of several networks,
make minimum risk classifications under different
cost functions and to set rejection thresholds: see
[3]. For classification problems, the use of linear out-
puts is less appropriate as then the network out-
puts are not guaranteed to represent probabilities.
With MLPs it is common practice to use logistic
(for two class) and softmax (for multiple classes) out-
put nodes and appropriate cross-entropy error func-
tion so as to ensure that the outputs sum to one and
all lie in the interval [0,1]. This does not add sig-
nificantly to the time taken to train an MLP since
even with linear outputs, general purpose optimisa-
tion routines must be used.

However, an RBF with logistic or softmax outputs
no longer has a quadratic error surface for the output
layer. If general purpose optimisation algorithms are

used, much of the speed advantage over MLPs is
lost. In this paper we show how RBFs with logistic
and softmax outputs can be trained efficiently using
algorithms derived from Generalised Linear Models.
We compare these models with standard RBF's on
both synthetic and real datasets.

2 TRAINING GENERALISED LIN-
EAR MODELS

2.1 GENERALISING LINEAR REGRES-
SION

This brief outline of generalised linear models is
based on that in [8]. In linear regression theory, it is
assumed that the errors follow a normal distribution
with constant variance 02. The output of the model
represents the mean conditioned on the input vector
X:

p = x P (1)
In a generalised linear model we replace the normal
distribution for the target random variable Y by a
distribution from the exponential family, which has
the form:

PY (Y, %q5) = exP{(rlY - b(77))/4#J) + C(Y,q5)}

(2)
where q is the 'natural parameter' and q5 is the
'dispersion parameter'. For the normal distribution,
8 = p and q5 = 02. The model now has the form

v = x P (3)
The mean p of Py is modelled as a function of q:
p = b'(q), where f = b' is called the link function.
If q = 8, then the output of the generalised linear
model is the natural parameter of the noise model,
and f is the canonical link.

The normal distribution is not an appropriate
error model for classification problems, where the
output variable is discrete. For a two class problem,
we use a Bernoulli distribution

where T , the probability of 'success' is the mean,
and q = ln(T/(l - T)). This corresponds to using
a logistic function at the output of the generalised
linear model. For an m class problem, we use the
multinomial distribution on m variables:

210 Artificial Neural Networks, 7 - 10 September 1999, Conference Publication No. 470 0 IEE 1999

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on September 14, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

where pi is the probability of the ith class and
M = Cz1 yi is generally taken to be equal to one.
The model has m outputs and the canonical link
function is the familiar softmax function:

In the statistical literature this is known as multiple
logistic regression. The target data should have a
l-of-m encoding.

2.2 PARAMETER ESTIMATION

The obvious starting point for training these models
is to use maximum likelihood. For linear regression,
this is equivalent to minimising the quadratic form

(Y - XmT(y - XP) (7)

with respect to 0, where X is the data matrix and
Y is the target matrix. Equating the derivative to
zero yields the normal equations

(XTX)P = XTY (8)

which can be solved efficiently by computing the
pseudo-inverse Xt of X and setting P = XtY. This
is numerically mdre stable than computing explicitly
the inverse of the square matrix XTX.

Maximum likelihood for both generalised linear
models we are considering does not lead to a
quadratic form, and so iterative methods are used
instead. In principle there is no reason why general
purpose nonlinear optimisation algorithms should
not be used, but it is more efficient to take advantage
of the special 'near-linear' form of the model. Let L
denote the log likelihood and H = (d2C/dpdf lT) the
Hessian of C. The Fisher scoring method updates the
parameter estimates P at the Tth step by

(9)

This is the same as the Newton-Raphson algorithm,
except that the expected value of the Hessian
replaces the Hessian'. Normally taking a full Newton
step is not a good idea, as it is easy to overshoot the
maximum. However, there are two special features
of the generalised linear model that make this
procedure work well in practice: the log likelihood
of logistic models has a single maximum, and it
is possible to initialise the parameter P reasonably
close to the maximum.

The Hessian of the logistic model is equal to
-XTWX, where W is a diagonal weight matrix
whose elements are d n) (l - d")). The gradient is
equal to XTWe, where the nth row of e is given by

'In any case, for the canonical link, the Hessian coincides
with its expected value.

21 1

We form the variable z, = XP, + e, which is the
linearisation of the link function around the current
value of the mean. Then the equation (9) reduces to:

which is the normal form equation for a least squares
problem with input matrix XTW:I2 and dependent
variables W:I2z,. The weights change at each
iteration, since they are a function of the parameters
P,. The algorithm is known as Iterated Re-weighted
Least Squares (IRLS).

The reduction of the Newton step to the normal
form equation (11) depends on being able to find
a square root of W (which is easy in this case, as
it is non-negative diagonal) , and compute XTW'I2
efficiently (which can be done without a full matrix
multiplication again as W is diagonal). We initialise
the procedure by using the values (~ (" 1 + 0.5)/2.0
as a first estimate for dn) and from this deriving
the other quantities needed. The uniqueness of the
maximum of C was shown in [l].

The case of multiple logistic or softmax regres-
sion is a little more complicated (and not so well doc-
umented in the literature). The gradient and Hes-
sian for a single input pattern x are given by

To show that there is a unique maximum, it is
sufficient to prove that the Hessian H is positive
semi-definite. If a is an arbitrary vector, and we
write C = (plbkl - plpk) , then

aTHa = aTxCxTa = (xTa)TC(xTa) 2 0
(13)

since C is the covariance matrix of the multinomial
distribution and is therefore positive semi-definite2.
However, when'we write the Hessian in the form
ETWE, where B is the (mn) x (mp) block matrix
containing m copies of X along the diagonal (and
p is the input dimension), the matrix W is an
m x m block matrix, where each block is an n x n
diagonal matrix containing the corresponding entries
from C for each input pattern. W is no longer
diagonal, but to compute its square root, we need
only find a Cholesky decomposition of C. However,
because C has m2 non-zero entries, it is no longer
clear that this representation of the problem offers
practical advantage. We have chosen to implement
two alternative algorithms. In the first we calculate
the exact Hessian by summing terms given by
equation (12) for each row in the dataset. The
resulting matrix is usually very ill-conditioned, but
using singular value decomposition, it is numerically
tractable to solve the original Fisher scoring equation

2Thanks to Chris Williams for pointing this out.

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on September 14, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

(9). Alternatively, in a simplified algorithm, we can
treat each output as independent, which yields the
same update rule as for the logistic model (this is
no surprise, since the marginal distribution for a
single output in a multiple logistic model is binomial
with probability p i) , although this is not a good
approximation to the true Hessian. In either case, we
initialise the parameters using the same procedure
as for logistic regression, but treating each output
independently.

3 NONLINEAR RBF NETWORKS
. FOR CLASSIFICATION

The output of RBF networks is usually given as a
linear combination of basis functions:

where x(J) is the ‘centre’ of the j t h basis function.
Once the parameters of the basis functions are fixed,
the computation of the output weights is a linear
regression problem, Y = +W, with .P denoting the
design matrix. As in equation (7), this is solved
by computing the pseudo-inverse of +. Because of
the form of the solution, any linear constraint on
the training targets is necessarily satisfied by the
network outputs [7]. For a multi-class classification
problem, where a 1-of-m encoding is used, the
network outputs will sum to one just as the targets
do. However, the network outputs need not lie in the
range [0,1] and so it may not always be possible to
interpret them as probabilities. Instead, we replace
the linear output layer with logistic (for 2 class) and
softmax (for more than 2 classes) models and use the
relevant IRLS algorithm from section 2.2 for training.
Software implementing this model was developed
using the NETLAB neural network toolbox3.

4 EXPERIMENTAL RESULTS

In this section we present the results of using our
method of training logistic output RBF networks on
classification problems. Their performance is com-
pared with linear output models, and the train-
ing algorithm with scaled conjugate gradient (SCG)
and quasi-Newton optimisation algorithms ([3] is a
useful reference). The initial output layer weights
for the logistic models trained by SCG and quasi-
Newton algorithms are taken from a linear output
model trained with a pseudo-inverse, which is an ef-
ficient way to get a much better than random start
point. The initialisation of the output weights for
IRLS training was discussed in Section 2.2 and ap-
plies IRLS to a ‘smoothed’ version of the targets.

3Available from
http://ww.ncrg.aston.ac.uk/netlab/index.html

The RBF networks used thin plate splines as ba-
sis functions (for the reasons given in [5]). The cen-
tres were adjusted using either K-means or the EM,
algorithm (so that they approximate the uncondi-
tional density of the input data). Note that in all re-
sults reported here, the reported computational ef-
fort does not include the centre selection phase and is
solely for the training of the output layer weights and
biases. All algorithms had the same stopping crite-
rion; both the absolute change in the weight vector
and the error function should be less than 1 x

4.1 SYNTHETIC DATASETS

Figure 1: 2 class synthetic data. (a) Contour plot of
linear output RBF. Contours a t 0, 0.5 and 1.0. :In
the shaded region the output cannot be interpreted
as a probability. (b) Contour plot of logistic output
RBF.

Two simple synthetic datasets have been created
with a two-dimensional input space. In the two
class case, data is drawn from a mixture of three
Gaussians, two of which are assigned to one class.
The generating parameters were selected so that the
decision boundaries are non-linear.

The graph in figure la shows that with linear

21 2

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on September 14, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

http://ww.ncrg.aston.ac.uk/netlab/index.html

outputs, there are regions of the input space where
the outputs are not confined to the interval [0,1],
and that this can occur even for training data.
The learning curves in figure 2 show that the IRLS
training algorithm is significantly faster than either
SCG or quasi-Newton, as is also shown in table 1.

Algorithm
Linear outputs

Softmax: exact Hessian
Softmax: simplified

SCG
quasi-Newton

I
5 10

x Id

Figure 2: 2 class synthetic data. Learning curves
(measured in flops) for logistic output RBF.

Algorithm 1 flops 1 Error
Linear outputs I 22323 I -

IRLS I 122087 I 35.2262
SCG 1467342 35.3275

quasi-Newton 1142511 35.2262

Table 1: Results on a 2 class synthetic dataset.

To test the generality of this result, 10 replicated
datasets were created by randomly sampling from
the same mixture model. Table 2 contains the results
of training 10 networks on these datasets. The error
ratio is computed for each training set by dividing
the error of each algorithm by the minimum error
across all the algorithms. It shows that the IRLS
is on average 6 times faster than the other two
algorithms, and the computational effort is more
consistent.

Table 2:
dataset.

Results on replicated 2 class synthetic

The three class synthetic dataset is drawn from
a mixture of five Gaussians. Again, a linear output
RBF can have non-probabilistic outputs in regions of
input space where the density of training data is high
(see figure 3a). The specialised training algorithms
were an order of magnitude more efficient than SCG
and quasi-Newton (see table 2). The 'simplified'

flops
59687

2050376
. 478152
11031430
11370906

Error
-

94.95
95.60
95.01
94.95

Table 3: Results on 3 class synthetic data

algorithm was fastest to converge, but tends to take
a large up-hill step when close to the maximum
likelihood, so that the algorithm terminates at a sub-
optimal value.

The results from 10 replicas of the 3 class data
are given in Table 4. The IRLS algorithm is on
average more than 4.6 times faster than SCG, and
the computational effort is again more consistent.
For 7 of the 10 datasets, the approximate Hessian
failed to improve on the initial weights, and so the
results are not tabulated.

Table 4:
dataset.

Results on replicated 3 class synthetic

4.2 REAL DATASETS

We have tried out our method on three well known
classification problems: Leptograpsus crabs, dia-
betes in Pima women and forensic glass4.

In the Leptograpsus crabs problem, the task is
to determine the sex of crabs on the basis of 6
measurements. Using the same procedure reported
in [9], we took 80 training examples and 120
test examples. The results, with some selected
comparisons from [2], are reported in table 5. Note
that SCG remained stuck in a local minimum
despite several restarts, while IRLS and quasi-
Newton achieved a training set log likelihood of near
zero. Ten hidden units were used, since this was the
smallest number for which the logistic RBF trained
to a sufficiently low error.

In the diabetes diagnosis problem, the task is to
diagnose whether a subject has diabetes or not on
the basis of 8 variables measuring various disease
indicators. There are 200 training examples, and
332 test examples. The default classifier (assigining
every subject to the healthy class) has an error rate
of 33%. The optimal RBF network had 8 hidden

4Available from
http://markov.stats.ox.ac.uk/pub/PR"

21 3

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on September 14, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

http://markov.stats.ox.ac.uk/pub/PR

Algorithm

RBF: Linear outputs

SCG
quasi-Newton

MLP
Linear Discriminant
Logistic Regression

MARS

RBF: IRLS '

.-
il-

e -

!.

0 -

1 -

-2-

flops

48733
364836

3330815
3245640

-
-
-
-

0

0

flops

96723
436145

1469126
6493136

-
-
-

Figure 3: 3 class synthetic data. (a) Non-
probabilistic predictions from linear output RBF
(dotted region). (b) Decision boundaries of soft-
max output RBF.

Miclassification
Rate %

19.9
21.4

. -
-

22.6
20.2
19.9

units: its results are compared with those achieved
by other models (as given in [lo]) in table 6.

In the forensic glass problem, the task is to
determine the type of a glass sample from the
refractive index and composition (weight fraction
of eight oxides). There are 214 examples with
6 classes, so performance is estimated using 10-
fold cross-validation [lo]. To improve performance,
a committee of 10 networks was used for each
partition, as was done by Ripley in [lo] for the MLP.
The results are contained in table 7; for comparison,
the default rule (assigning to the largest class) has a
misclassification rate of 65%. It should be noted that
the computational effort for both MLP and Gaussian
Process methods on this problem was very large
(the latter required 24 hours on an SGI Challenge)
compared with the softmax RBF approach (which
took about 20 minutes on a less powerful computer).
On the third dataset, the optimal number of hidden
units for the linear output RBF was 25, while it was
12 for the non-linear output RBF.

214

Figure 4: 3 class synthetic data. Learning curves
(measured in flops) for softmax output RBF.

Test Set
Misclassifications

6
4
-
-
3
8
4

22.6

Table 5: Results on crab data

5 DISCUSSION AND CONCLU-
SIONS

In this paper we have demonstrated that the bene-
fits of using non-linear output functions for classifi-
cation problems can be achieved with RBF networks
while still retaining their significant training speed
advantage over MLPs. In addition, the IRLS algo-
rithm is considerably faster than using more gen-
eral non-linear optimisation methods. In our ex-
periments, IRLS achieved the same final error val-
ues as the quasi-Newton algorithm (to 4 decimal
places), while scaled conjugate gradient often termi-
nated at error values that were larger in the third sig-, .

Algorithm

RBF: Linear outputs
RBF: IRLS

SCG
quasi-Newton

MLP
Linear Discriminant
Logistic Regression

Table 6: Results on diabetes data

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on September 14, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

Algorithm
RBF: Linear outputs

RBF: exact Hessian
MLP

Linear Discriminant
MARS

PP regression
Gaussian Process
Gaussian Mixture

Table 7: Results, on forensic glass data. The
simplified IRLS algorithm failed to converge.

Misclassification Rate %
31.4
30.3
23.8
36.0
32.2
35.0
23.3
30.8

nificant figure.
In the future we hope to extend many useful re-

sults for RBFs that depend on the pseudo-inverse so-
lution for the output weights to the non-linear out-
put models considered in this paper using equation
(11). For example, [6] explains the link between the
degrees of freedom of an RBF model and the eigen-
values of the design matrix and [ll] gives an in-
terpretation of the hidden units. The single maxi-
mum of the log likelihood means that a Bayesian ap-
proach to regularisation with the Laplace approxi-
mation is likely to be effective and we intend to pur-
sue this further. In [4] there is an explanation of
how to calculate the degrees of freedom for a gener-
alised additive model, and it should be possible to ap-
ply this to RBFs.

Acknowledgements

This paper has benefitted from discussions with
David Lowe and Chris Williams.

References

P. Auer, M. Herbster, and M. K. Warmuth.
Exponentially many local minima for single
neurons. In Neural Information Processing
Systems 8, pages 316-322, 1996.

D. Barber and C. K. I. Williams. Gaussian
Processes for Bayesian classification via hybrid
Monte Carlo. In M. C. Mozer, M. I. Jordan,
and T. Petsche, editors, Neural Information
Processing Systems 9, 1997.

C. M. Bishop.
Recognition. Oxford University Press, 1995.

T. J. Hastie and R. J. Tibsharani. Generalized
Additive Models. Chapman and Hall, London,
1990.

D. Lowe. On the use of nonlocal and non
positive definite basis functions in radial basis
function networks. In I E E A N N 1995, pages

Neural Networks for Pattern

206-211,1995.

D. Lowe. Characterising complexity in a radial
basis function network. In I E E A N N 1997,
pages 19-23, 1997.

D. Lowe and A. R. Webb. Optimized feature
extraction and the Bayes decision in feed-
forward classifier networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
4~355-364, 1991.

P. McCullagh and J. A. Nelder.
Linear Models.
1983.

B. D. Ripley. Flexible non-linear approaches
to classification. In V. Cherkassy, J. H. Fried-
man, and H. Wechsler, editors, From Statistics
to Neural Networks, pages 105-126. Springer,
1994.

B. D. Ripley. Pattern Recognition and Neural
Networks. Cambridge University Press, 1996.

A. R. Webb and D. Lowe. The optimised in-
ternal representation of multilayer classifier net-
works performs nonlinear discriminant analy-
sis. Neural Networks, 3:367-375, 1990.

Generalized
Chapman and Hall, London,

21 5

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on September 14, 2009 at 11:53 from IEEE Xplore. Restrictions apply.

