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Abstract

On-line learning is examined for the Radial Basis Function Network, an important and
practical type of neural network. The evolution of generalization error is calculated within a
framework which allows the phenomena of the learning process, such as the specialization of
the hidden units, to be analyzed. The distinct stages of training are elucidated, and the role
of the learning rate described. The three most important stages of training, the symmetric
phase, the symmetry-breaking phase and the convergence phase, are analyzed in detail; the
convergence phase analysis allows derivation of maximal and optimal learning rates. As well
as finding the evolution of the mean system parameters, the variances of these parameters are
derived and shown to be typically small. Finally, the analytic results are strongly confirmed
by simulations.

1 Introduction

The aim of supervised learning in neural networks is to approximate an unknown target mapping
fr : X = Y, where X and Y represent the input and output space respectively, as closely as
possible given a set of possibly noise-corrupted examples (the training set D) generated from fr.
To quantify the performance of a network at this task, one would ideally like to know the average
deviation of the network’s estimate from the target function - this is known as generalization
error. From a practical perspective, generalization error is unavailable; it can be approximated by
utilising a test set, again generated from fr, which is distinct from the training set. It would be
very useful if it were possible to make general statements concerning the generalization error that
could be expected in the average case. In this paper, we calculate the evolution of the average
generalization error, as well as the evolution of key parameters that describe the learning system,
for the Radial Basis Function Network (RBF).

Several frameworks are available which facilitate analytic investigation of learning and generaliza-
tion in supervised neural networks, such as the statistical physics methods (see [1] for a review),
the Bayesian framework (e.g., [2]) and the PAC method [3]. These tools have principally been
applied to simple networks, such as linear and boolean perceptrons, and various simplifications of
the committee machine (see, for instance, [4] and references therein). It has proved very difficult to
obtain general results for the commonly used multilayer networks, such as the sigmoid multi-layer
perceptron (MLP) and the RBF.

For RBFs, some analytic studies exist which focus primarily on generalization error: in [5, 6],
average case analyses are performed employing a Bayesian framework to study RBFs under a



stochastic training paradigm. In [7], a bound on generalization error is derived under the assump-
tion that the training algorithm finds a globally optimal solution. Details of studies of RBFs from
the perspective of the PAC framework can be found in [8] and references therein. These methods
focus on a training scenario in which a model is trained on a fized set of examples using a stochastic
training method.

There are several studies which are concerned with understanding the dynamics of on-line gradient
descent training scenarios, whereby network parameters are modified after each presentation of
an example [9, 10, 11]; these studies examine the evolution of system parameters primarily in
the asymptotic regime. A similar method, based on examining the dynamics of overlaps between
characteristic system vectors in on-line training scenarios has been suggested in [12, 13, 14, 15]
for investigating the learning dynamics in the ‘soft committee machine’ (SCM). This approach
provides a complete description of the learning process, formulated in terms of the overlaps between
vectors in the system, and can be easily extended to include general two-layer networks [15, 17].
The training dynamics in discrete systems has been examined by several authors employing a
variety of techniques [18, 19, 20, 21, 22], some of which offered improved training algorithms.
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We present a method for analyzing the behaviour of RBFs in an on-line learning scenario which
allows the calculation of generalization error as a function of a set of variables characterizing the
properties of the adaptive parameters of the network. The dynamical evolution of the means and
the variances of these variables can be found, allowing not only the investigation of generalization
ability, but also allowing the internal dynamics of the network, such as specialization of hidden
units, to be analyzed. This tool has previously been applied to MLPs [13, 14, 15]; earlier work on
RBFs from an on-line learning perspective can be found in [17].

2 The RBF Network and the On-line Learning Paradigm

RBF networks have been successfully employed to perform supervised learning in many real-world
tasks; they have proved a valuable alternative to MLPs. These tasks include chaotic time-series
prediction [23], speech recognition [24] and data classification [25].

The RBF is a universal approximator for continuous mappings - it can approximate any continuous
function to arbitrary accuracy given a sufficient number of hidden units [26]. The RBF architecture
consists of a two-layer network (see figure 1) in which each layer is fully connected to its successor.
For simplicity, a single output node is utilised throughout the analysis. The activation function
of the hidden nodes is radially symmetric in input space; the magnitude of the activation given a
particular datapoint is usually a decreasing function of the distance between the input vector of the
datapoint and the centre of the basis function. The output layer computes a linear combination of
the activations of the basis functions, parameterised by the weights w between hidden and output
layers. The function computed by an RBF network with K hidden units is therefore:

K
fs(€) = > wpsp(€) = w-s (1)
b=1

where £ is the input vector applied to the input layer, s, denotes the response of basis function b,
and s represents the vector of hidden unit responses of the network.

The most common choice for the basis functions is the Gaussian function, which will be employed
as the hidden unit transfer function throughout the paper. Therefore the response of basis function
b to inputvector £ is:

(2)

s(€) = exp (_M>
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where each hidden node is parameterised by two quantities: a centre m in input space, corre-
sponding to the vector defined by the weights between the node and the input nodes, and a width
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Figure 1: RBF network architecture

Two general methodologies exist which allow the adjustment of the parameters of the RBF to
approximate the target function. One approach involves fixing the parameters of the hidden layer
(both the basis function centres and widths) using an unsupervised technique such as clustering,
setting a centre on each data point of the training set, or even picking random values (for a
review see [27]). This leaves only the hidden-to-output weights w to adapt, which makes the
problem linear in those weights. Although fast to train, this approach generally results in sub-
optimal networks since the basis function parameters are not fixed with respect to the targets
in the training data, and do not take account of the values of w. The alternative is to adapt
the hidden layer parameters, either just the centre positions or both centre positions and widths,
in conjunction with the adaptation of w. This renders the problem non-linear in the adaptable
parameters, and hence requires an optimization technique, such as gradient descent, to estimate
the parameters. The second approach is computationally more expensive, but usually leads to
greater accuracy of approximation. This paper investigates the non-linear approach in which
basis function centres are continuously modified using gradient descent to allow convergence to
more optimal models.

There are two methods in use for gradient descent. In batch learning, one attempts to minimize the
additive training error over the entire dataset; adjustments to parameters are performed once the
full training set has been presented. The alternative approach, examined here, is on-line learning,
in which the adaptive parameters of the network are adjusted after each presentation of a new
datapoint; obviously one may employ a method which is a compromise between the two extremes.
There has been a resurgence of interest analytically in the on-line method, as technical difficulties
caused by the variety of ways in which a training set of given size can be selected are avoided, so
techniques such as the replica method are unnecessary.

3 Generalization and System Dynamics

It is difficult to examine generalization without having some a priori knowledge of the target
function since for any finite number of datapoints, there are an infinite number of functions that
will fit these points exactly. In this work, we utilise a student-teacher framework, in which a



teacher network produces the training data which is then learned by the student. This has the
advantage that we can control the learning scenario precisely, facilitating the investigation of cases
such as the exactly realizable case, in which the student architecture matches that of the teacher,
the over-realizable case, in which the student can represent functions that cannot be achieved by
the teacher, and the unrealizable case in which the student has insufficient representational power
to emulate the teacher.

A training set consists of P input-output pairs (€*,y*) where 1 < p < P. In the training
scenario examined here, the components of the typical N dimensional input vector &* are chosen
as uncorrelated Gaussian random variables of mean 0, variance ag, while the scalar output y*
is generated by applying & to the deterministic teacher RBF. This represents a general training
scenario since, being universal approximators, RBF networks can approximate any continuous
mapping to a desired degree. Noise is not employed in this paper; this will be investigated in a
further publication. The mapping implemented by the teacher is denoted by fr; the vector of
hidden-to-output weights of the teacher is represented by an M dimensional vector w® while the
centre of teacher basis function (TBF) w is denoted by m,. The vector of teacher basis function
responses to input vector £ is represented by an M dimensional vector ¢. For simplicity, the
TBF widths are equal to those of the student; the framework does allow them to differ, but this
complicates matters greatly without adding much insight. The function computed by the teacher
is therefore:

Zw ox (- ||£207;u|| ) < e 5

We approach the problem of calculating system evolution by replacing the set of N-dimensional
vectors m, which describe the position in input space of the student basis functions, by a set of
macroscopic variables representing the means and variances of the overlaps: Qp. = myp-m, Ry, =
my - n, and T, = n, -n,. We will concentrate on the evolution of the means of these quantities;
the relevance of their variances will be quantified and examined as well. The evolution of the
system will be described in terms of the evolution of these macroscopic variables and of the
hidden-to-output weights w

The definition of generalization error that we employ is the most common in the neural networks
literature - the quadratic deviation between fr and fs:

EG:<%(fS_fT)2> (4)

where (- - ) denotes an average over input space.

Substituting equations (2) and (3) into (4) gives:

{Zwbwc SpSe +Zw QZwbw (spty } (5)

The variables b,c, ... u,v, ... and will represent student and teacher centers respectively, running
from 1 to K and to M accordingly. We assume the input distribution to be Gaussian, so the
averages are Gaussian integrals and can be performed analytically. Each average has dependence
on combinations of Q,R and T depending on whether the averaged basis functions belong to
student or teacher; the full expression is given in the appendix.



3.1 System Dynamics

The learning dynamics in this work follows the gradient descent rule, m§+1

= m§+NLg%6b(§—mb),
where 0y = (fr— fs)wpsp and 7 is the learning rate which is explicitly scaled with 1/N. Expressions

for the time evolution of the mean overlaps of Q and R can be derived:

(AQu) = o (1u(€ = mf) - ml+ 5.( — m2) -mi]) + (6)

() (e (6=

<ARbu > = <6b(£ - mf) m > (7)
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The hidden-to-output weights can be treated similarly. In general one may choose different learning
rates for the dynamics of the centres and of the hidden-to-output weights. Here, we use the same
learning rate but scale it differently (with 1/K, in agreement with results obtained by Riegler [28]
for the MLP), yielding;:

(Awy) = & ((fr = fs)sn) ®)

Note that scaling the learning rate with 1/K does not make a significant difference in this case,
since the thermodynamic limit has not been employed for IV, in comparison to the exact MLP cal-
culation where adiabatic elimination should be employed for restoring the self-averaging properties
of the overlaps[28].

These averages are again Gaussian integrals, so can be carried out analytically. The averaged
expressions for AQ, AR and Aw are given in the appendix.

Iterating the difference equations (6), (7) and (8), allows the evolution of the learning process
to be tracked. This allows one to examine facets of learning such as specialization of the hidden
units. Since generalization error depends on @, R and w, one can also use these equations with
equation (5) to track the evolution of generalization error.

3.2 Variance and the Thermodynamic Limit

Previous work in this area [12, 13, 14, 15] has relied upon the thermodynamic limit (i.e., P —
oo, N = oo and P/N = a, where « is finite). Taking this limit makes the macroscopic variables
self-averaging, allows one to ignore fluctuations in the updates of the means of the overlaps due to
the randomness of the training examples, and permits the difference equations of gradient descent
to be considered as differential equations. The thermodynamic limit is hugely artificial for local
RBFs; as the activation is localized, the N — oo limit implies that a basis function responds only
in the vanishingly unlikely event that an input point falls exactly on its centre; there is no obvious

2
reasonable rescaling of the basis functions (for instance, utilizing exp (— I ;AZLQ”H ) eliminates all
B
directional information as the cross-term £ - m,;, vanishes in the thermodynamic limit). The price

paid for not taking this limit is that one has no a priori justification for ignoring the fluctuations
in the update of the adaptive parameters due to the randomness of the training example.

By making assumptions as to the form of these fluctuations, it is possible to derive equations
describing their evolution; the method is mentioned in [9] and also in [29] for the simpler case of
the SCM; we have extended it to deal with adaptive hidden-to-output weights (see also [15]).



To quantify the effect of the variances we will derive a set of dynamical equations, parallel to
those representing the dynamics of the means, for describing the dynamics of the variances. As
the learning rate is usually small we will focus on first order terms in 7, which dominate the
dynamics, and ignore update terms of order n%. Casting the update equations (6, 7 and 8) into a
general form, where a represents a generic system parameter and the scaling parameter L, is set
to N for Q and R, and to K for w:

aPtl = aP + LiFa (9)
a

We then assume (similar to [29]) that the update function F' and the parameter a can be written
in terms of a mean and fluctuation such that:

F,=F,+F, and a=a+.,/La (10)

where @ denotes an average value and @ represents a fluctuation due to the randomness of the
example. The static correction terms of [29] are neglected, as in [9], as they are much smaller than
the included fluctuation terms.

Combining eqns (9) and (10), and averaging with respect to the input distribution, we arrive at a
set of coupled difference equations which describe the evolution of the variances:

A <al§> - \/% (Z (ad) aa—ib + ZC: <Be> a;“ + <ﬁaﬁb>> (11)

c

Applying this general method to each pair of adaptive quantities allows the evolution of the
variances for the entire system to be calculated. The averages are again Gaussian and so are

analytically tractable; the expressions that result for the instantaneous variances <F‘aﬁb> are

given in the appendix.

It has been shown that the variances must vanish asymptotically for realizable cases [9], and we
will show in section 4.6 that they are small enough throughout the evolution of the system to
allow a description of the system in terms of the evolution of the means.

4 Analysing the Learning Process

Although the framework enables us to consider a wide range of cases we will limit the experiments
and the analysis in this paper to realizable cases where the number of student basis functions
(SBFs) equals the number of teacher basis functions (TBFs).

The system evolutions described below are obtained by iterating the difference equations (6), (7)
and (8) from random initial conditions sampled from the following distributions: Qp, and wy
are sampled from U0, 10™*], while Q¢ 2. and Ry from a uniform distribution U[0, 1075], which
represent random correlations expected by arbitrary initialization of systems of the size we employ.
The evolutions computed describe the mean behaviour, assuming the variances are negligible; these
evolutions can then be used to find the evolution of generalization error via equation ((5).

4.1 The Importance of the Learning Rate

With all the TBFs positive, analysis of the time evolution of the generalization error, overlaps and
hidden-to-output weights for various settings of the learning rate reveals the existence of three



distinct behaviours. If 5 is chosen to be too small (here, n = 0.1), there is a long period in
which there is no specialization of the SBFs, and no improvement in generalization ability: the
process becomes trapped in a symmetric subspace of solutions; this is the symmetric phase. Given
asymmetry in the student initial conditions (i.e. in R, Q or w), or of the task itself, this subspace
will always be escaped, but the time period required may be prohibitively large (figure 2(a), dotted
curve). The length of the symmetric phase increases with the symmetry of the initial conditions.
At the other extreme, if 7 is set too large, an initial transient takes place quickly, but there comes
a point from which the student vector norms grow extremely rapidly, until the point where, due
to the finite variance of the input distribution and local nature of the basis functions, the SBF's
are no longer activated during training (figure 2(a), dashed curve, with = 7.0). In this case, the
generalization error approaches a finite value as P — oo and the task is not solved. Between these
extremes lies a region in which the symmetric subspace is escaped quickly, and Eg — 0 as P — o
for the realizable case (figure 1(a), solid curve, with n = 0.9). The SBFs become specialized and,
asymptotically, the teacher is emulated exactly.

These results for the learning rate are qualitatively similar to those found for SCMs and MLPs
[12, 13, 14, 15].

4.2 An Example of System Evolution

There are four distinct phases in the learning process, which are described with reference to an
example of learning an exactly realizable task. This task consists of a network of 3 student basis
functions (SBF's) learning a graded teacher of 3 TBFs, where graded implies that the square norms
of the TBFs (diagonals of T') differ from one another; for this task, Too = 0.5,71; = 1.0, and
Ty = 1.5. As previously stated, the widths of the student basis functions are considered fixed and
equal to those of the teacher for simplicity; also note that the teacher always produces a continous
mapping, and noise is not employed.

For this particular task we choose the teacher to be uncorrelated, with the off-diagonals of T set
to 0, and the teacher hidden-to-output weights w® to 1. The learning process is illustrated in
figures 2(a) to 2(d); figure 2(a) (solid curve) shows the evolution of generalization error, calculated
from equation (5), while figures 2(b) to 2(c) show the evolution of the equations for the means of
R, Q and w respectively, calculated by iterating equations (6), (7) and (8) from random initial
conditions as described above. Input dimensionality N = 8, learning rate n = 0.9, input variance
og = 1 and basis function width o = 1 were employed.

The picture that emerges mirrors that of the SCM and MLP [14, 15]. Initially, there is a short tran-
sient phase in which the overlaps and hidden-to-output weights evolve from their initial conditions
until they reach an approximately steady value (P = 0 to P = 4000). The symmetric phase then
begins, which is characterized by a plateau in the evolution of the generalization error (see figure
2(a), solid curve, P = 4000 to P = 5 x 10%), corresponding to a lack of differentiation amongst the
hidden units; they are unspecialized and learn an average of the hidden units of the teacher, so that
the student centre vectors and hidden-to-output weights are similar (figures 2(b) to 2(d)). The dif-
ference in the overlaps R between student centre vectors and teacher centre vectors (figure 2(b)) is
only due to the difference in the lengths of various teacher centre vectors; if the overlaps were nor-
malized, they would be identical. The symmetric phase is followed by a symmetry-breaking phase
in which the SBFs learn to specialize, and become differentiated from one another (P = 5 x 10*
to P = 1.7 x 10%). Finally there is a long convergence phase, as the overlaps and hidden-to-output
weights reach their asymptotic values. Since the task is realizable, this phase is characterized by
E¢ — 0 (figure 2(a), solid curve), and by the student centre vectors and hidden-to-output weights
approaching those of the teacher (i.e. Qoo = Roo = 0.5,Q11 = Ri1 = 1.0,Q22 = Ry = 1.5, with
the off-diagonal elements of both @ and R being zero; Vb, w, = 1). Arbitrary labels of the SBFs
were permuted to match those of the teacher.

These phases are generic in that they are observed, sometimes with some variation such as a series



of symmetric and symmetry-breaking phases, in every on-line learning scenario for RBFs so far
examined.

4.3 Task Dependence

The symmetric phase is a phenomenon which depends on the symmetry of the task as well as that
of the initial conditions. One would expect a shorter symmetric phase in inherently asymmetric
tasks. To examine this, a task similar to that of section 4.2 was employed, with the single change
being that the sign of one of the teacher hidden-to-output weights was flipped, thus providing two
categories of targets: positive and negative. The initial conditions of the student remained the
same as in the previous task, with n = 0.9.

The evolution of generalization error and the overlaps for this task are shown in figures 3(a) and
3(b) respectively. Dividing of the targets into two categories effectively eliminates the symmetric
phase; this can be seen by comparing the evolution of the generalization error for this task (figure
3(a), dashed curve) with that for the previous task (figure 3(a), solid curve). There is no longer
a plateau in the generalization error. Correspondingly, the symmetries between SBFs break im-
mediately, as can be seen by examining the overlaps between student and teacher centre vectors
(figure 3(b)); this should be compared with figure 2(b) which denotes the evolution of the overlaps
in the previous task. Note that the plateaus in the overlaps (figure 2(b), P = 4000 to P = 5 x 10%)
are not found for the asymmetric task.

The elimination of the symmetric phase is an extreme result caused by the small size of the student
network (3 hidden units). For networks with many hidden units, one finds instead a cascade of sub-
symmetric phases, each shorter than the single symmetric phase in the corresponding task with
only positive targets, in which there is one symmetry between the hidden units seeking positive
targets and another between those seeking negative targets.

This suggests a simple and easily implemented strategy for increasing the speed of learning when
targets are predominantly positive (negative): eliminate the bias of the training set by subtracting
(adding) the mean target from each target point. This corresponds to an old heuristic among RBF
practitioners. It follows that the hidden-to-output weights should be initialized from a zero-mean
distribution. Alternatively, a bias unit could be used, but this adds another parameter to the
training process.

4.4 Analysing the Symmetric and Symmetry-Breaking Phases

The symmetric phase, in which there is no specialization of the hidden units, can be analyzed
in the realizable case by employing a few simplifying assumptions. It is a phenomenon that is
predominantly associated with small i, so terms of > may be neglected. The hidden-to-output
weights are clamped to +1. The teacher is taken to be isotropic: TBF centres have identical
norms of 1, each having no overlap with the others, therefore Ty, = d4,. This has the result that
the student norms @Qp. are very similar, as are the student-student correlations, so Qp, = @ and
Qbe,p2c = C' where () becomes the square norm of the SBFs, and C is the overlap between any
two different SBF's.

Following the geometric argument of [14], which is consistent with the numerical results, in the
symmetric phase, the SBF centres are mostly confined to the subspace spanned by the TBF
centres. Since T, = 04y, the SBF centres can be written in the orthonormal basis defined by the
TBF centres, with the components being the overlaps R: m; = Zule Rpyn,. As the teacher is
isotropic, the overlaps are independent of both b and u and thus can be written in terms of a single
parameter R. Further, this reduction to a single overlap parameter leads to Q@ = C' = MR?, so
the evolution of the overlaps can be described as a single difference equation for R. The analytic

solution of equations (6), (7) and (8) under these restrictions is still rather complicated. However,
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Figure 2: The exactly realizable scenario with positive TBFs. Three SBFs learn a graded, uncorre-
lated teacher of three TBFs with Tog = 0.5, T1; = 1.0 and T»5 = 1.5. All teacher hidden-to-output
weights are set to 1. Figure (a) describes the evolution of the generalization error as a function
of the number of examples for several different learning rates (n = 0.1,0.9,5.0); (b) and (c) follow
the evolution of overlaps between student and teacher centre vectors and among student centre

vectors respectively, while (d) monitors the evolution of the mean hidden-to-output weights.
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Figure 3: The exactly realizable scenario defined by a teacher network with a mixture of positive
and negative TBFs. Three SBFs learn a graded, uncorrelated teacher of three TBFs with Tpg =
0.5, 711 = 1.0 and Ty = 1.5. wd = 1,w) = —1,wd = 1. (a) describes the evolution of the
generalization error for this case and presents for comparison the evolution in the case of all

positive TBFs, while (b) shows the evolution of the overlaps between student and teacher centres

R.

since we are primarily interested in large systems, i.e., large K, we examine the dominant terms
in the solution. Expanding in 1/K and discarding second order terms renders the system simple
enough to solve analytically for the symmetric fixed point; fixed point values will be denoted like
R*:

R = ! (12)

K (1 + 0B — opexp [(ﬁ) —ggi;])

One should point out that this expression breaks down for certain values of op as the first order
term in 1/K as well as higher order terms diverge (an approximate expression may also be derived
for the divergence point). The stability of the fixed point, and thus the breaking of the symmetric
phase, can be examined via an eigenvalue analysis of the dynamics of the system near the fixed
point. We map the equations of motion (6), (7) to equations of deviations from the symmetric fixed
point viar = R—R*,s = 5—5*qg=Q—Q",¢c = C—C*. Remembering the geometrical argument
above, the student weight vectors can be expanded in terms of the student-teacher overlaps; as we
are in the small 7 regime, components which are orthogonal to the space spanned by the teacher
vectors, m; may be neglected, so that the student norms () and overlaps C are completely
determined by the student-teacher overlaps. Writing these overlaps as: Ry, = Rdpy + S(1 — 0py)
gives the relations Q = R? + S?(K —1) and C = 2RS + S%(K —2). If these relations are expanded
to first order in the deviations r and s, it can be seen that ¢ = ¢ = 2R*(r + s(K — 1)), so that
Q* = C* is preserved to first order; this is also consistent with the truncated equations of motion
if they too are expanded to first order. Thus the dynamical quantities reduce to three: r, s and c.

Performing an eigenvalue analysis on the resulting system reveals one dominant positive eigenvalue
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(M) that scales with K and represents a perturbation which breaks the symmetries between the
hidden units by amplifying asymmetries in the initial conditions (see [16] for a detailed analysis of
this for the SCM); the remaining modes, which also scale with K, are irrelevant as they preserve
the symmetry. This result is in contrast to that for the SCM ([14]), in which the dominant
eigenvalue scales with 1/K. This implies that for RBF's the more hidden units in the network, the
faster the symmetric phase is escaped, resulting in negligible symmetric phases for large systems,
while in SCMs the opposite is true; this result has been confirmed by simulation. This difference
is caused by the contrast between the localized nature of the basis function in the RBF network
and the global nature of sigmoidal hidden nodes in SCM. In the SCM case, small perturbations
around the symmetric fixed point result in relatively small changes in error since the sigmoidal
response changes very slowly as one modifies the weight vectors. On the other hand, the Gaussian
response decays exponentially as one moves away from the centre, so small perturbations around
the symmetric fixed point result in massive changes that drive the symmetry breaking. When K
increases the error surface looks very rugged emphasising the peaks and increasing this effect, in
contrast to the SCM case where more sigmoids means a smoother error surface.

4.5 Calculating the Convergence

The speed and conditions of convergence of the online gradient descent process is of great interest,
both practically and theoretically. To investigate this for the RBF in the realizable case, we again
use an isotropic teacher, defined by Ty, = &y, and w2 = 1. This means the evolution of each
student hidden unit will be very similar, so the evolving system can be simplified to 5 adaptive
variables: Qp. = Qb + C(1 — 0pe), Ry = Rpu + S(1 — 6py) and wp = w, controlled by equations
(6), (7) and (8). Note that we do not expect the variances to play a significant role in defining the
maximal and optimal learning rates as they have been shown to vanish in the asymptotic regime.

Linearizing these equations about the known fixed point of the dynamics, Q@ = 1,C = 0,R =
1,5 = 0,w = 1 yields the eigenvalues controlling the rate of convergence and the stability. There
is a single (non-linear in 7)) critical eigenvalue, A1, which controls stability, a linear eigenvalue, Ay,
which can influence convergence rate, and three further eigenvalues which play no significant role,
being much smaller for all values of . The eigenvalues are illustrated in figure 4(a) for a network of
10 hidden units with input dimension N = 10. The maximum learning rate, defined by the crossing
of the zero line, can be seen to be controlled solely by A;; note that this maximum only applies
during convergence, not necessarily during the other phases of learning. The theory predicts a
maximum learning rate of n = 33 for this scenario; the accuracy of the method was tested by
training real RBF networks by initializing them near the known fixed point, and determining the
value of 77 at which convergence failed to occur, which in this case was n = 32.3 with standard
deviation of 0.8.

The rate of convergence, defined for particular by the smaller of A; and Ay, is optimized either
by setting n to the minimum of A\; or to the intersection of A\; with A2, depending on the exact
learning scenario (e.g., for other teacher vector lengths or basis widths).

It is interesting to compare the convergence of the system with adaptive hidden-to-output weights
to that where the hidden-to-output weights are fixed [17]. Figure 4(b) shows the two significant
eigenvalues for both cases in identical scenarios. A; is unchanged, so the maximum learning rate
is unaffected and is therefore a function of the hidden layer, not the output layer (this is also true
for the MLP [15]). With fixed hidden-to-output weights, the gradient of Ay becomes much steeper
and in fact does not affect the rate of convergence which is controlled solely by A;.

The scaling of the maximum and optimal learning rates with the number of hidden units can also
be found. For both fixed and adaptive hidden-to-output weights, the maximum learning rate scales
as 1/K. For fixed hidden-to-output weights, the optimal learning rate also scales as 1/K, while
for adaptive hidden-to-output weights, the situation is more complicated. In parameter regions
where the convergence rate is optimized by minimising A;, the optimal learning rate again scales
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as 1/K; however, in regions where optimization is achieved by finding the intersection of A; and
A2, 1 changes at a slower rate than 1/K. These effects are illustrated in figure 4(c), in which
maximum and optimal learning rates are plotted against 1/K. Note that as K increases, Nopt
approaches n¢ rapidly for the adaptive hidden-to-output case (Ao becomes less steep), implying
that it becomes difficult to optimize the process and still obtain convergence to the correct fixed
point.

4.6 Quantification of the Variance

To demonstrate that it is reasonable to consider only the mean of the updates of the system
parameters, we present results quantifying the effect of the variance for a typical case, showing
that its contribution is negligible in comparison with the mean values. In pathological cases in
which the task and the initial conditions of the system are highly symmetric, it is possible to
obtain variances which are much larger than those which typically occur - this issue is explored
for the SCM in [29].

To examine the effect of the variance we use a training scenario in which a student network com-
prising two SBFs is trained on examples generated by a two node teacher. The initial conditions
were constructed by randomly initialising the weights of an RBF network by drawing each input-
to-hidden and hidden-to-output weight from U[0,0.1], and then mapping the network into the
appropriate system parameters, so as to provide realistic conditions. The input dimension N was
set to 10, and the learning rate i to 0.1. The mean and variance update equations (6), (7), (8)
and (11) were iterated from these initial conditions until the means had reached an approximately
steady state, thus providing a trajectory for each variance.

In figures 5(a) and 5(b), the fluctuations are plotted as error bars on the mean for the dominant
student-teacher overlaps R and for the hidden-to-output weights w (fluctuation magnitudes for
Q are very similar to those of R). The magnitudes of the fluctuations are very small, particularly
so for R. For w, the peak ratio of fluctuation magnitude to mean is approximately 0.012, while
for R, it is 0.008. These ratios are typical for non-pathological scenarios. Note that for realizable
cases, the fluctuations must eventually disappear.

To demonstrate that the theoretical calculation of the evolution of the variances gives valid results,
gradient descent learning was used to train actual RBF networks 1000 times for the configuration
and initial conditions described above. The average evolutions of the parameters were employed
to calculate empirical fluctuations about the means. The results of this are plotted in figures
5(c) and 5(d), in which the theoretical fluctuations are shown versus the simulation fluctuations -
it can be seen that there is very good agreement between the theory and simulation. The slight
discrepancy up to about P = 1.5 x 10° is, we believe, due to the fact that terms of n? are discarded
in the theory.

4.7 Simulations

To demonstrate the validity of the theoretical average-case results, we compared the evolution of
the system found by iterating equations (6), (7) and (8) to empirical results found by training real
RBF networks via on-line gradient descent. The empirical values of @, R and w were calculated
from the trajectories of the weights during training. Generalization error was empirically estimated
via the average error on a 1000-point test-set, and the results were averaged over 50 trials, with
the arbitrary labels of the SBFs permuted appropriately to ensure the averages were meaningful.

We present the results from a typical set of trials: in this realizable scenario, 3 SBFs learn 3 TBF's
with n = 0.9 and N = 5. The excellent correspondence between the theory and simulations is
demonstrated in figure 6. Figure 6(a) shows theoretical versus empirical generalization error -
the theoretical value is always within one standard deviation of the empirical value. In figures
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Figure 5: Quantification of the Variances. Figures (a) and (b) show the theoretical variances,

plotted as errorbars on the mean, for the dominant overlaps Rgy and R;; and for the hidden-to-

output weights wo and w; respectively, for a realizable task involving two SBF's learning two TBF's.

The fluctuations are negligible; this is typically true, unless the task and initial conditions are

highly symmetric. Figures (c) and (d) compare the theoretical variances to those from simulations

in which RBFs were trained 1000 times on the above task. The variances for the dominant

overlaps and hidden-to-output weights are shown, and it can be seen that there is an excellent

correspondence .

5 Conclusion

On-line learning using the gradient descent algorithm has been examined for the RBF by employing
a method which allows the calculation of generalization error as well as the elucidation of the
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(figure (d)). Input dimensionality N = 5, learning rate = 0.9, input variance O'g = 1 and basis
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features of the learning process, such as the specialization of the hidden units.

The four distinct stages of training were highlighted - initially there is a short transient phase as
the parameters move from their initial values into the symmetric phase, in which the hidden units
are undifferentiated. Specialization gradually develops in the third, symmetry-breaking, phase, as
the hidden units move towards their particular destinations; finally there is a convergence phase
in which the parameters asymptotically reach their final values. The role of the learning rate was
also examined - with a small learning rate 7, training proceeds unnecessarily slowly, with a long
trapping time in the symmetric phase. With n too high, the process does not converge to the
correct fixed point; the magnitudes of the student centre vectors grow until the centre plays no
part in the learning process. Between these extremes lies a range in which the process converges
quickly to the correct target.

The relative importance of the stages of training depends to a large extent on the nature of the
task itself. When the task is highly symmetric, the symmetric phase becomes dominant; in this
case it would be desirable to introduce artificial methods of breaking the symmetry of the student.
For very asymmetric tasks, the symmetric phase may be over quickly or even non-existent. Since
in practical use the task is usually understood poorly, it is important to understand the behaviour
of the network over a whole range of tasks.

The symmetric phase was analysed (for the realizable case), and the value of the system parameters
at the symmetric fixed point found. The breaking of the symmetric phase was also examined via
an eigenvalue analysis - there is a significant behavioural difference between the RBF and the SCM
in that the more hidden units, the greater the length of the phase in the SCM, but the shorter
its length in the RBF. This is due to the difference in the properties of the activation function for
the networks - the RBF has a localized activation function, while that of the SCM is global.

The convergence properties of the system in the realizable case were also examined via eigenvalue
analysis. A single critical eigenvalue controls stability of the target fixed point, and thus determines
the maximum value of 7 that can be employed (nc¢). The optimal setting Nopt of 1 can also be
found, which depends on a combination of the critical eigenvalue and a second (linear in 7)
eigenvalue. The results were compared to those previously found for the RBF using non-adaptive
hidden-to-output weights; n¢ was unchanged, and is thus a function of the hidden layer. Nopt with
adaptive hidden-to-output weights approaches 7¢ as the number of hidden units increases, so it
becomes very hard to optimize the convergence correctly. For both cases, ¢ was found to scale
as 1/K.

As the thermodynamic limit could not be employed, it was necessary to quantify the variances of
the system parameters to ensure that the average value was meaningful. Equations describing the
evolution of these variances were derived, and it was shown that, for a typical case, the variances
are small. The equations for the evolution of the means and the variances were shown to be valid
descriptions of the real system via simulations.

As a next stage we intend to analyze the use of noise and regularizers within on-line learning for
the RBF. We expect the addition of output noise to the teacher to affect the asymptotic values of
the overlaps, and produce non-zero asymptotic generalization error; it may also change the length
and values of the overlaps during the symmetric phase. We also expect that a learning rate decay
scedule will be required for converging to the optimal generalization error. The addition of input
noise to the teacher is expected to have a similar effect, perhaps with the sensitivity of the training
process to the noise being greater.
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Appendix

Generalization Error:

{Zwbwclg (b,c +Zw w 12 (u,v —QZwbwglg(b,u)}
bu

AQ,AR and Aw:

(AQu) = oz {wn [T2(b:) = QuTa )] + we [Ta(eih) = QueTa(e)]} +

2
<Nn2 > wywe {K4(b, ¢) + Quela(b,c) — Ja(b,c;b) — Ju(b,c;¢) }
B

1wy {To(b; 1) = Ry To(b) }

ARy, —
< Rb> NO’%

~
<
Q
5
=
=

> wela(b,u) = D wals(b,d)
u d
Z wl Jo (b, u;c) — Z wqJa (b, d; c)
u d

14(b,c) deweL; (b,c,d,e) Zwowo.Q (b, c,u,v) —
de

2 Z wawd I, (b, ¢, d, u)
du

74(b7c;f) = deweJ4(b,c,d,e;f)+Zw2ng4(b,c,u,v;f)—

de uv

2 deng4(b, c,d,u; f)

du

Ky(bc) = deweK4(b,c, d,e) + ngwglﬁ(b,c,u,v) -

de uv

2 Z wqw® Ky(b, ¢, d, u)
du
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I,J and K:

To render the notation more compact, we introduce a generic overlap parameter U; indices i, j, f, g
and h may therefore apply to SBFs or RBFs as appropriate.

Qq; if 4,7 both refer to SBFs
Uyj = R;; if i refers to a SBF and j to a TBF (22)
T;; if i,7 both refer to TBFs

_T7.. —_T7J.. .. L. .. 2
B(id) = (o) 2 exp | ZOum Gt I 22020 (23)
o]
. Uis + Ujy .
: = — = ) Ir (1, 24
niigif) = () B (29
. - —U; —Uj; —Ups = U,
Ii(i,j.f.9) = (o) N/Qexp[ e } (25)
B
exp [Uii+Ujj+Uff+Ugg+2(Uij+Uif+Uig+Ujf+Ujg+Ufg)
4l40’4B
. Ui + Ujp, + Upp + U, .
J4(Z,J,f,g;h)=< § ng L gh)h(z,J,f,g) (26)
40p
. 2Nlyoh + Ui +Ujj + Uy + U,
Ki(i.j f.9) = ( e (27)
40p
200; +Uis + Uiy +U; s + Uiy + U ..
( J f 92 4Jf jg fg) I4(Z,J,f,g)
dljop

Instantaneous Variances

Defining, for brevity:

KI1JJ4(i,j,f.9) = K(i,j, f.9) + UisUjglali,j) = UjgJu(is j, f) — Uig Ja(i, j,g)  (28)

Variances:

AQucAQ4e = 1/og {wywqg KITJ4(b,d,c,e) +wyw. KITJ4(b,e,c,d)+ (29)
wewg KIJJ4(e,d, b, e) + we.we KIJJ4(c,e,b,d)}

AQpARg, = 1/o% {wbwd KIJJy(b,d,c,u)+wowg KIJJ4(e, d,b,u)} (30)

ARy ARey = 1/of wywe KIJJ4(b, c,u,v) (31)
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AQucAwy = 1/op {wy (Ja(b,dc) = Quela(b,d)) +we (Tale.d,b) = Quela(c,d))}
ARy Awg = 1/of wy {J4(b,d,u) — Ry, I4(b,d)}
AwpAw, = T4(b,¢) = QueI2(b)I2(c)
Other Quantities:

; 202 + 0123

2 = a5 5
20307

402 + 0123

20123 og

(35)

(36)
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