
The Dynamics of On-line Learning in RadialBasis Function NetworksJason A.S. Freeman1 and David Saad21Centre for Cognitive Science, University of Edinburgh, Edinburgh EH8 9LW, UK.2Department of Computer Science & Applied MathematicsUniversity of AstonBirmingham B4 7ET, UK.April 25, 1997AbstractOn-line learning is examined for the Radial Basis Function Network, an important andpractical type of neural network. The evolution of generalization error is calculated within aframework which allows the phenomena of the learning process, such as the specialization ofthe hidden units, to be analyzed. The distinct stages of training are elucidated, and the roleof the learning rate described. The three most important stages of training, the symmetricphase, the symmetry-breaking phase and the convergence phase, are analyzed in detail; theconvergence phase analysis allows derivation of maximal and optimal learning rates. As wellas �nding the evolution of the mean system parameters, the variances of these parameters arederived and shown to be typically small. Finally, the analytic results are strongly con�rmedby simulations.1 IntroductionThe aim of supervised learning in neural networks is to approximate an unknown target mappingfT : X ! Y , where X and Y represent the input and output space respectively, as closely aspossible given a set of possibly noise-corrupted examples (the training set D) generated from fT .To quantify the performance of a network at this task, one would ideally like to know the averagedeviation of the network's estimate from the target function - this is known as generalizationerror. From a practical perspective, generalization error is unavailable; it can be approximated byutilising a test set, again generated from fT , which is distinct from the training set. It would bevery useful if it were possible to make general statements concerning the generalization error thatcould be expected in the average case. In this paper, we calculate the evolution of the averagegeneralization error, as well as the evolution of key parameters that describe the learning system,for the Radial Basis Function Network (RBF).Several frameworks are available which facilitate analytic investigation of learning and generaliza-tion in supervised neural networks, such as the statistical physics methods (see [1] for a review),the Bayesian framework (e.g., [2]) and the PAC method [3]. These tools have principally beenapplied to simple networks, such as linear and boolean perceptrons, and various simpli�cations ofthe committee machine (see, for instance, [4] and references therein). It has proved very di�cult toobtain general results for the commonly used multilayer networks, such as the sigmoid multi-layerperceptron (MLP) and the RBF.For RBFs, some analytic studies exist which focus primarily on generalization error: in [5, 6],average case analyses are performed employing a Bayesian framework to study RBFs under a1



stochastic training paradigm. In [7], a bound on generalization error is derived under the assump-tion that the training algorithm �nds a globally optimal solution. Details of studies of RBFs fromthe perspective of the PAC framework can be found in [8] and references therein. These methodsfocus on a training scenario in which a model is trained on a �xed set of examples using a stochastictraining method.There are several studies which are concerned with understanding the dynamics of on-line gradientdescent training scenarios, whereby network parameters are modi�ed after each presentation ofan example [9, 10, 11]; these studies examine the evolution of system parameters primarily inthe asymptotic regime. A similar method, based on examining the dynamics of overlaps betweencharacteristic system vectors in on-line training scenarios has been suggested in [12, 13, 14, 15]for investigating the learning dynamics in the `soft committee machine' (SCM). This approachprovides a complete description of the learning process, formulated in terms of the overlaps betweenvectors in the system, and can be easily extended to include general two-layer networks [15, 17].The training dynamics in discrete systems has been examined by several authors employing avariety of techniques [18, 19, 20, 21, 22], some of which o�ered improved training algorithms.We present a method for analyzing the behaviour of RBFs in an on-line learning scenario whichallows the calculation of generalization error as a function of a set of variables characterizing theproperties of the adaptive parameters of the network. The dynamical evolution of the means andthe variances of these variables can be found, allowing not only the investigation of generalizationability, but also allowing the internal dynamics of the network, such as specialization of hiddenunits, to be analyzed. This tool has previously been applied to MLPs [13, 14, 15]; earlier work onRBFs from an on-line learning perspective can be found in [17].2 The RBF Network and the On-line Learning ParadigmRBF networks have been successfully employed to perform supervised learning in many real-worldtasks; they have proved a valuable alternative to MLPs. These tasks include chaotic time-seriesprediction [23], speech recognition [24] and data classi�cation [25].The RBF is a universal approximator for continuous mappings - it can approximate any continuousfunction to arbitrary accuracy given a su�cient number of hidden units [26]. The RBF architectureconsists of a two-layer network (see �gure 1) in which each layer is fully connected to its successor.For simplicity, a single output node is utilised throughout the analysis. The activation functionof the hidden nodes is radially symmetric in input space; the magnitude of the activation given aparticular datapoint is usually a decreasing function of the distance between the input vector of thedatapoint and the centre of the basis function. The output layer computes a linear combination ofthe activations of the basis functions, parameterised by the weights w between hidden and outputlayers. The function computed by an RBF network with K hidden units is therefore:fS(�) = KXb=1 wb sb(�) = w � s (1)where � is the input vector applied to the input layer, sb denotes the response of basis function b,and s represents the vector of hidden unit responses of the network.The most common choice for the basis functions is the Gaussian function, which will be employedas the hidden unit transfer function throughout the paper. Therefore the response of basis functionb to inputvector � is: sb(�) = exp��k� �mbk22�2B � (2)2



where each hidden node is parameterised by two quantities: a centre m in input space, corre-sponding to the vector de�ned by the weights between the node and the input nodes, and a width�B .
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Figure 1: RBF network architectureTwo general methodologies exist which allow the adjustment of the parameters of the RBF toapproximate the target function. One approach involves �xing the parameters of the hidden layer(both the basis function centres and widths) using an unsupervised technique such as clustering,setting a centre on each data point of the training set, or even picking random values (for areview see [27]). This leaves only the hidden-to-output weights w to adapt, which makes theproblem linear in those weights. Although fast to train, this approach generally results in sub-optimal networks since the basis function parameters are not �xed with respect to the targetsin the training data, and do not take account of the values of w. The alternative is to adaptthe hidden layer parameters, either just the centre positions or both centre positions and widths,in conjunction with the adaptation of w. This renders the problem non-linear in the adaptableparameters, and hence requires an optimization technique, such as gradient descent, to estimatethe parameters. The second approach is computationally more expensive, but usually leads togreater accuracy of approximation. This paper investigates the non-linear approach in whichbasis function centres are continuously modi�ed using gradient descent to allow convergence tomore optimal models.There are two methods in use for gradient descent. In batch learning, one attempts to minimize theadditive training error over the entire dataset; adjustments to parameters are performed once thefull training set has been presented. The alternative approach, examined here, is on-line learning,in which the adaptive parameters of the network are adjusted after each presentation of a newdatapoint; obviously one may employ a method which is a compromise between the two extremes.There has been a resurgence of interest analytically in the on-line method, as technical di�cultiescaused by the variety of ways in which a training set of given size can be selected are avoided, sotechniques such as the replica method are unnecessary.3 Generalization and System DynamicsIt is di�cult to examine generalization without having some a priori knowledge of the targetfunction since for any �nite number of datapoints, there are an in�nite number of functions thatwill �t these points exactly. In this work, we utilise a student-teacher framework, in which a3



teacher network produces the training data which is then learned by the student. This has theadvantage that we can control the learning scenario precisely, facilitating the investigation of casessuch as the exactly realizable case, in which the student architecture matches that of the teacher,the over-realizable case, in which the student can represent functions that cannot be achieved bythe teacher, and the unrealizable case in which the student has insu�cient representational powerto emulate the teacher.A training set consists of P input-output pairs (��; y�) where 1 � � � P . In the trainingscenario examined here, the components of the typical N dimensional input vector �� are chosenas uncorrelated Gaussian random variables of mean 0, variance �2� , while the scalar output y�is generated by applying � to the deterministic teacher RBF. This represents a general trainingscenario since, being universal approximators, RBF networks can approximate any continuousmapping to a desired degree. Noise is not employed in this paper; this will be investigated in afurther publication. The mapping implemented by the teacher is denoted by fT ; the vector ofhidden-to-output weights of the teacher is represented by an M dimensional vector w0 while thecentre of teacher basis function (TBF) u is denoted by nu. The vector of teacher basis functionresponses to input vector � is represented by an M dimensional vector t. For simplicity, theTBF widths are equal to those of the student; the framework does allow them to di�er, but thiscomplicates matters greatly without adding much insight. The function computed by the teacheris therefore: fT (�) = MXu=1w0u exp��k� � nuk22�2B � = w0 � t (3)We approach the problem of calculating system evolution by replacing the set of N -dimensionalvectors m, which describe the position in input space of the student basis functions, by a set ofmacroscopic variables representing the means and variances of the overlaps: Qbc =mb �mc; Rbu =mb �nu and Tuv = nu �nv. We will concentrate on the evolution of the means of these quantities;the relevance of their variances will be quanti�ed and examined as well. The evolution of thesystem will be described in terms of the evolution of these macroscopic variables and of thehidden-to-output weights w.The de�nition of generalization error that we employ is the most common in the neural networksliterature - the quadratic deviation between fT and fS :EG = � 12 (fS � fT )2� (4)where h� � �i denotes an average over input space.Substituting equations (2) and (3) into (4) gives:EG = 12 (Xbc wbwc hsbsci+Xuv w0uw0v htutvi � 2Xbu wbw0u hsbtui) (5)The variables b; c; : : : u; v; : : : and will represent student and teacher centers respectively, runningfrom 1 to K and to M accordingly. We assume the input distribution to be Gaussian, so theaverages are Gaussian integrals and can be performed analytically. Each average has dependenceon combinations of Q,R and T depending on whether the averaged basis functions belong tostudent or teacher; the full expression is given in the appendix.
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3.1 System DynamicsThe learning dynamics in this work follows the gradient descent rule,mp+1b =mpb+ �N�2B �b(��mb),where �b = (fT�fS)wbsb and � is the learning rate which is explicitly scaled with 1=N . Expressionsfor the time evolution of the mean overlaps of Q and R can be derived:h�Qbc i = �N�2B h [�b(� �mpb) �mpc + �c(� �mpc) �mpb ] i+ (6)� �N�2B�2 h �b�c(� �mpb) � (� �mpc) ih�Rbu i = �N�2B h �b(� �mpb) � nu i (7)The hidden-to-output weights can be treated similarly. In general one may choose di�erent learningrates for the dynamics of the centres and of the hidden-to-output weights. Here, we use the samelearning rate but scale it di�erently (with 1=K, in agreement with results obtained by Riegler [28]for the MLP), yielding: h�wb i = �K h (fT � fS)sb i (8)Note that scaling the learning rate with 1=K does not make a signi�cant di�erence in this case,since the thermodynamic limit has not been employed for N , in comparison to the exact MLP cal-culation where adiabatic elimination should be employed for restoring the self-averaging propertiesof the overlaps[28].These averages are again Gaussian integrals, so can be carried out analytically. The averagedexpressions for �Q;�R and �w are given in the appendix.Iterating the di�erence equations (6), (7) and (8), allows the evolution of the learning processto be tracked. This allows one to examine facets of learning such as specialization of the hiddenunits. Since generalization error depends on Q;R and w, one can also use these equations withequation (5) to track the evolution of generalization error.3.2 Variance and the Thermodynamic LimitPrevious work in this area [12, 13, 14, 15] has relied upon the thermodynamic limit (i.e., P !1; N ! 1 and P=N = �, where � is �nite). Taking this limit makes the macroscopic variablesself-averaging, allows one to ignore 
uctuations in the updates of the means of the overlaps due tothe randomness of the training examples, and permits the di�erence equations of gradient descentto be considered as di�erential equations. The thermodynamic limit is hugely arti�cial for localRBFs; as the activation is localized, the N !1 limit implies that a basis function responds onlyin the vanishingly unlikely event that an input point falls exactly on its centre; there is no obviousreasonable rescaling of the basis functions (for instance, utilizing exp��k��mbk22N�2B � eliminates alldirectional information as the cross-term � �mb vanishes in the thermodynamic limit). The pricepaid for not taking this limit is that one has no a priori justi�cation for ignoring the 
uctuationsin the update of the adaptive parameters due to the randomness of the training example.By making assumptions as to the form of these 
uctuations, it is possible to derive equationsdescribing their evolution; the method is mentioned in [9] and also in [29] for the simpler case ofthe SCM; we have extended it to deal with adaptive hidden-to-output weights (see also [15]).5



To quantify the e�ect of the variances we will derive a set of dynamical equations, parallel tothose representing the dynamics of the means, for describing the dynamics of the variances. Asthe learning rate is usually small we will focus on �rst order terms in �, which dominate thedynamics, and ignore update terms of order �2. Casting the update equations (6, 7 and 8) into ageneral form, where a represents a generic system parameter and the scaling parameter La is setto N for Q and R, and to K for w: ap+1 = ap + �LaFa (9)We then assume (similar to [29]) that the update function F and the parameter a can be writtenin terms of a mean and 
uctuation such that:Fa = F a + ~Fa and a = a+q �La ~a (10)where a denotes an average value and ~a represents a 
uctuation due to the randomness of theexample. The static correction terms of [29] are neglected, as in [9], as they are much smaller thanthe included 
uctuation terms.Combining eqns (9) and (10), and averaging with respect to the input distribution, we arrive at aset of coupled di�erence equations which describe the evolution of the variances:�D~a~bE = �pLaLb  Xc h~a~ci @F b@c +Xc D~b~cE @F a@c + D ~Fa ~FbE! (11)Applying this general method to each pair of adaptive quantities allows the evolution of thevariances for the entire system to be calculated. The averages are again Gaussian and so areanalytically tractable; the expressions that result for the instantaneous variances D ~Fa ~FbE aregiven in the appendix.It has been shown that the variances must vanish asymptotically for realizable cases [9], and wewill show in section 4.6 that they are small enough throughout the evolution of the system toallow a description of the system in terms of the evolution of the means.4 Analysing the Learning ProcessAlthough the framework enables us to consider a wide range of cases we will limit the experimentsand the analysis in this paper to realizable cases where the number of student basis functions(SBFs) equals the number of teacher basis functions (TBFs).The system evolutions described below are obtained by iterating the di�erence equations (6), (7)and (8) from random initial conditions sampled from the following distributions: Qbb and wbare sampled from U [0; 10�4], while Qbc;b6=c and Rbc from a uniform distribution U [0; 10�5], whichrepresent random correlations expected by arbitrary initialization of systems of the size we employ.The evolutions computed describe the mean behaviour, assuming the variances are negligible; theseevolutions can then be used to �nd the evolution of generalization error via equation ((5).4.1 The Importance of the Learning RateWith all the TBFs positive, analysis of the time evolution of the generalization error, overlaps andhidden-to-output weights for various settings of the learning rate reveals the existence of three6



distinct behaviours. If � is chosen to be too small (here, � = 0:1), there is a long period inwhich there is no specialization of the SBFs, and no improvement in generalization ability: theprocess becomes trapped in a symmetric subspace of solutions; this is the symmetric phase. Givenasymmetry in the student initial conditions (i.e. in R, Q or w), or of the task itself, this subspacewill always be escaped, but the time period required may be prohibitively large (�gure 2(a), dottedcurve). The length of the symmetric phase increases with the symmetry of the initial conditions.At the other extreme, if � is set too large, an initial transient takes place quickly, but there comesa point from which the student vector norms grow extremely rapidly, until the point where, dueto the �nite variance of the input distribution and local nature of the basis functions, the SBFsare no longer activated during training (�gure 2(a), dashed curve, with � = 7:0). In this case, thegeneralization error approaches a �nite value as P !1 and the task is not solved. Between theseextremes lies a region in which the symmetric subspace is escaped quickly, and EG ! 0 as P !1for the realizable case (�gure 1(a), solid curve, with � = 0:9). The SBFs become specialized and,asymptotically, the teacher is emulated exactly.These results for the learning rate are qualitatively similar to those found for SCMs and MLPs[12, 13, 14, 15].4.2 An Example of System EvolutionThere are four distinct phases in the learning process, which are described with reference to anexample of learning an exactly realizable task. This task consists of a network of 3 student basisfunctions (SBFs) learning a graded teacher of 3 TBFs, where graded implies that the square normsof the TBFs (diagonals of T ) di�er from one another; for this task, T00 = 0:5; T11 = 1:0; andT22 = 1:5. As previously stated, the widths of the student basis functions are considered �xed andequal to those of the teacher for simplicity; also note that the teacher always produces a continousmapping, and noise is not employed.For this particular task we choose the teacher to be uncorrelated, with the o�-diagonals of T setto 0, and the teacher hidden-to-output weights w0 to 1. The learning process is illustrated in�gures 2(a) to 2(d); �gure 2(a) (solid curve) shows the evolution of generalization error, calculatedfrom equation (5), while �gures 2(b) to 2(c) show the evolution of the equations for the means ofR, Q and w respectively, calculated by iterating equations (6), (7) and (8) from random initialconditions as described above. Input dimensionality N = 8, learning rate � = 0:9, input variance�2� = 1 and basis function width �B = 1 were employed.The picture that emerges mirrors that of the SCM and MLP [14, 15]. Initially, there is a short tran-sient phase in which the overlaps and hidden-to-output weights evolve from their initial conditionsuntil they reach an approximately steady value (P = 0 to P = 4000). The symmetric phase thenbegins, which is characterized by a plateau in the evolution of the generalization error (see �gure2(a), solid curve, P = 4000 to P = 5�104), corresponding to a lack of di�erentiation amongst thehidden units; they are unspecialized and learn an average of the hidden units of the teacher, so thatthe student centre vectors and hidden-to-output weights are similar (�gures 2(b) to 2(d)). The dif-ference in the overlapsR between student centre vectors and teacher centre vectors (�gure 2(b)) isonly due to the di�erence in the lengths of various teacher centre vectors; if the overlaps were nor-malized, they would be identical. The symmetric phase is followed by a symmetry-breaking phasein which the SBFs learn to specialize, and become di�erentiated from one another (P = 5� 104to P = 1:7�105). Finally there is a long convergence phase, as the overlaps and hidden-to-outputweights reach their asymptotic values. Since the task is realizable, this phase is characterized byEG ! 0 (�gure 2(a), solid curve), and by the student centre vectors and hidden-to-output weightsapproaching those of the teacher (i.e. Q00 = R00 = 0:5; Q11 = R11 = 1:0; Q22 = R22 = 1:5, withthe o�-diagonal elements of both Q and R being zero; 8b; wb = 1). Arbitrary labels of the SBFswere permuted to match those of the teacher.These phases are generic in that they are observed, sometimes with some variation such as a series7



of symmetric and symmetry-breaking phases, in every on-line learning scenario for RBFs so farexamined.4.3 Task DependenceThe symmetric phase is a phenomenon which depends on the symmetry of the task as well as thatof the initial conditions. One would expect a shorter symmetric phase in inherently asymmetrictasks. To examine this, a task similar to that of section 4.2 was employed, with the single changebeing that the sign of one of the teacher hidden-to-output weights was 
ipped, thus providing twocategories of targets: positive and negative. The initial conditions of the student remained thesame as in the previous task, with � = 0:9.The evolution of generalization error and the overlaps for this task are shown in �gures 3(a) and3(b) respectively. Dividing of the targets into two categories e�ectively eliminates the symmetricphase; this can be seen by comparing the evolution of the generalization error for this task (�gure3(a), dashed curve) with that for the previous task (�gure 3(a), solid curve). There is no longera plateau in the generalization error. Correspondingly, the symmetries between SBFs break im-mediately, as can be seen by examining the overlaps between student and teacher centre vectors(�gure 3(b)); this should be compared with �gure 2(b) which denotes the evolution of the overlapsin the previous task. Note that the plateaus in the overlaps (�gure 2(b), P = 4000 to P = 5�104)are not found for the asymmetric task.The elimination of the symmetric phase is an extreme result caused by the small size of the studentnetwork (3 hidden units). For networks with many hidden units, one �nds instead a cascade of sub-symmetric phases, each shorter than the single symmetric phase in the corresponding task withonly positive targets, in which there is one symmetry between the hidden units seeking positivetargets and another between those seeking negative targets.This suggests a simple and easily implemented strategy for increasing the speed of learning whentargets are predominantly positive (negative): eliminate the bias of the training set by subtracting(adding) the mean target from each target point. This corresponds to an old heuristic among RBFpractitioners. It follows that the hidden-to-output weights should be initialized from a zero-meandistribution. Alternatively, a bias unit could be used, but this adds another parameter to thetraining process.4.4 Analysing the Symmetric and Symmetry-Breaking PhasesThe symmetric phase, in which there is no specialization of the hidden units, can be analyzedin the realizable case by employing a few simplifying assumptions. It is a phenomenon that ispredominantly associated with small �, so terms of �2 may be neglected. The hidden-to-outputweights are clamped to +1. The teacher is taken to be isotropic: TBF centres have identicalnorms of 1, each having no overlap with the others, therefore Tuv = �uv. This has the result thatthe student norms Qbc are very similar, as are the student-student correlations, so Qbb � Q andQbc;b6=c � C where Q becomes the square norm of the SBFs, and C is the overlap between anytwo di�erent SBFs.Following the geometric argument of [14], which is consistent with the numerical results, in thesymmetric phase, the SBF centres are mostly con�ned to the subspace spanned by the TBFcentres. Since Tuv = �uv, the SBF centres can be written in the orthonormal basis de�ned by theTBF centres, with the components being the overlaps R: mb =PMu=1Rbunu. As the teacher isisotropic, the overlaps are independent of both b and u and thus can be written in terms of a singleparameter R. Further, this reduction to a single overlap parameter leads to Q = C = MR2, sothe evolution of the overlaps can be described as a single di�erence equation for R. The analyticsolution of equations (6), (7) and (8) under these restrictions is still rather complicated. However,8
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(�) that scales with K and represents a perturbation which breaks the symmetries between thehidden units by amplifying asymmetries in the initial conditions (see [16] for a detailed analysis ofthis for the SCM); the remaining modes, which also scale with K, are irrelevant as they preservethe symmetry. This result is in contrast to that for the SCM ([14]), in which the dominanteigenvalue scales with 1=K. This implies that for RBFs the more hidden units in the network, thefaster the symmetric phase is escaped, resulting in negligible symmetric phases for large systems,while in SCMs the opposite is true; this result has been con�rmed by simulation. This di�erenceis caused by the contrast between the localized nature of the basis function in the RBF networkand the global nature of sigmoidal hidden nodes in SCM. In the SCM case, small perturbationsaround the symmetric �xed point result in relatively small changes in error since the sigmoidalresponse changes very slowly as one modi�es the weight vectors. On the other hand, the Gaussianresponse decays exponentially as one moves away from the centre, so small perturbations aroundthe symmetric �xed point result in massive changes that drive the symmetry breaking. When Kincreases the error surface looks very rugged emphasising the peaks and increasing this e�ect, incontrast to the SCM case where more sigmoids means a smoother error surface.4.5 Calculating the ConvergenceThe speed and conditions of convergence of the online gradient descent process is of great interest,both practically and theoretically. To investigate this for the RBF in the realizable case, we againuse an isotropic teacher, de�ned by Tuv = �uv and w0u = 1. This means the evolution of eachstudent hidden unit will be very similar, so the evolving system can be simpli�ed to 5 adaptivevariables: Qbc = Q�bc +C(1� �bc); Rbu = R�bu + S(1� �bu) and wb = w, controlled by equations(6), (7) and (8). Note that we do not expect the variances to play a signi�cant role in de�ning themaximal and optimal learning rates as they have been shown to vanish in the asymptotic regime.Linearizing these equations about the known �xed point of the dynamics, Q = 1; C = 0; R =1; S = 0; w = 1 yields the eigenvalues controlling the rate of convergence and the stability. Thereis a single (non-linear in �) critical eigenvalue, �1, which controls stability, a linear eigenvalue, �2,which can in
uence convergence rate, and three further eigenvalues which play no signi�cant role,being much smaller for all values of �. The eigenvalues are illustrated in �gure 4(a) for a network of10 hidden units with input dimensionN = 10. The maximum learning rate, de�ned by the crossingof the zero line, can be seen to be controlled solely by �1; note that this maximum only appliesduring convergence, not necessarily during the other phases of learning. The theory predicts amaximum learning rate of � = 33 for this scenario; the accuracy of the method was tested bytraining real RBF networks by initializing them near the known �xed point, and determining thevalue of � at which convergence failed to occur, which in this case was � = 32:3 with standarddeviation of 0:8.The rate of convergence, de�ned for particular � by the smaller of �1 and �2, is optimized eitherby setting � to the minimum of �1 or to the intersection of �1 with �2, depending on the exactlearning scenario (e.g., for other teacher vector lengths or basis widths).It is interesting to compare the convergence of the system with adaptive hidden-to-output weightsto that where the hidden-to-output weights are �xed [17]. Figure 4(b) shows the two signi�canteigenvalues for both cases in identical scenarios. �1 is unchanged, so the maximum learning rateis una�ected and is therefore a function of the hidden layer, not the output layer (this is also truefor the MLP [15]). With �xed hidden-to-output weights, the gradient of �2 becomes much steeperand in fact does not a�ect the rate of convergence which is controlled solely by �1.The scaling of the maximum and optimal learning rates with the number of hidden units can alsobe found. For both �xed and adaptive hidden-to-output weights, the maximum learning rate scalesas 1=K. For �xed hidden-to-output weights, the optimal learning rate also scales as 1=K, whilefor adaptive hidden-to-output weights, the situation is more complicated. In parameter regionswhere the convergence rate is optimized by minimising �1, the optimal learning rate again scales11



as 1=K; however, in regions where optimization is achieved by �nding the intersection of �1 and�2, � changes at a slower rate than 1=K. These e�ects are illustrated in �gure 4(c), in whichmaximum and optimal learning rates are plotted against 1=K. Note that as K increases, �optapproaches �c rapidly for the adaptive hidden-to-output case (�2 becomes less steep), implyingthat it becomes di�cult to optimize the process and still obtain convergence to the correct �xedpoint.4.6 Quanti�cation of the VarianceTo demonstrate that it is reasonable to consider only the mean of the updates of the systemparameters, we present results quantifying the e�ect of the variance for a typical case, showingthat its contribution is negligible in comparison with the mean values. In pathological cases inwhich the task and the initial conditions of the system are highly symmetric, it is possible toobtain variances which are much larger than those which typically occur - this issue is exploredfor the SCM in [29].To examine the e�ect of the variance we use a training scenario in which a student network com-prising two SBFs is trained on examples generated by a two node teacher. The initial conditionswere constructed by randomly initialising the weights of an RBF network by drawing each input-to-hidden and hidden-to-output weight from U[0,0.1], and then mapping the network into theappropriate system parameters, so as to provide realistic conditions. The input dimension N wasset to 10, and the learning rate � to 0.1. The mean and variance update equations (6), (7), (8)and (11) were iterated from these initial conditions until the means had reached an approximatelysteady state, thus providing a trajectory for each variance.In �gures 5(a) and 5(b), the 
uctuations are plotted as error bars on the mean for the dominantstudent-teacher overlaps R and for the hidden-to-output weights w (
uctuation magnitudes forQ are very similar to those of R). The magnitudes of the 
uctuations are very small, particularlyso for R. For w, the peak ratio of 
uctuation magnitude to mean is approximately 0:012, whilefor R, it is 0:008. These ratios are typical for non-pathological scenarios. Note that for realizablecases, the 
uctuations must eventually disappear.To demonstrate that the theoretical calculation of the evolution of the variances gives valid results,gradient descent learning was used to train actual RBF networks 1000 times for the con�gurationand initial conditions described above. The average evolutions of the parameters were employedto calculate empirical 
uctuations about the means. The results of this are plotted in �gures5(c) and 5(d), in which the theoretical 
uctuations are shown versus the simulation 
uctuations -it can be seen that there is very good agreement between the theory and simulation. The slightdiscrepancy up to about P = 1:5�106 is, we believe, due to the fact that terms of �2 are discardedin the theory.4.7 SimulationsTo demonstrate the validity of the theoretical average-case results, we compared the evolution ofthe system found by iterating equations (6), (7) and (8) to empirical results found by training realRBF networks via on-line gradient descent. The empirical values of Q;R and w were calculatedfrom the trajectories of the weights during training. Generalization error was empirically estimatedvia the average error on a 1000-point test-set, and the results were averaged over 50 trials, withthe arbitrary labels of the SBFs permuted appropriately to ensure the averages were meaningful.We present the results from a typical set of trials: in this realizable scenario, 3 SBFs learn 3 TBFswith � = 0:9 and N = 5. The excellent correspondence between the theory and simulations isdemonstrated in �gure 6. Figure 6(a) shows theoretical versus empirical generalization error -the theoretical value is always within one standard deviation of the empirical value. In �gures12
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features of the learning process, such as the specialization of the hidden units.The four distinct stages of training were highlighted - initially there is a short transient phase asthe parameters move from their initial values into the symmetric phase, in which the hidden unitsare undi�erentiated. Specialization gradually develops in the third, symmetry-breaking, phase, asthe hidden units move towards their particular destinations; �nally there is a convergence phasein which the parameters asymptotically reach their �nal values. The role of the learning rate wasalso examined - with a small learning rate �, training proceeds unnecessarily slowly, with a longtrapping time in the symmetric phase. With � too high, the process does not converge to thecorrect �xed point; the magnitudes of the student centre vectors grow until the centre plays nopart in the learning process. Between these extremes lies a range in which the process convergesquickly to the correct target.The relative importance of the stages of training depends to a large extent on the nature of thetask itself. When the task is highly symmetric, the symmetric phase becomes dominant; in thiscase it would be desirable to introduce arti�cial methods of breaking the symmetry of the student.For very asymmetric tasks, the symmetric phase may be over quickly or even non-existent. Sincein practical use the task is usually understood poorly, it is important to understand the behaviourof the network over a whole range of tasks.The symmetric phase was analysed (for the realizable case), and the value of the system parametersat the symmetric �xed point found. The breaking of the symmetric phase was also examined viaan eigenvalue analysis - there is a signi�cant behavioural di�erence between the RBF and the SCMin that the more hidden units, the greater the length of the phase in the SCM, but the shorterits length in the RBF. This is due to the di�erence in the properties of the activation function forthe networks - the RBF has a localized activation function, while that of the SCM is global.The convergence properties of the system in the realizable case were also examined via eigenvalueanalysis. A single critical eigenvalue controls stability of the target �xed point, and thus determinesthe maximum value of � that can be employed (�c). The optimal setting �opt of � can also befound, which depends on a combination of the critical eigenvalue and a second (linear in �)eigenvalue. The results were compared to those previously found for the RBF using non-adaptivehidden-to-output weights; �c was unchanged, and is thus a function of the hidden layer. �opt withadaptive hidden-to-output weights approaches �c as the number of hidden units increases, so itbecomes very hard to optimize the convergence correctly. For both cases, �c was found to scaleas 1=K.As the thermodynamic limit could not be employed, it was necessary to quantify the variances ofthe system parameters to ensure that the average value was meaningful. Equations describing theevolution of these variances were derived, and it was shown that, for a typical case, the variancesare small. The equations for the evolution of the means and the variances were shown to be validdescriptions of the real system via simulations.As a next stage we intend to analyze the use of noise and regularizers within on-line learning forthe RBF. We expect the addition of output noise to the teacher to a�ect the asymptotic values ofthe overlaps, and produce non-zero asymptotic generalization error; it may also change the lengthand values of the overlaps during the symmetric phase. We also expect that a learning rate decayscedule will be required for converging to the optimal generalization error. The addition of inputnoise to the teacher is expected to have a similar e�ect, perhaps with the sensitivity of the trainingprocess to the noise being greater.
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AppendixGeneralization Error:EG = 12 (Xbc wbwcI2(b; c) +Xuv w0uw0vI2(u; v)� 2Xbu wbw0uI2(b; u)) (13)�Q;�R and �w:h�Qbci = �N�2B �wb �J2(b; c)�QbcI2(b)�+ wc �J2(c; b)�QbcI2(c)�	+ (14)� �N�2B�2 wbwc �K4(b; c) +QbcI4(b; c)� J4(b; c; b)� J4(b; c; c)	h�Rbui = �N�2Bwb �J2(b;u)�RbuI2(b)	 (15)h�wbi = �K I2(b) (16)I; J and K: I2(b) = Xu w0uI2(b; u)�Xd wdI2(b; d) (17)J2(b; c) = Xu w0uJ2(b; u; c)�Xd wdJ2(b; d; c) (18)I4(b; c) = Xde wdweI4(b; c; d; e) +Xuv w0uw0vI4(b; c; u; v)� (19)2Xdu wdw0uI4(b; c; d; u)J4(b; c; f) = Xde wdweJ4(b; c; d; e; f) +Xuv w0uw0vJ4(b; c; u; v; f)� (20)2Xdu wdw0uJ4(b; c; d; u; f)K4(b; c) = Xde wdweK4(b; c; d; e) +Xuv w0uw0vK4(b; c; u; v)� (21)2Xdu wdw0uK4(b; c; d; u)17



I; J and K:To render the notation more compact, we introduce a generic overlap parameter U ; indices i; j; f; gand h may therefore apply to SBFs or RBFs as appropriate.Uij = 8<: Qij if i; j both refer to SBFsRij if i refers to a SBF and j to a TBFTij if i; j both refer to TBFs (22)I2(i; j) = (2l2�2� )�N=2 exp ��Uii � Ujj + (Uii + Ujj + 2Uij)=2�2Bl22�2B � (23)J2(i; j; f) = �Uif + Ujf2l2�2B � I2(i; j) (24)I4(i; j; f; g) = (2l4�2� )�N=2 exp��Uii � Ujj � Uff � Ugg2�2B �� (25)exp �Uii + Ujj + Uff + Ugg + 2(Uij + Uif + Uig + Ujf + Ujg + Ufg)4l4�4B �
J4(i; j; f; g;h) = �Uih + Ujh + Ufh + Ugh2l4�2B � I4(i; j; f; g) (26)K4(i; j; f; g) = �2Nl4�4B + Uii + Ujj + Uff + Ugg4l4�4B + (27)2(Uij + Uif + Uig + Ujf + Ujg + Ufg)4l24�4B � I4(i; j; f; g)Instantaneous VariancesDe�ning, for brevity:KIJJ4(i; j; f; g) = K(i; j; f; g) + UifUjgI4(i; j)� UjgJ4(i; j; f)� UifJ4(i; j; g) (28)Variances: �Qbc�Qde = 1=�4B �wbwd KIJJ4(b; d; c; e) + wbwe KIJJ4(b; e; c; d)+ (29)wcwd KIJJ4(c; d; b; e) + wcwe KIJJ4(c; e; b; d)	�Qbc�Rdu = 1=�4B �wbwd KIJJ4(b; d; c; u) + wcwd KIJJ4(c; d; b; u)	 (30)�Rbu�Rcv = 1=�4B wbwc KIJJ4(b; c; u; v) (31)18
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